ŁADUNEK I MATERIA Ładunki elektryczne są ściśle związane z atomową budową materii. Materia składa się z trzech rodzajów cząstek elementarnych:
|
|
- Konrad Przybylski
- 5 lat temu
- Przeglądów:
Transkrypt
1 POLE ELEKTRYCZNE Ładunek i materia Ładunek elementarny. Zasada zachowania ładunku Prawo Coulomba Elektryzowanie ciał Pole elektryczne i pole zachowawcze Natężenie i strumień pola elektrycznego Prawo Gaussa Ruch cząstek naładowanych w polu elektrycznym Politechnika Opolska Opole University of Technology Wydział InżynierIi Produkcji i Logistyki Faculty of Production Engineering and Logistics
2 ŁADUNEK I MATERIA Ładunki elektryczne są ściśle związane z atomową budową materii. Materia składa się z trzech rodzajów cząstek elementarnych: protony ( p) o masie m p = 1, kg, elektrony (e) o masie m e = 9, kg, neutrony (n) o masie m n = 1, kg (elektr. obojętne). W przyrodzie istnieją dwa rodzaje ładunków: dodatnie ( p lub +e), ujemne (-e). W zależności od budowy atomowej ciała umownie dzielimy na trzy grupy: przewodniki - swobodny ruch ładunków elektrycznych (metale - ładunkami swobodnymi są elektrony, roztwory kwasów, soli i zasad - ładunkami swobodnymi są jony), dielektryki (izolatory) - przepływ ładunków nie jest możliwy (bursztyn, szkło, papier, oleje, siarka, mika, ebonit i gazy w zwykłych warunkach) półprzewodniki, które pod względem właściwości elektrycznych zajmują miejsce pośrednie pomiędzy przewodnikami a izolatorami (np. Ge i Si).
3 ŁADUNEK ELEMENTARNY Jednostką ładunku elektrycznego w układzie SI jest kulomb [1C = 1A 1s]. 1 kulomb - ładunek przenoszony w ciągu 1s przez poprzeczny przekrój przewodnika, jeżeli w przewodniku płynie prąd stały o natężeniu 1A. Wartość ładunku elementarnego jest równa ładunkowi elektronu. e = 1, [C] *R.A. Millikan (1911 r.) Ładunek elementarny jest najmniejszą porcją ładunku (wielkość skwantowana) - każdy realnie istniejący ładunek jest zawsze całkowitą wielokrotnością (n = 1, 2, ) ładunku elementarnego e (kwantu ładunku). Ładunek jest wielkością addytywną, tzn. wypadkowy ładunek jest sumą poszczególnych ładunków. = i i = l τdl = n e = σds r. dyskretny r. liniowy r. powierzchniowy r. objętościowy S = υ ρdυ
4 ZASADA ZACHOWANIA ŁADUNKU Ładunki elektryczne nie mogą powstawać ani znikać, a jedynie przechodzić z jednego ciała na inne lub przemieszczać się wewnątrz danego ciała (transfer ładunku). ZASADA ZACHOWANIA ŁADUNKU Całkowity ładunek elektryczny układu izolowanego (układ, który nie może wymieniać ładunków z otoczeniem) jest stały. Zmianie może natomiast ulegać rozkład ładunku całkowitego, który w przestrzeni rozłożony jest w sposób dyskretny (punktowy). W ujęciu makroskopowym ziarnistość ładunku jest na ogół niedostrzegalna (b. mała wartość e) i z tego punktu widzenia wygodniej jest przyjmować, że rozkład ładunku ma charakter ciągły. W przypadku ciągłego rozkładu ładunku mówimy o gęstości ładunku: τ = d dl C m σ = d ds C m 2 d ρ = dυ C m 3 g. liniowa g. powierzchniowa g. objętościowa
5 PRAWO COULOMBA Ładunki jednoimienne odpychają się, a różnoimienne przyciągają się. W obu przypadkach siłę wzajemnego oddziaływania elektrostatycznego określa prawo Coulomba (1785 r.). ε 0 = 8, [C 2 / N m 2 ] lub [F/m] przenikalność elektryczna próżni F 1 rˆ F πε0 r PRAWO COULOMBA Siła wzajemnego oddziaływania między dwoma ładunkami punktowymi 1 i 2 jest proporcjonalna do iloczynu tych ładunków i odwrotnie proporcjonalna do kwadratu odległości między nimi.
6 ELEKTRYZOWANIE CIAŁ Elektryzowanie ciał polega na rozdzielaniu i przenoszeniu ładunków. Elektryzowanie ciał może zachodzić przez tarcie (wzajemne pocieranie), dotyk (zetknięcie) lub indukcję (wpływ). Ciało, które ma nadmiar elektronów elektryzuje się ujemnie (np. ebonit); ciało, które ma niedobór elektronów - dodatnio (np. szkło). elektryzowanie ciała przez indukcję
7 POLE ELEKTRYCZNE Graficznie pole elektryczne przedstawiamy za pomocą tzw. linii sił pola. Linie pola to linie, do których wektor E jest styczny w każdym punkcie. Linie sił pola zaczynają się zawsze na ładunkach dodatnich, a kończą na ładunkach ujemnych. Linie sił pola elektrycznego nie mogą się przecinać. Liczba linii wychodzących z lub dochodzących do ładunku jest proporcjonalna do jego wartości. Liczba linii sił przechodzących przez jednostkową powierzchnię jest proporcjonalna do wartości E.
