Podstawy fizyki wykład 8
|
|
- Grzegorz Chrzanowski
- 7 lat temu
- Przeglądów:
Transkrypt
1 Podstawy fizyki wykład 8 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska
2 Ładunek elektryczny Grecy ok. 600 r p.n.e. odkryli, że bursztyn potarty o wełnę przyciąga inne (drobne) przedmioty. słowo elektryczny pochodzi od elektron (bursztyn) Ładunek elektryczny - właściwość cząstek elementarnych, z których składają się wszystkie ciała, czyli właściwością, która stale towarzyszy tym cząstkom. Ogromne ilości ładunku w każdym ciele są zwykle niewidoczne, gdyż ciało zawiera jednakowe ilości dwóch rodzajów ładunku: ładunku dodatniego i ładunku ujemnego ciało elektrycznie obojętne (neutralnym), ładunek wypadkowy równy zero. Jeśli dwa rodzaje ładunku nie równoważą się, to ciało ma niezerowy ładunek wypadkowy - ciało jest naładowane. Ładunek wypadkowy jest bardzo mały w porównaniu z ilością ładunku dodatniego i ładunku ujemnego, znajdujących się w ciele.
3 Przykład 1 Ładunek elektryczny Ciała naładowane wzajemnie na siebie oddziałują. Ładunki elektryczne o takich samych znakach odpychają się, a ładunki elektryczne o przeciwnych znakach się przyciągają.
4 Ładunek elektryczny Istnieją dwa rodzaje ładunków: dodatnie + i ujemne -. Przypisanie znaków + i - ładunkom elektrycznym było zupełnie dowolne. Umówiono się, że szkło pocierane jedwabiem ładuje się dodatnio, a ebonit pocierany suknem ujemnie. Ładunków nie potrafimy wytwarzać: umiemy tylko rozdzielać ładunki dodatnie i ujemne występujące w przyrodzie, tak aby była spełniona zasada zachowania ładunku. Np. Przy pocieraniu szkła o jedwab szkło ładuje się dodatnio a jedwab ujemnie przy czym ładunek dodatni szkła i ujemny jedwabiu co do wartości bezwzględnej są sobie równe.
5 Ładunek elektryczny Ładunek elementarny. Wartość (bezwzględna) dowolnego ładunku jest wielokrotnością ładunku elementarnego. Ładunek elementarny ma wartość e = 1, C Kwarki, czyli cząstki, z których zbudowane są protony i neutrony, mają ładunki ±e/3 lub ±2e/3, ale są one zawsze uwięzione, tzn. nie mogą być indywidualnie obserwowane. Z tego powodu, a także ze względów historycznych, ich ładunków nie traktuje się jako ładunku elementarnego.
6 Ładunek elektryczny Przewodniki i izolatory Przewodniki Izolatory Półprzewodniki Nadprzewodniki Właściwości materiałów wynikają z budowy atomów i właściwości elektrycznych ich składników. Atomy zbudowane są z dodatnio naładowanych protonów, ujemnie naładowanych elektronów i elektrycznie obojętnych neutronów.
7 Ładunek elektryczny Prawo Coulomba siła elektrostatyczna przenikalność elektryczna próżni
8 Ładunek elektryczny Prawo Coulomba Twierdzenia o powłoce Jednorodnie naładowana powłoka kulista przyciąga lub odpycha naładowaną cząstkę znajdującą się na zewnątrz powłoki tak, jakby cały ładunek tej powłoki był skupiony w jej środku. Jeśli cząstka naładowana znajduje się wewnątrz jednorodnie naładowanej powłoki kulistej, to wypadkowa siła elektrostatyczna oddziaływania powłoki na cząstkę jest równa zeru.
9 Prawo Coulomba Ładunek elektryczny
10 Pole elektryczne Oddziaływanie między ładunkami elektrycznymi jest oddziaływaniem na odległość. Ładunek elektryczny Q zmienia przestrzeń wokół siebie w taki sposób, że każdy inny ładunek q, który znajdzie się w tej przestrzeni dozna działania siły kulombowskiej (ładunek q znalazł się w polu elektrycznym wytworzonym przez ładunek Q). Ładunek Q wytwarzający pole elektryczne nazywamy źródłem pola. Jeśli ładunek wytwarzający pole elektryczne nie zmienia swej wartości w czasie i nie porusza się, to mówimy o polu elektrostatycznym.
