Elektrostatyczna energia potencjalna U
|
|
- Martyna Małek
- 5 lat temu
- Przeglądów:
Transkrypt
1 Elektrostatyczna energia potencjalna U Żeby zbliżyć do siebie dwa ładunki jednoimienne trzeba wykonać pracę przeciwko siłom pola nadając ładunkowi energię potencjalną. Podobnie trzeba wykonać pracę przeciwko siłom grawitacyjnym aby podnieść ciało, lub przeciwko sile sprężystości aby ścisnąć sprężynę. Grawitacja i siła sprężystości to siły konserwatywne, czyli praca wykonana przeciwko tym siłom równa się zmianie energii potencjalnej. Podobnie jest w przypadku sił elektrostatycznych. P. G. Hewitt, Fizyka wokół nas
2 Energia potencjalna ładunku w polu jednorodnym (analogia z polem grawitacyjnym w pobliżu Ziemi) Energia potencjalna ładunku q rośnie Energia potencjalna ładunku q maleje Praca sił elektrostatycznych: Energia potencjalna ładunku q w jednorodnym polu elektrostatycznym: W a b = F ( y a y b ) = qe( y a y b ) W a b = qey b qey a = ( U b U a ) U = qey Siła elektrostatyczna jest siłą konserwatywną i praca nie zależy od toru, po którym przesuwamy ładunek od punktu a do punktu b.
3 Energia potencjalna ładunku w polu jednorodnym (analogia z polem grawitacyjnym w pobliżu Ziemi) Energia potencjalna ładunku q maleje Energia potencjalna ładunku q rośnie Praca sił elektrostatycznych: Energia potencjalna ładunku q w jednorodnym polu elektrostatycznym: W a b = F ( y a y b ) = qe( y a y b ) W a b = qey b qey a = ( U b U a ) U = qey Siła elektrostatyczna jest siłą konserwatywną i praca nie zależy od toru, po którym przesuwamy ładunek od punktu a do punktu b.
4 Zasada zachowania energii w polu elektrostatycznym Proton (m = kg, e = C) znajdujący się początkowo w spoczynku w jednorodnym polu elektrycznym o natężeniu E = 10 4 N/C zostaje uwolniony. Proton przebywa drogę d = 0.1 m w kierunku pola. Jaką osiągnie prędkość w punkcie B? Pracę wykonują tylko siły elektrostatyczne energia cząstki jest zachowana: 1 2 m v 2 +U p A A = 1 2 m v 2 +U p B B 1 2 m v 2 + qey p A A = 1 2 m v 2 + qey p B B 0 + qed = 1 2 m v p B v B = 2qEd m p m s d 0 Oś kierujemy w stronę wzrostu energii potencjalnej cząstki
5 Elektrostatyczna energia potencjalna U układu dwóch ładunków punktowych (pole niejednorodne) Praca siły zewnętrznej F KF przy przesunięciu ładunku +q 2 z punktu A do punktu B: +q 1 +q 2 d! r W KF = R B R A! F KF R B B F A KF F el d! r =! F el d r! R A dr = kq 1 q 2 r = kq q R B R A R B 1 1 R B R A W KF = U B U A Zakładając, że dla możemy zapisać: U = k q 1 q 2 R R A energia potencjalna U A = 0. Elektrostatyczną energię potencjalną J Siła elektrostatyczna jest siłą konserwatywną i praca nie zależy od toru, po którym przesuwamy ładunek od punktu A do punktu B. Elektrostatyczna energia potencjalna układu dwóch ładunków punktowych q 1 i q 2 znajdujących się w odległości R od siebie. Lub inaczej: energia potencjalna ładunku q 2 w polu ładunku q 1 (i na odwrót).
6 Elektrostatyczna energia potencjalna ładunku punktowego w polu wielu ładunków punktowych Energia potencjalna ładunku q 0 w polu innych ładunków: q U = kq q 2 + q 3 r 1 r 2 r 3 Całkowita energia potencjalna ładunku q 0 jest sumą algebraiczną energii potencjalnych, które q 0 posiada w polu każdego ładunku z osobna.