8 Pole elektryczne jest polem zachowawczym - praca wykonana przy przesunięciu ładunku pomiędzy dwoma punktami nie zależy od tego po jakiej drodze ładunek jest przesuwany, a jedynie od jego początkowego i końcowego położenia. Praca wykonana przy przesunięciu ładunku pomiędzy punktami A i B: W AB POLE ZACHOWAWCZE ΔW = F e s = E Praca ΔW na odcinku Δs nie zależy od kąta θ a jedynie od długości odcinka Δr. ΔW EΔr Zatem również i dla całej drogi praca zależy jedynie od zmiany odległości od centrum działania siły elektrycznej. B A Eds r B r A Edr F e s = E s cos θ Jeżeli odległość nie zmienia się (ruch odbywa się po drodze zamkniętej), praca jest równa zeru. r
9 ZACHOWAWCZOŚĆ POLA ELEKTRYCZNEGO Na podstawie superpozycji pól elektrycznych wszystkie powyższe stwierdzenia można uogólnić na pole elektryczne wytworzone przez dowolny układ ładunków. Praca W AB wykonana przy przeniesieniu z punktu A do B jednoznacznie określa zmianę energii potencjalnej: E = 1 4πε 0 Q r 2 (natężenie pola elektrycznego) r B W AB = Edr = r A r B Q 1 4πε 0 r 2 r A dr = (energia potencjalna) Pole zachowawcze nazywa się również polem potencjalnym. Q 4πε 0 1 r E p = 1 Q 4πε 0 r r B = ra Q 4πε 0 r A E p r A Q 4πε 0 r B E p r B = E p
10 NATĘŻENIE POLA ELEKTRYCZNEGO Wokół ładunków elektrycznych (źródeł) wytwarzane jest pole elektryczne. Na ładunki znajdujące się w polu elektrycznym działa siła elektrostatyczna. Wielkością charakteryzującą pole elektryczne jest natężenie pola elektrycznego, zdefiniowane jako: NATĘŻENIE POLA ELEKTRYCZNEGO Stosunek siły elektrostatycznej F e, działającej na dodatni ładunek próbny 0, do wartości tego ładunku. Natężenie pola elektrycznego E jest wielkością wektorową i definiuje się jako stosunek siły elektrostatycznej F e działającej na dodatni ładunek próbny 0 do wartości tego ładunku. Fe E rˆ rˆ 2 2 4π r 4π r Przez dodatni ładunek próbny należy rozumieć ładunek tak mały, aby nie zakłócał pola wytwarzanego przez źródło. źródło pola ładunek próbny 0
11 NATĘŻENIE POLA UKŁ. ŁADUNKÓW Wypadkowe natężenie pola elektrycznego E wytwarzane przez układ ładunków punktowych w danym punkcie pola jest równe sumie wektorowej natężeń pól pochodzących od poszczególnych ładunków (ZS). i E i W przypadku ciągłego rozkładu ładunków obliczenie wypadkowego natężenia pola elektrycznego E wymaga całkowania (sumowania) natężeń. E 1 4π E d 2 0 r rˆ E i d i E = 1 4πε 0 l τdl r 2 r, E = 1 4πε 0 S σds r 2 r, E = 1 4πε 0 r. liniowy r. powierzchniowy r. objętościowy υ ρdυ r 2 r
12 STRUMIEŃ POLA ELEKTRYCZNEGO Strumień natężenia pola elektrycznego Φ E przez daną powierzchnię S jest iloczynem wartości natężenia pola elektrycznego E i pola powierzchni S prostopadłej do kierunku wektora E. W przypadku, gdy pole powierzchni S i wektor natężenia pola E tworzą ze sobą kąt θ (nie są do siebie prostopadłe) należy uwzględnić składową normalną S n pola powierzchni. Φ E ES n EScos θ - kąt pomiędzy kierunkiem wektora E, a prostą prostopadłą do powierzchni S S Φ E S ES prostopadła do S Jednostka strumienia w ukł. SI: [Φ E ] = [N m 2 /C] S n = S cos θ
13 STRUMIEŃ NATĘŻENIA W POLU NIEJEDNORODNYM W niejednorodnym polu elektrycznym (natężenie pola elektrycznego E różne w różnych punktach powierzchni) całkowity strumień natężenia pola elektrycznego Φ E przez daną powierzchnię S wyrażamy przez całkę po tej powierzchni (przy założeniu, że E jest stałe dla ΔS). ΔS i Φ E = E i S i iloczyn skalarny Φ E = E i S i cos θ Φ E lim S i 0 E i S i = EdS S c. powierzchniowa
14 STRUMIEŃ NATĘŻENIA PRZEZ POWIERZCHNIĘ ZAMKNIĘTĄ Dla dowolnej powierzchni zamkniętej, wewnątrz której znajduje się ładunek wypadkowy strumień natężenia pola elektrycznego Φ E wyznaczamy zastępując sumę całką po powierzchni zamkniętej S obejmującej n ładunków. ΔΦ E = E ΔS i cosθ (1) gdy kąt θ < 90 o, to ΔΦ E > 0; (2) gdy kąt θ = 90 o, to ΔΦ E = 0; (3) gdy kąt θ > 90 o, to ΔΦ E < 0; - = 0 + Φ E i E S i = E ds c. po powierzchni zamkniętej ΔS i S ΔS i ΔS i