11 Pole elektryczne
12 Przykład 2 i 3 Pole elektryczne
13 Pole elektryczne
14 Dipol elektryczny Pole elektryczne
15 Dipol elektryczny Pole elektryczne
16 Pole elektryczne Naładowany pierścień natężenie pola elektrycznego na osi naładowanego pierścienia dla z >> R
17 Pole elektryczne Naładowana tarcza natężenie pola elektrycznego na osi naładowanej tarczy natężenie pola elektrycznego od nieskończonej płaszczyzny
18 Pole elektryczne Ładunek punktowy w polu elektrycznym Na naładowaną cząstkę będzie działać siła elektrostatyczna, określona następującym wzorem: Siła elektrostatyczna F, działająca na cząstkę umieszczoną w zewnętrznym polu elektrycznym o natężeniu E ma kierunek natężenia E, jeśli ładunek cząstki q jest dodatni, i ma przeciwny kierunek, jeśli ładunek q jest ujemny. Jak skierowana jest siła elektrostatyczna działająca na elektron i pochodząca od pola elektrycznego o natężeniu przedstawionym na rysunku? W którym kierunku elektron będzie przyspieszany, jeśli przed wejściem w obszar pola elektrycznego poruszał się równolegle do osi y? Jeśli elektron poruszał się początkowo w prawo, to czy jego prędkość wzrośnie, zmaleje, czy pozostanie stała?
19 Pole elektryczne Ładunek punktowy w jednorodnym polu elektrycznym
20 Pole elektryczne Dipol w polu elektrycznym M
21 Prawo Gaussa Prawo Gaussa określa związek między natężeniem pola elektrycznego w punktach na (zamkniętej) powierzchni Gaussa i całkowitym ładunkiem objętym tą powierzchnią.
22 Prawo Gaussa Strumień wektora natężenia pola elektrycznego Strumień elektryczny F przenikający przez powierzchnię Gaussa jest proporcjonalny do całkowitej liczby linii pola elektrycznego, przechodzących przez tę powierzchnię.
23 Prawo Gaussa Przykład powierzchnia Gaussa
24 Prawo Gaussa
25 Prawo Gaussa Prawo Gaussa a prawo Coulomba powierzchnia Gaussa
26 Prawo Gaussa Izolowany przewodnik naładowany Jeśli nadmiarowy ładunek zostaje umieszczony na izolowanym przewodniku, to ten ładunek przesuwa się całkowicie na powierzchnię przewodnika. We wnętrzu przewodnika nie ma żadnego nadmiarowego ładunku.
27 Prawo Gaussa Izolowany przewodnik naładowany Wartość natężenia pola elektrycznego tuż przy powierzchni przewodnika jest więc proporcjonalna do gęstości powierzchniowej ładunku w tym miejscu przewodnika.
28 Prawo Gaussa Naładowana linia powierzchnia Gaussa
29 Dwie przewodzące płyty Prawo Gaussa
30 Powłoka sferyczna Prawo Gaussa
31 Prawo Gaussa Sferycznie symetryczny rozkład ładunku kula naładowana objętościowo
32 Potencjał elektryczny Praca w polu elektrostatycznym
33 Potencjał elektryczny
34 Potencjał elektryczny Elektryczna energia potencjalna Potencjał elektryczny
35 Potencjał elektryczny
36 Potencjał elektryczny Powierzchnie ekwipotencjalne
37 Potencjał elektryczny Obliczanie potencjału na podstawie natężenia pola Potencjał ładunku punktowego
38 Potencjał elektryczny Obliczanie potencjału na podstawie natężenia pola Potencjał ładunku punktowego Cząstka dodatnio naładowana wytwarza dodatni potencjał elektryczny. Cząstka ujemnie naładowana wytwarza ujemny potencjał elektryczny.
39 Potencjał elektryczny Obliczanie potencjału na podstawie natężenia pola Potencjał pola układu ładunków
40 Potencjał elektryczny Elektryczna energia potencjalna układu ładunków punktowych Elektryczna energia potencjalna układu unieruchomionych ładunków punktowych jest równa pracy, jaką musi wykonać siła zewnętrzna, aby utworzyć ten układ, przenosząc każdy ładunek z nieskończonej odległości.
41 Potencjał elektryczny Elektryczna energia potencjalna układu ładunków punktowych
42 Potencjał elektryczny Potencjał izolowanego naładowanego przewodnika
43 Potencjał elektryczny Potencjał izolowanego naładowanego przewodnika
44 Potencjał elektryczny Nienaładowany przewodnik w polu elektrycznym
45 Pojemność elektryczna Dwa przewodniki, odizolowane elektrycznie od siebie i od otoczenia, tworzą kondensator. Jeśli kondensator jest naładowany, to przewodniki, zwane okładkami mają ładunki o takich samych wartościach q, ale o przeciwnych znakach.
46 Pojemność elektryczna
47 Kondensator płaski Pojemność elektryczna
48 Pojemność elektryczna Kondensator walcowy całkowity ładunek U droga całkowania powierzchnia Gaussa
49 Pojemność elektryczna Kondensator kulisty całkowity ładunek droga całkowania powierzchnia Gaussa U
50 Izolowana kula Pojemność elektryczna
51 Pojemność elektryczna Kondensatory połączone równolegle Jeśli różnica potencjałów U jest przyłożona do kilku kondensatorów połączonych równolegle, to taka sama różnica potencjałów U występuje na każdym kondensatorze. Całkowity ładunek Q, zgromadzony w układzie jest sumą ładunków, zgromadzonych na poszczególnych kondensatorach. Kondensatory połączone równolegle można zastąpić równoważnym kondensatorem o takim samym całkowitym ładunku Q i takiej samej różnicy potencjałów U, jak dla kondensatorów układu.