7 Zasada zachowania energii w polu elektrostatycznym Cztery protony umieszczono w wierzchołkach kwadratu o boku 1 m. Jaką minimalną prędkość v 0 musi posiadać elektron, znajdujący się w środku kwadratu, by oddalić się na nieskończoną odległość od ładunków? + R 1 m R + Zasada zachowania energii zastosowana do elektronu: 1 2 m v 2 +U e 0 0 = 1 2 m v 2 +U e 1 m v 0 - R R m v 2 + 4k e( e) e 0 R = v 0 = 4e k m e R 75.7 m s e = C m e = kg
8 Przenosimy kolejne ładunki z nieskończoności do punktów r 1, r 2, Praca wykonana przy przenoszeniu kolejnych ładunków: W 1 = 0 q W 2 = kq 1 2 Elektrostatyczna energia potencjalna zmagazynowana w układzie wielu ładunków punktowych Zbudowanie każdej konfiguracji ładunku wymaga pracy, która jest magazynowana w całkowitej energii potencjalnej układu. (nie trzeba wykonywać żadnej pracy przeciwko siłom elektrostatycznym, bo jeszcze nie ma ładunków) R 12 q W 3 = kq q 2 R 13 R 23 q W 4 = kq q 2 + q 3 R 14 R 24 R 34 Całkowita praca ( = energii potencjalnej układu): U = W 1 +W 2 +W 3 +W 4 = k q q q q q q q q q q q q 3 4 R 12 R 13 R 14 R 23 R 24 R 34
9 Energia zmagazynowana w układzie ładunków Ile wynosi energia potencjalna zmagazynowana w przedstawionej konfiguracji ładunków (4 protony w rogu kwadratu o boku a): e 1 e 2 e = C + a = 1 m + e 4 Energia zmagazynowana w układzie: + + U = k e e 1 2 a + e e 1 3 a 2 + e e 1 4 a + e e 2 3 a + e e 2 4 a 2 + e e 3 4 a U = k 4 e2 a + 2 e2 a 2 = J e 3
10 *Elektrostatyczna energia potencjalna zmagazynowana w dowolnym ciągłym rozkładzie ładunków Przepis na wyznaczenie energii potencjalnej dowolnego ciągłego rozkładu ładunków: E 2 dτ E 2 dτ U = ε 0 2 cala przestrzen E 2 dτ całka objętościowa po całej przestrzeni z kwadratu wartości natężenia pola elektrycznego +Q E 2 dτ. całka ta oznacza sumę kwadratów natężenia pola elektrycznego po każdym punkcie przestrzeni (nieskończenie małym elemencie objętościowym dτ)
11 Energia zgromadzona pomiędzy dwoma różnoimiennie naładowanymi płytkami A (pole powierzchni) E = 0 +σ d E = 0 E = σ ε 0 σ Elektrostatyczna energia potencjalna zgromadzona w obszarze między dwoma płytkami o powierzchni A i oddalonymi od siebie o d: U = ε 0 2 E 2 dτ = ε 0 2 E 2 dτ = ε 0 2 E 2 Ad = ε 0 2 cala przestrzen σ 2 ε 0 2 Ad
12 Potencjał elektryczny V Potencjał elektryczny definiujemy jako energię potencjalną na jednostkę ładunku: Definicja: V = U q J C = V Wolt Dla pola ładunku punktowego: V = Q 4πε 0 R Potencjał charakteryzuje pole elektryczne (tzn. jest cechą przestrzeni, a nie ładunku)
13 Potencjał elektryczny V pola ładunku punktowego V = k Q R R Q > 0 Q < 0 V = 0 R V = 0 54
14 Potencjał układu ładunków punktowych -Q 2 +Q 1 Potencjał dipola elektrycznego: +Q -Q P -Q 3 +Q 4 V P = V 1 +V 2 +V 3 +V 4 = 4 V i i=1
15 Superpozycja potencjału ładunków punktowych Ile wynosi potencjał w środku kwadratu o boku a = 1m utworzonego przez trzy protony i jeden elektron : e 1 = e 2 = e 3 = C e 1 e a = 1 m 2 + R R + e 4 = C P R R e e 3 Potencjał w punkcie P: V = k e 1 R + e 2 R + e 3 R + e 4 R = k 3 e R e R = 2k e R 2.5 nv