15 E E ds PRAWO GAUSSA Wypadkowy strumień natężenia pola elektrycznego Φ E przechodzący przez otaczającą ładunek dowolną powierzchnię zamkniętą nie zależy od kształtu tej powierzchni. W każdym punkcie powierzchni sferycznej wartość natężenia pola E jest stała. 1 4π 0 r W każdym punkcie powierzchni sferycznej wektory E i ds i są do siebie równoległe. 2 EdS sferyczna powierzchnia zamknięta (p. Gaussa) ds i Φ Φ E E E E ds 4πr 2 1 4π E ds 0 r 2 E 4πr 2 ds ε 0 Φ E ε 0
16 PRAWO GAUSSA Prawo Gaussa zastosowane do dowolnej, hipotetycznej powierzchni zamkniętej (tzw. powierzchni Gaussa) podaje związek pomiędzy strumieniem natężenia pola elektrycznego Φ E przechodzącym przez tę powierzchnię i całkowitym ładunkiem wewnątrz niej zamkniętym. ε0φ E ε0 E ds i i Φ E (S) = 1 /ε 0 PRAWO GAUSSA Całkowity strumień natężenia pola elektrycznego Φ E przenikający przez dowolną powierzchnię zamkniętą pomnożony przez stałą ε 0 jest równy sumie ładunków elektrycznych obejmowanych przez tą powierzchnię. Φ E (S") = 0 Φ E (S ) = ( ) / ε 0
17 PRAWO GAUSSA - podsumowanie Prawo Gaussa jest jednym z podstawowych równań teorii elektromagnetyzmu (I równanie Maxwella). Na podstawie prawa Gaussa i rozważań dotyczących symetrii pola E ładunku punktowego można wyprowadzić prawo Coulomba. Poprzez odpowiedni wybór powierzchni Gaussa (symetryczny rozkład ładunków) prawo Gaussa pozwala na wyznaczenie E (łatwe całkowanie). I odwrotnie, jeśli we wszystkich punktach danej powierzchni zamkniętej znane jest E, prawo Gaussa może być stosowane do obliczenia ładunku znajdującego się wewnątrz tej powierzchni. Optymalny (wygodny do obliczeń) wybór kształtu powierzchni Gaussa powinien zatem odzwierciedlać symetrię pola elektrycznego i spełniać przynajmniej jeden (lub więcej) z poniższych warunków: E S, a wtedy Φ E = 0, E ds, a wtedy Φ E = E ds, E = 0 na całej powierzchni, E = const na całej powierzchni.
18 RUCH ŁADUNKU W POLU ELEKTRYCZNYM Ładunek umieszczony w polu elektrostatycznym. F Jeśli pole jest centralne to siły powodują ruch niejednostajnie przyspieszony do lub od źródła w zależności od znaku ładunku. V = E k, E k = mυ2 2 U = V A V B Ruch ładunku w polu jednorodnym jest jednostajnie przyspieszony. F F e e e E, E ma V a E p E m W zależności od znaku ładunku i zwrotu jego prędkości względem linii sił pola elektrycznego cząstka może być przyspieszana lub hamowana a tor jej ruchu jest różnie zakrzywiany. + V y V V x
Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C
Wymiana ciepła Ładunek jest skwantowany ładunek elementarny ładunek pojedynczego elektronu (e). Każdy ładunek q (dodatni lub ujemny) jest całkowitą wielokrotnością jego bezwzględnej wartości. q=n. e gdzie
Bardziej szczegółowoPodstawy fizyki wykład 8
Podstawy fizyki wykład 8 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Ładunek elektryczny Grecy ok. 600 r p.n.e. odkryli, że bursztyn potarty o wełnę przyciąga inne (drobne) przedmioty. słowo
Bardziej szczegółowoFizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics)
Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Koniec XIX / początek XX wieku Lata 90-te XIX w.: odkrycie elektronu (J. J. Thomson, promienie katodowe), promieniowania Roentgena
Bardziej szczegółowoElektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α
Elektrostatyka ŁADUNEK elektron: -e = -1.610-19 C proton: e = 1.610-19 C neutron: 0 C n p p n Cząstka α Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest
Bardziej szczegółowoLekcja 40. Obraz graficzny pola elektrycznego.