52 Pojemność elektryczna Kondensatory połączone szeregowo Jeśli różnica potencjałów U jest przyłożona do kilku kondensatorów połączonych szeregowo, to kondensatory mają identyczne ładunki Q. Suma różnic potencjałów na wszystkich kondensatorach jest równa przyłożonej różnicy potencjałów U. Kondensatory połączone szeregowo można zastąpić równoważnym kondensatorem, który ma taki sam ładunek Q i taką samą całkowitą różnicę potencjałów U, jak kondensatory połączone szeregowo.
53 Pojemność elektryczna Łączenie kondensatorów przykłady
54 Pojemność elektryczna Łączenie kondensatorów przykłady
55 Pojemność elektryczna Energia naładowanego kondensatora Praca wykonana przy ładowaniu kondensatora zostaje zmagazynowana w postaci elektrycznej energii potencjalnej E p, w polu elektrycznym między okładkami. Możemy odzyskać tę energię przez rozładowanie kondensatora w obwodzie. Praca, potrzebna do przeniesienia całkowitego ładunku q kondensatora jest równa: lub Energia potencjalna naładowanego kondensatora jest zmagazynowana w polu elektrycznym między okładkami kondensatora.
56 Pojemność elektryczna Defibrylator 200 J jest przekazane choremu w czasie 2 ms, więc moc impulsu wynosi i jest dużo większa od mocy źródła.
57 Pojemność elektryczna Kondensator z dielektrykiem
58 Pojemność elektryczna Kondensator z dielektrykiem W obszarze wypełnionym całkowicie materiałem dielektrycznym o względnej przenikalności elektrycznej e r wszystkie równania elektrostatyki, zawierające przenikalność elektryczną próżni e 0 należy zmodyfikować, zastępując e 0 przez e 0 e r.
Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C
Wymiana ciepła Ładunek jest skwantowany ładunek elementarny ładunek pojedynczego elektronu (e). Każdy ładunek q (dodatni lub ujemny) jest całkowitą wielokrotnością jego bezwzględnej wartości. q=n. e gdzie
Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się
Ładunki elektryczne Ładunki jednoimienne odpychają się Ładunki różnoimienne przyciągają się q = ne n - liczba naturalna e = 1,60 10-19 C ładunek elementarny Ładunek jest cechąciała i nie można go wydzielićz
Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl
Ładunki elektryczne i siły ich wzajemnego oddziaływania Pole elektryczne Copyright by pleciuga@ o2.pl Ładunek punktowy Ładunek punktowy (q) jest to wyidealizowany model, który zastępuje rzeczywiste naelektryzowane
Wykład FIZYKA II. 1. Elektrostatyka. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II. Elektrostatyka Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ ELEKTROMAGNETYZM Już starożytni Grecy Potarty kawałek
Wykład 8 ELEKTROMAGNETYZM
Wykład 8 ELEKTROMAGNETYZM Równania Maxwella dive = ρ εε 0 prawo Gaussa dla pola elektrycznego divb = 0 rote = db dt prawo Gaussa dla pola magnetycznego prawo indukcji Faradaya rotb = μμ 0 j + εε 0 μμ 0
Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α
Elektrostatyka ŁADUNEK elektron: -e = -1.610-19 C proton: e = 1.610-19 C neutron: 0 C n p p n Cząstka α Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest
Fizyka 2 Wróbel Wojciech. w poprzednim odcinku
Fizyka w poprzednim odcinku Obliczanie natężenia pola Fizyka Wyróżniamy ładunek punktowy d Wektor natężenia pola d w punkcie P pochodzący od ładunku d Suma składowych x-owych wektorów d x IĄGŁY ROZKŁAD
Wykład FIZYKA II. 1. Elektrostatyka
Wykład FIZYKA II. Elektrostatyka Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka.html ELEKTROMAGNETYZM Już starożytni
Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI.
Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. 1. Ładunki q 1 =3,2 10 17 i q 2 =1,6 10 18 znajdują się w próżni
POLE ELEKTRYCZNE PRAWO COULOMBA
POLE ELEKTRYCZNE PRAWO COULOMBA gdzie: Q, q ładunki elektryczne wyrażone w kulombach [C] r - odległość między ładunkami Q i q wyrażona w [m] ε - przenikalność elektryczna bezwzględna środowiska, w jakim
Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych
Ładunek elektryczny Ładunek elektryczny jedna z własności cząstek elementarnych http://pl.wikipedia.org/wiki/%c5%81a dunek_elektryczny ładunki elektryczne o takich samych znakach się odpychają a o przeciwnych
Lekcja 40. Obraz graficzny pola elektrycznego.