Lekcja 40. Obraz graficzny pola elektrycznego. Polem elektrycznym nazywamy obszar, w którym na wprowadzony doń ładunek próbny q działa siła. Pole elektryczne występuje wokół ładunków elektrycznych i ciał
Bardziej szczegółowoFizyka 2 Wróbel Wojciech. w poprzednim odcinku
Fizyka w poprzednim odcinku Obliczanie natężenia pola Fizyka Wyróżniamy ładunek punktowy d Wektor natężenia pola d w punkcie P pochodzący od ładunku d Suma składowych x-owych wektorów d x IĄGŁY ROZKŁAD
Bardziej szczegółowoPOLE MAGNETYCZNE Magnetyzm. Pole magnetyczne. Indukcja magnetyczna. Siła Lorentza. Prawo Biota-Savarta. Prawo Ampère a. Prawo Gaussa dla pola
POLE MAGNETYCZNE Magnetyzm. Pole magnetyczne. Indukcja magnetyczna. Siła Lorentza. Prawo iota-savarta. Prawo Ampère a. Prawo Gaussa a pola magnetycznego. Prawo indukcji Faradaya. Reguła Lenza. Równania
Bardziej szczegółowoElektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego
Elektrostatyka Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego 1 Prawo Coulomba odpychanie naelektryzowane szkło nie-naelektryzowana miedź F 1 4 0 q 1 q 2 r 2 0 8.85
Bardziej szczegółowoŁadunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl
Ładunki elektryczne i siły ich wzajemnego oddziaływania Pole elektryczne Copyright by pleciuga@ o2.pl Ładunek punktowy Ładunek punktowy (q) jest to wyidealizowany model, który zastępuje rzeczywiste naelektryzowane
Bardziej szczegółowoŁadunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się
Ładunki elektryczne Ładunki jednoimienne odpychają się Ładunki różnoimienne przyciągają się q = ne n - liczba naturalna e = 1,60 10-19 C ładunek elementarny Ładunek jest cechąciała i nie można go wydzielićz
Bardziej szczegółowoStrumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie
Problemy elektrodynamiki. Prawo Gaussa i jego zastosowanie przy obliczaniu pól ładunku rozłożonego w sposób ciągły. I LO im. Stefana Żeromskiego w Lęborku 19 marca 2012 Nowe spojrzenie na prawo Coulomba
Bardziej szczegółowoPodstawy fizyki sezon 2 1. Elektrostatyka 1
Biblioteka AGH Podstawy fizyki sezon 2 1. Elektrostatyka 1 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha
Bardziej szczegółowoŁadunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych
Ładunek elektryczny Ładunek elektryczny jedna z własności cząstek elementarnych http://pl.wikipedia.org/wiki/%c5%81a dunek_elektryczny ładunki elektryczne o takich samych znakach się odpychają a o przeciwnych
Bardziej szczegółowoWykład 8 ELEKTROMAGNETYZM
Wykład 8 ELEKTROMAGNETYZM Równania Maxwella dive = ρ εε 0 prawo Gaussa dla pola elektrycznego divb = 0 rote = db dt prawo Gaussa dla pola magnetycznego prawo indukcji Faradaya rotb = μμ 0 j + εε 0 μμ 0
Bardziej szczegółowoFizyka 2 Podstawy fizyki
Fizyka Podstawy fizyki dr hab. inż. Wydział Fizyki e-mail: wrobel.studia@gmail.com konsultacje: Gmach Mechatroniki, pok. 34; środa 13-14 i po umówieniu mailowym http://www.if.pw.edu.pl/~wrobel/simr_f_17.html
Bardziej szczegółowoWykład 8: Elektrostatyka Katarzyna Weron
Wykład 8: Elektrostatyka Katarzyna Weron Matematyka Stosowana Przewodniki i izolatory Przewodniki - niektóre ładunki ujemne mogą się dość swobodnie poruszać: metalach, wodzie, ciele ludzkim, Izolatory
Bardziej szczegółowoPojęcie ładunku elektrycznego
Elektrostatyka Trochę historii Zjawisko elektryzowania się niektórych ciał było znane już w starożytności. O zjawisku przyciągania drobnych, lekkich ciał przez potarty suknem bursztyn wspomina Tales z
Bardziej szczegółowoElektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................
Bardziej szczegółowoElektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................
Bardziej szczegółowoPodstawy fizyki sezon 2 2. Elektrostatyka 2
Podstawy fizyki sezon 2 2. Elektrostatyka 2 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Strumień wektora
Bardziej szczegółowoPotencjał pola elektrycznego
Potencjał pola elektrycznego Pole elektryczne jest polem zachowawczym, czyli praca wykonana przy przesunięciu ładunku pomiędzy dwoma punktami nie zależy od tego po jakiej drodze przesuwamy ładunek. Spróbujemy
Bardziej szczegółowoWykład 2. POLE ELEKTROMEGNETYCZNE:
Wykład 2. POLE ELEKTROMEGNETYCZNE: Ładunek elektryczny Ładunki elektryczne: -dodatnie i ujemne - skwantowane, czyli że mają pewną najmniejszą wartość, której nie można już dalej podzielić. Nie można ładunków
Bardziej szczegółowoGuma Guma. Szkło Guma
1 Ładunek elektyczny jest cechą mateii. Istnieją dwa odzaje ładunków, nazywane dodatnimi i ujemnymi. Ładunki jednoimienne się odpychają, podczas gdy ładunki óżnoimeinne się pzyciągają Guma Guma Szkło Guma
Bardziej szczegółowoElektryczne właściwości materii. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej.
Elektryczne właściwości materii Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Podział materii ze względu na jej właściwości Przewodniki elektryczne: Przewodniki I
Bardziej szczegółowoWykład 17 Izolatory i przewodniki
Wykład 7 Izolatory i przewodniki Wszystkie ciała możemy podzielić na przewodniki i izolatory albo dielektryki. Przewodnikami są wszystkie metale, roztwory kwasów i zasad, roztopione soli, nagrzane gazy
Bardziej szczegółowoElektrostatyka. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Elektrostatyka Projekt współfinansowany przez Unię Europejską w ramach Europejskiego unduszu Społecznego Ładunek elektryczny Materia zbudowana jest z atomów. Atom składa się z dodatnie naładowanego jądra
Bardziej szczegółowoŁadunek elektryczny. Zastosowanie równania Laplace a w elektro- i magnetostatyce. Joanna Wojtal. Wprowadzenie. Podstawowe cechy pól siłowych
6 czerwca 2013 Ładunek elektryczny Ciała fizyczne mogą być obdarzone (i w znacznej większości faktycznie są) ładunkiem elektrycznym. Ładunek ten może być dodatni lub ujemny. Kiedy na jednym ciele zgromadzonych
Bardziej szczegółowoElektrostatyczna energia potencjalna U
Elektrostatyczna energia potencjalna U Żeby zbliżyć do siebie dwa ładunki jednoimienne trzeba wykonać pracę przeciwko siłom pola nadając ładunkowi energię potencjalną. Podobnie trzeba wykonać pracę przeciwko
Bardziej szczegółowoPrzykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI.
Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. 1. Ładunki q 1 =3,2 10 17 i q 2 =1,6 10 18 znajdują się w próżni
Bardziej szczegółowo4.1.1 Elektryzowanie ciał. Zasada zachowania ładunku
Rozdział 4 Pole elektryczne 4.1 Ładunki elektryczne 4.1.1 Elektryzowanie ciał. Zasada zachowania ładunku W niniejszym rozdziale zostaną przedstawione wybrane zagadnienia elektrostatyki. Elektrostatyka
Bardziej szczegółowoWykład 2. POLE ELEKTROMEGNETYCZNE:
Wykład 2. POLE ELEKTROMEGNETYCZNE: Ładunek elektryczny Ładunki elektryczne: -dodatnie i ujemne - skwantowane, czyli że mają pewną najmniejszą wartość, której nie można już dalej podzielić. Nie można ładunków
Bardziej szczegółowoELEKTRONIKA ELM001551W
ELEKTRONIKA ELM001551W Podstawy elektrotechniki i elektroniki Definicje prądu elektrycznego i wielkości go opisujących: natężenia, gęstości, napięcia. Zakres: Oznaczenia wielkości fizycznych i ich jednostek,
Bardziej szczegółowoznak minus wynika z faktu, że wektor F jest zwrócony
Wykład 6 : Pole grawitacyjne. Pole elektrostatyczne. Prąd elektryczny Pole grawitacyjne Każde dwa ciała o masach m 1 i m 2 przyciągają się wzajemnie siłą grawitacji wprost proporcjonalną do iloczynu mas,
Bardziej szczegółowoElektrostatyka, cz. 1
Podstawy elektromagnetyzmu Wykład 3 Elektrostatyka, cz. 1 Prawo Coulomba F=k q 1 q 2 r 2 1 q1 q 2 Notka historyczna: 1767: John Priestley - sugestia 1771: Henry Cavendish - eksperyment 1785: Charles Augustin
Bardziej szczegółowoOdp.: F e /F g = 1 2,
Segment B.IX Pole elektrostatyczne Przygotował: mgr Adam Urbanowicz Zad. 1 W atomie wodoru odległość między elektronem i protonem wynosi około r = 5,3 10 11 m. Obliczyć siłę przyciągania elektrostatycznego
Bardziej szczegółowoWyprowadzenie prawa Gaussa z prawa Coulomba
Wyprowadzenie prawa Gaussa z prawa Coulomba Natężenie pola elektrycznego ładunku punktowego q, umieszczonego w początku układu współrzędnych (czyli prawo Coulomba): E = Otoczmy ten ładunek dowolną powierzchnią
Bardziej szczegółowoPodstawy fizyki sezon 2
Podstawy fizyki sezon 2 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pole elektryczne i magnetyczne: Elektrostatyka.
Bardziej szczegółowoElektrostatyka. mgr inż. Grzegorz Strzeszewski. 20 kwietnia 2013 r. ZespółSzkółnr2wWyszkowie. mgr inż. Grzegorz Strzeszewski Elektrostatyka
Elektrostatyka mgr inż. Grzegorz Strzeszewski ZespółSzkółnr2wWyszkowie 20 kwietnia 2013 r. Nauka jest dla tych, którzy chcą być mądrzejsi, którzy chcą wykorzystywać swój umysł do poznawania otaczającego
Bardziej szczegółowoWykład FIZYKA II. 1. Elektrostatyka. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II. Elektrostatyka Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ ELEKTROMAGNETYZM Już starożytni Grecy Potarty kawałek
Bardziej szczegółowoPOLE ELEKTRYCZNE PRAWO COULOMBA
POLE ELEKTRYCZNE PRAWO COULOMBA gdzie: Q, q ładunki elektryczne wyrażone w kulombach [C] r - odległość między ładunkami Q i q wyrażona w [m] ε - przenikalność elektryczna bezwzględna środowiska, w jakim
Bardziej szczegółowoLinie sił pola elektrycznego
Wykład 5 5.6. Linie sił pola elektrycznego Pamiętamy, że we wzorze (5.) określiliśmy natężenie pola elektrycznego przy pomocy ładunku próbnego q 0, którego wielkość dążyła do zera. Robiliśmy to po to,
Bardziej szczegółowoMECHANIKA II. Praca i energia punktu materialnego
MECHANIKA II. Praca i energia punktu materialnego Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl
Bardziej szczegółowoPole elektryczne. Zjawiska elektryczne często opisujemy za pomocą pojęcia pola elektrycznego wytwarzanego przez ładunek w otaczającej go przestrzeni.