Lekcja 40. Obraz graficzny pola elektrycznego. Polem elektrycznym nazywamy obszar, w którym na wprowadzony doń ładunek próbny q działa siła. Pole elektryczne występuje wokół ładunków elektrycznych i ciał
Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics)
Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Koniec XIX / początek XX wieku Lata 90-te XIX w.: odkrycie elektronu (J. J. Thomson, promienie katodowe), promieniowania Roentgena
Odp.: F e /F g = 1 2,
Segment B.IX Pole elektrostatyczne Przygotował: mgr Adam Urbanowicz Zad. 1 W atomie wodoru odległość między elektronem i protonem wynosi około r = 5,3 10 11 m. Obliczyć siłę przyciągania elektrostatycznego
Podstawowe własności elektrostatyczne przewodników: Pole E na zewnątrz przewodnika jest prostopadłe do jego powierzchni
KONDENSATORY Podstawowe własności elektrostatyczne przewodników: Natężenie pola wewnątrz przewodnika E = 0 Pole E na zewnątrz przewodnika jest prostopadłe do jego powierzchni Potencjał elektryczny wewnątrz
Podstawy fizyki sezon 2 2. Elektrostatyka 2
Podstawy fizyki sezon 2 2. Elektrostatyka 2 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Strumień wektora
ELEKTROSTATYKA. cos tg60 3
Włodzimierz Wolczyński 45 POWTÓRKA 7 ELEKTROSTATYKA Zadanie 1 Na nitkach nieprzewodzących o długościach 1 m wiszą dwie jednakowe metalowe kuleczki. Po naładowaniu obu ładunkiem jednoimiennym 1μC nitki
Elektrostatyka. A. tyle samo B. będzie 2 razy mniejsza C. będzie 4 razy większa D. nie da się obliczyć bez znajomości odległości miedzy ładunkami
Elektrostatyka Zadanie 1. Dwa jednoimienne ładunki po 10C każdy odpychają się z siłą 36 10 8 N. Po dwukrotnym zwiększeniu odległości między tymi ładunkami i dwukrotnym zwiększeniu jednego z tych ładunków,
ŁADUNEK I MATERIA Ładunki elektryczne są ściśle związane z atomową budową materii. Materia składa się z trzech rodzajów cząstek elementarnych:
POLE ELEKTRYCZNE Ładunek i materia Ładunek elementarny. Zasada zachowania ładunku Prawo Coulomba Elektryzowanie ciał Pole elektryczne i pole zachowawcze Natężenie i strumień pola elektrycznego Prawo Gaussa
Elektrostatyka. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Elektrostatyka Projekt współfinansowany przez Unię Europejską w ramach Europejskiego unduszu Społecznego Ładunek elektryczny Materia zbudowana jest z atomów. Atom składa się z dodatnie naładowanego jądra
Wykład 8: Elektrostatyka Katarzyna Weron
Wykład 8: Elektrostatyka Katarzyna Weron Matematyka Stosowana Przewodniki i izolatory Przewodniki - niektóre ładunki ujemne mogą się dość swobodnie poruszać: metalach, wodzie, ciele ludzkim, Izolatory
Pojemność elektryczna. Pojemność elektryczna, Kondensatory Energia elektryczna
Pojemność elektryczna Pojemność elektryczna, Kondensatory Energia elektryczna Pojemność elektryczna - kondensatory Kondensator : dwa przewodniki oddzielone izolatorem zwykle naładowane ładunkami o przeciwnych
Wykład 2. POLE ELEKTROMEGNETYCZNE:
Wykład 2. POLE ELEKTROMEGNETYCZNE: Ładunek elektryczny Ładunki elektryczne: -dodatnie i ujemne - skwantowane, czyli że mają pewną najmniejszą wartość, której nie można już dalej podzielić. Nie można ładunków
Elektrostatyka. mgr inż. Grzegorz Strzeszewski. 20 kwietnia 2013 r. ZespółSzkółnr2wWyszkowie. mgr inż. Grzegorz Strzeszewski Elektrostatyka
Elektrostatyka mgr inż. Grzegorz Strzeszewski ZespółSzkółnr2wWyszkowie 20 kwietnia 2013 r. Nauka jest dla tych, którzy chcą być mądrzejsi, którzy chcą wykorzystywać swój umysł do poznawania otaczającego
1. Dwa ładunki punktowe q znajdujące się w odległości 1 m od siebie odpychają się siłą o wartości F r
1. Dwa ładunki punktowe q znajdujące się w odległości 1 m od siebie odpychają się siłą o wartości F r. Sporządź wykres zależności F(r) dla tych ładunków. 2. Naelektryzowany płatek waty zbliża się do przeciwnie
FIZYKA 2. Janusz Andrzejewski
FIZYKA 2 wykład 3 Janusz Andrzejewski Prąd elektryczny Prąd elektryczny to uporządkowany ruch swobodnych ładunków. Ruchowi chaotycznemu nie towarzyszy przepływ prądu. Strzałki szare - to nieuporządkowany(chaotyczny)
Wykład 2. POLE ELEKTROMEGNETYCZNE:
Wykład 2. POLE ELEKTROMEGNETYCZNE: Ładunek elektryczny Ładunki elektryczne: -dodatnie i ujemne - skwantowane, czyli że mają pewną najmniejszą wartość, której nie można już dalej podzielić. Nie można ładunków
Przewodniki w polu elektrycznym
Przewodniki w polu elektrycznym Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Przewodniki to ciała takie, po
Elektrostatyka, część pierwsza
Elektrostatyka, część pierwsza ZADANIA DO PRZEROBIENIA NA LEKJI 1. Dwie kulki naładowano ładunkiem q 1 = 1 i q 2 = 3 i umieszczono w odległości r = 1m od siebie. Oblicz siłę ich wzajemnego oddziaływania.