Pole elektryczne Zjawiska elektryczne często opisujemy za pomocą pojęcia pola elektrycznego wytwarzanego przez ładunek w otaczającej go przestrzeni. Załóżmy pewien rozkład nieruchomych ładunków 1,...,
Bardziej szczegółowoMateriały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Siła Coulomba. F q q = k r 1 = 1 4πεε 0 q q r 1. Pole elektrostatyczne. To przestrzeń, w której na ładunek
Bardziej szczegółowoWykład FIZYKA II. 1. Elektrostatyka
Wykład FIZYKA II. Elektrostatyka Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka.html ELEKTROMAGNETYZM Już starożytni
Bardziej szczegółowoBadanie rozkładu pola elektrycznego
Ćwiczenie 8 Badanie rozkładu pola elektrycznego 8.1. Zasada ćwiczenia W wannie elektrolitycznej umieszcza się dwie metalowe elektrody, połączone ze źródłem zmiennego napięcia. Kształt przekrojów powierzchni
Bardziej szczegółowocz. 2. dr inż. Zbigniew Szklarski
Wykład 14: Pole magnetyczne cz.. dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Prąd elektryczny jako źródło pola magnetycznego - doświadczenie Oersteda Kiedy przez
Bardziej szczegółowoPole magnetyczne. Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni.
Pole magnetyczne Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni. naładowane elektrycznie cząstki, poruszające się w przewodniku w postaci prądu elektrycznego,
Bardziej szczegółowoBadanie rozkładu pola elektrycznego
Ćwiczenie 8 Badanie rozkładu pola elektrycznego 8.1. Zasada ćwiczenia W wannie elektrolitycznej umieszcza się dwie metalowe elektrody, połączone ze źródłem zmiennego napięcia. Kształt przekrojów powierzchni
Bardziej szczegółowoPodstawy fizyki sezon 2 2. Elektrostatyka 2
Podstawy fizyki sezon 2 2. Elektrostatyka 2 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Zebranie faktów
Bardziej szczegółowoPodstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:
Dynamika Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: mamy ciało (zachowujące się jak punkt materialny) o znanych właściwościach (masa, ładunek itd.),
Bardziej szczegółowoCzęść IV. Elektryczność i Magnetyzm
Część IV. Elektryczność i Magnetyzm Uczyć się bez myślenia to zmarnowana praca, Myśleć bez uczenia się to pustka. Konfucjusz (właściwie K ung Ch iu, 551 479 p.n.e.) Dialogi, II/15 Wykład 10 Wprowadzenie
Bardziej szczegółowoFizyka 2 Wróbel Wojciech. w poprzednim odcinku
w poprzednim odcinku 1 Model przewodnictwa metali Elektrony przewodnictwa dla metalu tworzą tzw. gaz elektronowy Elektrony poruszają się chaotycznie (ruchy termiczne), ulegają zderzeniom z atomami sieci
Bardziej szczegółowoMateriały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Magnetyzm to zjawisko przyciągania kawałeczków stali przez magnesy. 2. Źródła pola magnetycznego. a. Magnesy
Bardziej szczegółowoPole elektromagnetyczne
Pole elektromagnetyczne Pole magnetyczne Strumień pola magnetycznego Jednostką strumienia magnetycznego w układzie SI jest 1 weber (1 Wb) = 1 N m A -1. Zatem, pole magnetyczne B jest czasem nazywane gęstością
Bardziej szczegółowoDielektryki. właściwości makroskopowe. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego
Dielektryki właściwości makroskopowe Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Przewodniki i izolatory Przewodniki i izolatory Pojemność i kondensatory Podatność dielektryczna
Bardziej szczegółowoPotencjalne pole elektrostatyczne. Przypomnienie
Potencjalne pole elektrostatyczne Wszystkie rysunki i animacje zaczerpnięto ze strony http://webmitedu/802t/www/802teal3d/visualizations/electrostatics/indexhtm Tekst jest wolnym tłumaczeniem pliku guide03pdf
Bardziej szczegółowocz.3 dr inż. Zbigniew Szklarski
Wykład : lektrostatyka cz.3 dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Przykłady Jaka musiałaby być powierzchnia okładki kondensatora płaskiego, aby, przy odległości
Bardziej szczegółowoPOLE MAGNETYCZNE W PRÓŻNI
POLE MAGNETYCZNE W PRÓŻNI Oprócz omówionych już oddziaływań grawitacyjnych (prawo powszechnego ciążenia) i elektrostatycznych (prawo Couloma) dostrzega się inny rodzaj oddziaływań, które nazywa się magnetycznymi.
Bardziej szczegółowoElektrostatyka Elektryczność nas otacza i tworzy...
Elektrostatyka Elektryczność nas otacza i tworzy... Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Elektryczność
Bardziej szczegółowoELEKTROSTATYKA. Ze względu na właściwości elektryczne ciała dzielimy na przewodniki, izolatory i półprzewodniki.
ELEKTROSTATYKA Ładunkiem elektrycznym nazywamy porcję elektryczności. Ładunkiem elementarnym e nazywamy najmniejszą wartość ładunku zaobserwowaną w przyrodzie. Jego wartość jest równa wartości ładunku
Bardziej szczegółowoElektrostatyka. Już starożytni Grecy wiedzieli, że potarty o tkaninę bursztyn przyciąga drobne lekkie przedmioty.