Dielektryki polaryzację dielektryka Dipole trwałe Dipole indukowane Polaryzacja kryształów jonowych
Dielektryki Dielektryk- ciało gazowe, ciekłe lub stałe niebędące przewodnikiem prądu elektrycznego (ładunki elektryczne wchodzące w skład każdego ciała są w dielektryku związane ze sobą) Jeżeli do dielektryka
Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie
Problemy elektrodynamiki. Prawo Gaussa i jego zastosowanie przy obliczaniu pól ładunku rozłożonego w sposób ciągły. I LO im. Stefana Żeromskiego w Lęborku 19 marca 2012 Nowe spojrzenie na prawo Coulomba
Podstawy fizyki sezon 2 2. Elektrostatyka 2
Podstawy fizyki sezon 2 2. Elektrostatyka 2 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Zebranie faktów
Dielektryki. właściwości makroskopowe. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego
Dielektryki właściwości makroskopowe Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Przewodniki i izolatory Przewodniki i izolatory Pojemność i kondensatory Podatność dielektryczna
Wykład 18 Dielektryk w polu elektrycznym
Wykład 8 Dielektryk w polu elektrycznym Polaryzacja dielektryka Dielektryk (izolator), w odróżnieniu od przewodnika, nie posiada ładunków swobodnych zdolnych do przemieszczenia się na duże odległości.
Pojemność elektryczna, Kondensatory Energia elektryczna
Pojemność elektryczna Pojemność elektryczna, Kondensatory Energia elektryczna 1 Pojemność elektryczna - kondensatory Kondensator : dwa przewodniki oddzielone izolatorem zwykle naładowane ładunkami o przeciwnych
Wykład 17 Izolatory i przewodniki
Wykład 7 Izolatory i przewodniki Wszystkie ciała możemy podzielić na przewodniki i izolatory albo dielektryki. Przewodnikami są wszystkie metale, roztwory kwasów i zasad, roztopione soli, nagrzane gazy
Badanie rozkładu pola elektrycznego
Ćwiczenie 8 Badanie rozkładu pola elektrycznego 8.1. Zasada ćwiczenia W wannie elektrolitycznej umieszcza się dwie metalowe elektrody, połączone ze źródłem zmiennego napięcia. Kształt przekrojów powierzchni
Witam na teście z działu ELEKTROSTATYKA
Witam na teście z działu ELEKTROSTATYKA Masz do rozwiązania 22 zadania oto jaką ocenę możesz uzyskać: dopuszczająca jeśli rozwiążesz 6 zadań z zakresu pytań od 1 7 dostateczna jeśli rozwiążesz zadania
kondensatory Jednostkę pojemności [Q/V] przyjęto nazywać faradem i oznaczać literą F.
Pojemność elektryczna i kondensatory Umieśćmy na przewodniku ładunek. Przyjmijmy zero potencjału w nieskończoności. Potencjał przewodnika jest proporcjonalny do ładunku (dlaczego?). Współczynnik proporcjonalności
Podstawy fizyki sezon 2 1. Elektrostatyka 1
Biblioteka AGH Podstawy fizyki sezon 2 1. Elektrostatyka 1 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha
WŁAŚCIWOŚCI IDEALNEGO PRZEWODNIKA
WŁAŚCIWOŚCI IDEALNEGO PRZEWODNIKA Idealny przewodnik to materiał zawierająca nieskończony zapas zupełnie swobodnych ładunków. Z tej definicji wynikają podstawowe własności elektrostatyczne idealnych przewodników:
znak minus wynika z faktu, że wektor F jest zwrócony
Wykład 6 : Pole grawitacyjne. Pole elektrostatyczne. Prąd elektryczny Pole grawitacyjne Każde dwa ciała o masach m 1 i m 2 przyciągają się wzajemnie siłą grawitacji wprost proporcjonalną do iloczynu mas,
Wykład 4 i 5 Prawo Gaussa i pole elektryczne w materii. Pojemność.
Wykład 4 i 5 Prawo Gaussa i pole elektryczne w materii. Pojemność. Maciej J. Mrowiński mrow@if.pw.edu.pl Wydział Fizyki Politechnika Warszawska 21 marca 2016 Maciej J. Mrowiński (IF PW) Wykład 4 i 5 21
cz.3 dr inż. Zbigniew Szklarski
Wykład : lektrostatyka cz.3 dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Przykłady Jaka musiałaby być powierzchnia okładki kondensatora płaskiego, aby, przy odległości
Część IV. Elektryczność i Magnetyzm Uczyć się bez myślenia to zmarnowana praca, Myśleć bez uczenia się to pustka. Wykłady 10 i 11
Część IV. Elektryczność i Magnetyzm Uczyć się bez myślenia to zmarnowana praca, Myśleć bez uczenia się to pustka. Konfucjusz (właściwie K ung Ch iu, 55 479 p.n.e.) Dialogi, II/5 Wykłady 0 i 0.. Ładunek
FIZYKA 2. Janusz Andrzejewski
FIZYKA 2 wykład 3 Janusz Andrzejewski Prawo Coulomba a prawo Newtona Janusz Andrzejewski 2 Natężenie i potencjał pola elektrycznego A q A B q A D q A C q A q 0 D B C A E E E E r r r r 0 0 + + + + + + D
ELEKTROSTATYKA. Zakład Elektrotechniki Teoretycznej Politechniki Wrocławskiej, I-7, W-5
ELEKTROSTATYKA 2.1 Obliczyć siłę, z jaką działają na siebie dwa ładunki punktowe Q 1 = Q 2 = 1C umieszczone w odległości l km od siebie, a z jaką siłą - w tej samej odległości - dwie jednogramowe kulki
Pojemność elektryczna
Pojemność elektryczna Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Pojemność elektryczna Umieśćmy na pewnym
Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Siła Coulomba. F q q = k r 1 = 1 4πεε 0 q q r 1. Pole elektrostatyczne. To przestrzeń, w której na ładunek
Linie sił pola elektrycznego
Wykład 5 5.6. Linie sił pola elektrycznego Pamiętamy, że we wzorze (5.) określiliśmy natężenie pola elektrycznego przy pomocy ładunku próbnego q 0, którego wielkość dążyła do zera. Robiliśmy to po to,
Plan Zajęć. Ćwiczenia rachunkowe
Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin
4.1.1 Elektryzowanie ciał. Zasada zachowania ładunku
Rozdział 4 Pole elektryczne 4.1 Ładunki elektryczne 4.1.1 Elektryzowanie ciał. Zasada zachowania ładunku W niniejszym rozdziale zostaną przedstawione wybrane zagadnienia elektrostatyki. Elektrostatyka
Wykład 2. 4. Ładunki elektryczne
Wykład 2 4. Ładunki elektryczne Czym są ładunki elektryczne? Odpowiedź na to pytanie jest tak trudne, jak odpowiedź na pytanie, czym jest masa. Istnienie ładunków w przyrodzie jest faktem, który musimy
Elektrostatyka. Potencjał pola elektrycznego Prawo Gaussa
Elektrostatyka Potencjał pola elektrycznego Prawo Gaussa 1 Potencjał pola elektrycznego Energia potencjalna zależy od (ładunek próbny) i Q (ładunek który wytwarza pole), ale wielkość definiowana jako:
Elektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego
Elektrostatyka Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego 1 Prawo Coulomba odpychanie naelektryzowane szkło nie-naelektryzowana miedź F 1 4 0 q 1 q 2 r 2 0 8.85
Część IV. Elektryczność Uczyć się bez myślenia to zmarnowana praca, Myśleć bez uczenia się to pustka. Wykłady 10 i 11
Część IV. Elektryczność Uczyć się bez myślenia to zmarnowana praca, Myśleć bez uczenia się to pustka. Konfucjusz (właściwie K ung Ch iu, 55 479 p.n.e.) Dialogi, II/5 Wykłady 0 i 0.. Ładunek elektryczny
Elektrostatyczna energia potencjalna. Potencjał elektryczny
Elektrostatyczna energia potencjalna Potencjał elektryczny Elektrostatyczna energia potencjalna U Żeby zbliżyć do siebie dwa ładunki jednoimienne trzeba wykonać pracę przeciwko siłą pola nadając ładunkowi
LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA
LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA CZĘŚĆ TEORETYCZNA Za każde zadanie można otrzymać maksymalnie 0 punktów. Zadanie 1. przedmiot. Gdzie znajduje się obraz i jakie jest jego powiększenie? Dla jakich
Elektrostatyka. Już starożytni Grecy wiedzieli, że potarty o tkaninę bursztyn przyciąga drobne lekkie przedmioty.
Elektrostatyka Już starożytni Grecy wiedzieli, że potarty o tkaninę bursztyn przyciąga drobne lekkie przedmioty. Pozostawało to odosobnioną ciekawostką aż do XVIw., kiedy Wlliam Gilbert wykazał, że podobną
Badanie rozkładu pola elektrycznego
Ćwiczenie 8 Badanie rozkładu pola elektrycznego 8.1. Zasada ćwiczenia W wannie elektrolitycznej umieszcza się dwie metalowe elektrody, połączone ze źródłem zmiennego napięcia. Kształt przekrojów powierzchni
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 21 ELEKTROSTATYKA CZĘŚĆ 1. POLE CENTRALNE I JEDNORODNE
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 21 ELEKTROSTATYKA CZĘŚĆ 1. POLE CENTRALNE I JEDNORODNE Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania TEST JEDNOKROTNEGO
Pojęcie ładunku elektrycznego
Elektrostatyka Trochę historii Zjawisko elektryzowania się niektórych ciał było znane już w starożytności. O zjawisku przyciągania drobnych, lekkich ciał przez potarty suknem bursztyn wspomina Tales z
Część IV. Elektryczność i Magnetyzm
Część IV. Elektryczność i Magnetyzm Uczyć się bez myślenia to zmarnowana praca, Myśleć bez uczenia się to pustka. Konfucjusz (właściwie K ung Ch iu, 551 479 p.n.e.) Dialogi, II/15 Wykład 10 Wprowadzenie
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................