Elektrostatyka Już starożytni Grecy wiedzieli, że potarty o tkaninę bursztyn przyciąga drobne lekkie przedmioty. Pozostawało to odosobnioną ciekawostką aż do XVIw., kiedy Wlliam Gilbert wykazał, że podobną
Bardziej szczegółowoPodstawy fizyki sezon 2
Podstawy fizyki sezon 2 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pole elektryczne i magnetyczne: Elektrostatyka.
Bardziej szczegółowoLXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA
LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA CZĘŚĆ TEORETYCZNA Za każde zadanie można otrzymać maksymalnie 0 punktów. Zadanie 1. przedmiot. Gdzie znajduje się obraz i jakie jest jego powiększenie? Dla jakich
Bardziej szczegółowoWykład 18 Dielektryk w polu elektrycznym
Wykład 8 Dielektryk w polu elektrycznym Polaryzacja dielektryka Dielektryk (izolator), w odróżnieniu od przewodnika, nie posiada ładunków swobodnych zdolnych do przemieszczenia się na duże odległości.
Bardziej szczegółowoPOLE MAGNETYCZNE. Magnetyczna siła Lorentza Prawo Ampere a
POLE MAGNETYCZNE Magnetyczna siła Lorentza Prawo Ampere a 1 Doświadczenie Oersteda W 18 r. Hans C. Oersted odkrywa niezwykle interesujące zjawisko. Przepuszczając prąd elektryczny nad igiełką magnetyczną,
Bardziej szczegółowoPole przepływowe prądu stałego
Podstawy elektromagnetyzmu Wykład 5 Pole przepływowe prądu stałego Czym jest prąd elektryczny? Prąd elektryczny: uporządkowany ruch ładunku. Prąd elektryczny w metalach Lity metalowy przewodnik zawiera
Bardziej szczegółowoDielektryki polaryzację dielektryka Dipole trwałe Dipole indukowane Polaryzacja kryształów jonowych
Dielektryki Dielektryk- ciało gazowe, ciekłe lub stałe niebędące przewodnikiem prądu elektrycznego (ładunki elektryczne wchodzące w skład każdego ciała są w dielektryku związane ze sobą) Jeżeli do dielektryka
Bardziej szczegółowoStrumień pola elektrycznego i prawo Gaussa
Strumień pola elektrycznego i prawo Gaussa Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Strumień pola
Bardziej szczegółowoRównania Maxwella redukują się w przypadku statycznego pola elektrycznego do postaci: D= E
Elektrostatyka Równania Maxwella redukują się w przypadku statycznego pola elektrycznego do postaci: D=ϱ E=0 D= E Źródłem pola elektrycznego są ładunki, które mogą być: punktowe q [C] liniowe [C/m] powierzchniowe
Bardziej szczegółowoImię i nazwisko ucznia Data... Klasa...
Przygotowano za pomocą programu Ciekawa fizyka. Bank zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2011 strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Między
Bardziej szczegółowoPodstawy fizyki sezon 2
Podstawy fizyki sezon 2 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pole elektryczne i magnetyczne: Elektrostatyka.
Bardziej szczegółowoElektrodynamika Część 5 Pola magnetyczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 5 Pola magnetyczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 6 Pola magnetyczne w materii 3 6.1 Magnetyzacja.....................
Bardziej szczegółowoWitam na teście z działu ELEKTROSTATYKA
Witam na teście z działu ELEKTROSTATYKA Masz do rozwiązania 22 zadania oto jaką ocenę możesz uzyskać: dopuszczająca jeśli rozwiążesz 6 zadań z zakresu pytań od 1 7 dostateczna jeśli rozwiążesz zadania
Bardziej szczegółowoCzęść IV. Elektryczność i Magnetyzm Uczyć się bez myślenia to zmarnowana praca, Myśleć bez uczenia się to pustka. Wykłady 10 i 11
Część IV. Elektryczność i Magnetyzm Uczyć się bez myślenia to zmarnowana praca, Myśleć bez uczenia się to pustka. Konfucjusz (właściwie K ung Ch iu, 55 479 p.n.e.) Dialogi, II/5 Wykłady 0 i 0.. Ładunek
Bardziej szczegółowoPowtórzenie wiadomości z klasy II. Ładunek elektryczny. Zasada zachowania ładunku elektrycznego.
Powtórzenie wiadomości z klasy II Ładunek elektryczny. Zasada zachowania ładunku elektrycznego. Przewodniki prądu elektrycznego Materiały metaliczne (dobrze przewodzące prąd elektryczny), z których zbudowane
Bardziej szczegółowo1. Dwa ładunki punktowe q znajdujące się w odległości 1 m od siebie odpychają się siłą o wartości F r
1. Dwa ładunki punktowe q znajdujące się w odległości 1 m od siebie odpychają się siłą o wartości F r. Sporządź wykres zależności F(r) dla tych ładunków. 2. Naelektryzowany płatek waty zbliża się do przeciwnie
Bardziej szczegółowo1.6. Ruch po okręgu. ω =
1.6. Ruch po okręgu W przykładzie z wykładu 1 asteroida poruszała się po okręgu, wartość jej prędkości v=bω była stała, ale ruch odbywał się z przyspieszeniem a = ω 2 r. Przyspieszenie w tym ruchu związane
Bardziej szczegółowoMETODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ
METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza
Bardziej szczegółowoElektrodynamika Część 3 Pola elektryczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 3 Pola elektryczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 4 Pola elektryczne w materii 3 4.1 Polaryzacja elektryczna..................
Bardziej szczegółowoElektryczne właściwości materiałów. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego.
Elektryczne właściwości materiałów Materiały dydaktyczne dla kierunku Technik Optyk (W) Kwalifikacyjnego kursu zawodowego. Podział materii ze względu na jej właściwości Przewodniki elektryczne: Przewodniki
Bardziej szczegółowoSzczegółowe kryteria oceniania z fizyki w gimnazjum kl. II
Szczegółowe kryteria oceniania z fizyki w gimnazjum kl. II Semestr I Elektrostatyka Ocenę dopuszczającą otrzymuje uczeń, który: Wie że materia zbudowana jest z cząsteczek Wie że cząsteczki składają się
Bardziej szczegółowoPodstawy elektromagnetyzmu. Wykład 2. Równania Maxwella
Podstawy elektromagnetyzmu Wykład 2 Równania Maxwella Prawa Maxwella opisują pola Pole elektryczne... to zjawisko występujące w otoczeniu naładowanych elektrycznie obiektów lub jest skutkiem zmiennego
Bardziej szczegółowoElektryczność i magnetyzm
Władysław Tomaszewicz Przemysław Ciesielski Elektryczność i magnetyzm (na prawach rękopisu) Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska 2002 Wstęp Przedmiotem wykładu jest elektrodynamika
Bardziej szczegółowoIndukcja elektromagnetyczna Faradaya
Indukcja elektromagnetyczna Faradaya Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Po odkryciu Oersteda zjawiska
Bardziej szczegółowoRÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?
RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1
Bardziej szczegółowoPOLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO. Wykład 9 lato 2016/17 1
POLE MAGNETYZNE ŹRÓDŁA POLA MAGNETYZNEGO Wykład 9 lato 2016/17 1 Definicja wektora indukcji pola magnetycznego F q( v) Jednostką indukcji pola jest 1T (tesla) 1T=1N/Am Pole magnetyczne zakrzywia tor ruchu
Bardziej szczegółowoFizyka 2, wykład 1. Kiedy? CZ(TN) ; 14.03; 11.04; 25.04; 9.05; 23.05;29.05(ŚR); 6.06 Gdzie? Sala 322 /A1 Z kim? dr inż. Janusz Andrzejewski
Fizyka 2, wykład 1 Kiedy? CZ(TN) 15.15 28.02; 14.03; 11.04; 25.04; 9.05; 23.05;29.05(ŚR); 6.06 Gdzie? Sala 322 /A1 Z kim? dr inż. Podsumowanie wyników egzaminu 1 termin 04.02.2013 przystąpiło do egzaminu
Bardziej szczegółowoWykład 2 Prawo Coulomba i pole elektryczne
Wykład 2 Prawo Coulomba i pole elektryczne (oraz krew kozła i czosnek) Maciej J. Mrowiński mrow@if.pw.edu.pl Wydział Fizyki Politechnika Warszawska 1 marca 2017 Maciej J. Mrowiński (IF PW) Wykład 2 1 marca
Bardziej szczegółowoRozdział 4. Pole magnetyczne przewodników z prądem
Rozdział 4. Pole magnetyczne przewodników z prądem 2018 Spis treści Prawo Ampere'a Zastosowanie prawa Ampere'a - prostoliniowy przewodnik Zastosowanie prawa Ampere'a - cewka Oddziaływanie równoległych
Bardziej szczegółowoI. PROMIENIOWANIE CIEPLNE
I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.
Bardziej szczegółowoWykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne
Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne W3. Zjawiska transportu Zjawiska transportu zachodzą gdy układ dąży do stanu równowagi. W zjawiskach
Bardziej szczegółowoElektrostatyczna energia potencjalna. Potencjał elektryczny
Elektrostatyczna energia potencjalna Potencjał elektryczny Elektrostatyczna energia potencjalna U Żeby zbliżyć do siebie dwa ładunki jednoimienne trzeba wykonać pracę przeciwko siłą pola nadając ładunkowi
Bardziej szczegółowocz. 2. dr inż. Zbigniew Szklarski
Wykład 2: lektrostatyka cz. 2. dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Dygresja matematyczna - operatory Operator przyporządkowuje np. polu skalarnemu odpowiednie
Bardziej szczegółowoMagnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera
Magnetyzm cz.i Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera 1 Magnesy Zjawiska magnetyczne (naturalne magnesy) były obserwowane i badane już w starożytnej Grecji 500 lat
Bardziej szczegółowoElektrodynamika. Część 5. Pola magnetyczne w materii. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.
Elektrodynamika Część 5 Pola magnetyczne w materii yszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 6 Pola magnetyczne w materii 3 6.1 Magnetyzacja.......................
Bardziej szczegółowo1 Wymagania egzaminacyjne na egzamin maturalny - poziom rozszerzony: fizyka
1 Grawitacja i elektrostatyka 1 Wymagania egzaminacyjne na egzamin maturalny - poziom rozszerzony: fizyka 2005-2006 Teoria grawitacji i elektrostatyka Standard 1. Zdający potrafi: 1. Wyznaczać siłę działającą
Bardziej szczegółowoFizyka 2 Wróbel Wojciech. w poprzednim odcinku
w poprzednim odcinku 1 Pole magnetyczne Linie pola magnetycznego analogiczne do linii pola elektrycznego Pole magnetyczne jest polem bezźródłowym (nie istnieje monopol magnetyczny!) Prawo Gaussa dla pola
Bardziej szczegółowo