Elektrostatyka Elektryczność nas otacza i tworzy...
Elektrostatyka Elektryczność nas otacza i tworzy... Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Elektryczność
Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości:
1 W stanie równowagi elektrostatycznej (nośniki ładunku są w spoczynku) wewnątrz przewodnika natężenie pola wynosi zero. Cały ładunek jest zgromadzony na powierzchni przewodnika. Tuż przy powierzchni przewodnika
Potencjał pola elektrycznego
Potencjał pola elektrycznego Pole elektryczne jest polem zachowawczym, czyli praca wykonana przy przesunięciu ładunku pomiędzy dwoma punktami nie zależy od tego po jakiej drodze przesuwamy ładunek. Spróbujemy
Pole magnetyczne. Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni.
Pole magnetyczne Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni. naładowane elektrycznie cząstki, poruszające się w przewodniku w postaci prądu elektrycznego,
Wykład FIZYKA II. 3. Magnetostatyka. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 3. Magnetostatyka Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ POLE MAGNETYCZNE Elektryczność zaobserwowana została
RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?
RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1
Rozdział 22 Pole elektryczne
Rozdział 22 Pole elektryczne 1. NatęŜenie pola elektrycznego jest wprost proporcjonalne do A. momentu pędu ładunku próbnego B. energii kinetycznej ładunku próbnego C. energii potencjalnej ładunku próbnego
ELEKTRONIKA ELM001551W
ELEKTRONIKA ELM001551W Podstawy elektrotechniki i elektroniki Definicje prądu elektrycznego i wielkości go opisujących: natężenia, gęstości, napięcia. Zakres: Oznaczenia wielkości fizycznych i ich jednostek,
UKŁADY KONDENSATOROWE
UKŁADY KONDENSATOROWE 3.1. Wyprowadzić wzory na: a) pojemność kondensatora sferycznego z izolacją jednorodną (ε), b) pojemność kondensatora sferycznego z izolacją warstwową (ε 1, ε 2 ) c) pojemność odosobnionej
Fizyka 2 Podstawy fizyki
Fizyka Podstawy fizyki dr hab. inż. Wydział Fizyki e-mail: wrobel.studia@gmail.com konsultacje: Gmach Mechatroniki, pok. 34; środa 13-14 i po umówieniu mailowym http://www.if.pw.edu.pl/~wrobel/simr_f_17.html
21 ELEKTROSTATYKA. KONDENSATORY
Włodzimierz Wolczyński Pojemność elektryczna 21 ELEKTROSTATYKA. KONDENSATORY - dla przewodników - dla kondensatorów C pojemność elektryczna Q ładunek V potencjał, U napięcie jednostka farad 1 r Pojemność
Wymiana ciepła ELEKTROSTATYKA. Tales z Miletu. 600 p.n.e. czas
Wymiana ciepła -500 0 500 1000 1500 2000 Wymiana ciepła ELEKTROSTATYKA Tales z Miletu Grecki filozof zna zjawisko przyciągania przez potarty przez sukno bursztyn (grecka nazwa: elektron) słomek, piór,
Ruch ładunków w polu magnetycznym
Ruch ładunków w polu magnetycznym Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Ruch ładunków w polu magnetycznym
ELEKTRYZOWANIE CIAŁ ZASADA ZACHOWANIA ŁADUNKU
ELEKTRYZOWANIE CIAŁ ZASADA ZACHOWANIA ŁADUNKU Autorzy: Gabriela Jaromin Martyna Andreew Justyna Kramarczyk Daria Chmiel Arkadiusz Koziarz KL. II BCH KILKA SŁÓW O HISTORII Elektrostatyka jest to dział fizyki
Podstawy fizyki sezon 2
Podstawy fizyki sezon 2 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pole elektryczne i magnetyczne: Elektrostatyka.
W rozdziale 11.1 wymieniono, jako główne, dwa rodzaje oddziaływań występujących w przyrodzie: oddziaływanie
16. Ładunek elektryczny W rozdziale 11.1 wymieniono, jako główne, dwa rodzaje oddziaływań występujących w przyrodzie: oddziaływanie grawitacyjne oraz oddziaływanie elektromagnetyczne. Pierwsze z nich omówiono
Pole elektromagnetyczne
Pole elektromagnetyczne Pole magnetyczne Strumień pola magnetycznego Jednostką strumienia magnetycznego w układzie SI jest 1 weber (1 Wb) = 1 N m A -1. Zatem, pole magnetyczne B jest czasem nazywane gęstością
Elektrostatyczna energia potencjalna U
Elektrostatyczna energia potencjalna U Żeby zbliżyć do siebie dwa ładunki jednoimienne trzeba wykonać pracę przeciwko siłom pola nadając ładunkowi energię potencjalną. Podobnie trzeba wykonać pracę przeciwko
Energia potencjalna pola elektrostatycznego ładunku punktowego
Energia potencjalna pola elektrostatycznego ładunku punktowego Wszystkie rysunki i animacje zaczerpnięto ze strony http://web.mit.edu/8.02t/www/802teal3d/visualizations/electrostatics/index.htm. Tekst
Potencjalne pole elektrostatyczne. Przypomnienie
Potencjalne pole elektrostatyczne Wszystkie rysunki i animacje zaczerpnięto ze strony http://webmitedu/802t/www/802teal3d/visualizations/electrostatics/indexhtm Tekst jest wolnym tłumaczeniem pliku guide03pdf
POLE MAGNETYCZNE Magnetyzm. Pole magnetyczne. Indukcja magnetyczna. Siła Lorentza. Prawo Biota-Savarta. Prawo Ampère a. Prawo Gaussa dla pola
POLE MAGNETYCZNE Magnetyzm. Pole magnetyczne. Indukcja magnetyczna. Siła Lorentza. Prawo iota-savarta. Prawo Ampère a. Prawo Gaussa a pola magnetycznego. Prawo indukcji Faradaya. Reguła Lenza. Równania
Wykład FIZYKA II. 2. Prąd elektryczny. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 2. Prąd elektryczny Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ UCH ŁADUNKÓW Elektrostatyka zajmowała się ładunkami
Badanie wyników nauczania z fizyki w klasie 3 gimnazjum.
Badanie wyników nauczania z fizyki w klasie 3 gimnazjum. Wersja A Opracowała: mrg Teresa Ostropolska-Kurcek 1. Laskę ebonitową pocieramy o sukno, w wyniku, czego laska i sukno elektryzują się różnoimienne
MAGNETYZM. PRĄD PRZEMIENNY
Włodzimierz Wolczyński 47 POWTÓRKA 9 MAGNETYZM. PRĄD PRZEMIENNY Zadanie 1 W dwóch przewodnikach prostoliniowych nieskończenie długich umieszczonych w próżni, oddalonych od siebie o r = cm, płynie prąd.
Rozdział 21 Ładunek elektryczny
Rozdział 1 Ładunek elektryczny 1. Jednostka ładunku kulomb jest równowaŝna A. A/s B. ½ A/s C. A/m D. As E. N/m. Kiloamperogodzina jest jednostką A. natęŝenia prądu B. ładunku w czasie C. mocy D. ładunku
Imię i nazwisko ucznia Data... Klasa...
Przygotowano za pomocą programu Ciekawa fizyka. Bank zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2011 strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Między
Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:
Dynamika Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: mamy ciało (zachowujące się jak punkt materialny) o znanych właściwościach (masa, ładunek itd.),
Podstawy fizyki sezon 2
Podstawy fizyki sezon 2 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pole elektryczne i magnetyczne: Elektrostatyka.
5) W czterech rogach kwadratu o boku a umieszczono ładunki o tej samej wartości q jak pokazano na rysunku. k=1/(4πε 0 )
Zadania zamknięte 1 1) Ciało zostało wyrzucono z prędkością V 0 skierowną pod kątem α względem poziomu (x). Wiedząc iż porusza się ono w polu grawitacyjnym o przyspieszeniu g skierowanym pionowo w dół
Szczegółowe kryteria oceniania z fizyki w gimnazjum kl. II
Szczegółowe kryteria oceniania z fizyki w gimnazjum kl. II Semestr I Elektrostatyka Ocenę dopuszczającą otrzymuje uczeń, który: Wie że materia zbudowana jest z cząsteczek Wie że cząsteczki składają się
PROGRAM INDYWIDUALNEGO TOKU NAUCZANIA DLA UCZNIÓW KLASY II
POGAM INDYWIDUALNEGO TOKU NAUCZANIA DLA UCZNIÓW KLASY II Opracowała: mgr Joanna Kondys Cele do osiągnięcia: etapowe udział w olimpiadzie fizycznej udział w konkursie fizycznym dla szkół średnich docelowe
Kondensator. Kondensator jest to układ dwóch przewodników przedzielonych
Kondensatory Kondensator Kondensator jest to układ dwóch przewodników przedzielonych dielektrykiem, na których zgromadzone są ładunki elektryczne jednakowej wartości ale o przeciwnych znakach. Budowa Najprostsze
cz. 2. dr inż. Zbigniew Szklarski
Wykład 14: Pole magnetyczne cz.. dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Prąd elektryczny jako źródło pola magnetycznego - doświadczenie Oersteda Kiedy przez
Strumień pola elektrycznego
Powierzchnia Gaussa Właściwości : - jest to powierzchnia hipotetyczna matematyczna konstrukcja myślowa, - jest dowolną powierzchnią zamkniętą w praktyce powinna mieć kształt związany z symetrią pola, -