16 *Wyznaczenie potencjału pola wytwarzanego przez ciągły rozkład ładunku (superpozycja potencjału) Potencjał elektryczny w punkcie P wytwarzany przez ciągły rozkład ładunku można obliczyć dzieląc rozkład ładunku na małe elementy dq, które zachowują się jak ładunki punktowe. Całkowity potencjał jest sumą po wszystkich małych elementach rozkładu. Potencjał od małego elementu dq (ładunek punktowy): V = dq dv = k r Całkowity potencjał (suma po wszystkich elementach dq): dv = k dq r
17 *Wyznaczenie potencjału pola wytwarzanego przez ciągły rozkład ładunku - przykład Q Wcześniej pokazaliśmy korzystając z zasady superpozycji dla natężenia pola elektrycznego, że:! E = k Qx ( x 2 + a 2 ) ˆx 3 2 dv = dq x 2 + a 2 V = kdq x 2 + a 2 = k 1 x 2 + a 2 dq = k Q x 2 + a 2 58
18 Praca, potencjał i napięcie dla pól wytworzonych przez dowolny rozkład ładunku (niekoniecznie ładunek punktowy) E q Q 1 Q 2 E Q i F KF Praca siły zewnętrznej F KF potrzebna na przeniesienie ładunku q od a do b: W a b = U b U a Praca siły zewnętrznej na jednostkę ładunku: W a b q = U b q U a q = V b V a Napięcie elektryczne (różnica potencjałów): ΔV ab = W a b q W a b = qδv ab = b! F KF q d! l = E! d l! a b a
19 Potencjał elektryczny jednorodnie naładowanej sfery, przykład wyznaczania potencjału na podstawie znajomości natężenia pola elektrycznego ΔV = V 0 = V = k Q R dla r < R R ΔV = V 0 = V = k Q r dla r > R V k Q R Q V ~ r 1 R r
20 Przykład wyznaczania różnicy potencjałów (napięcia) między dwoma punktami w przestrzeni na podstawie znajomości pola elektrycznego Dwie nieskończenie wielkie płaszczyzny naładowane ładunkiem różnoimiennym wytwarzają pole jednorodne: 0 V + +σ d d y V! E = σ ε 0 ŷ σ 0 V + V = E! d y! 0 = E dy = d d σ ε 0 y d 0 = σ d ε 0 ΔV +/ = Ed Różnica potencjałów pomiędzy punktami odległymi o d w jednorodnym polu elektrycznym
21 Powierzchnie ekwipotencjalne = powierzchnie o stałej wartości potencjału Sears and Zemansky s University Physics with Modern Physics Podczas przesunięcia ładunku q po powierzchni ekwipotencjalnej, siły pola elektrycznego nie wykonują pracy! To jest możliwe tylko wtedy gdy natężenie pola elektrycznego, tj. siła elektryczna działająca na ładunek, jest prostopadłe do powierzchni ekwipotencjalnych!
22 Zasada zachowania energii w polu elektrostatycznym V2 = 150 V v2 =??? m s v1 = 0 m s - e = C m = kg V1 = 50 V przewodnik to ciało ekwipotencjalne przewodnik to ciało ekwipotencjalne mv1 + qv1 = mv2 + qv q v2 = v + (V1 V2 ) m 2 1 v2 = m s V =0 V V =0 V
23 Wyznaczenie natężenia pola elektrycznego na podstawie znajomości potencjału V b V a = ΔV ab = b a dv =! E d! l = E l dl! E d! l d! l! E E l b E l = dv dl a E x = dv dx, E y = dv dy, E z = dv dz. Natężenie pola elektrycznego to gradient potencjału elektrycznego
24 *Wyznaczenie natężenia pola na podstawie znajomości potencjału - przykład Q V = k Q x 2 + a 2 E x = V x = k E y = V y = 0 E z = V z = 0 Q ( x 2 + a 2 ) 3/2! E = k Qx ( x 2 + a 2 ) ˆx 3 2
25 Natężenie pola elektrycznego to gradient potencjału elektrycznego ze znakiem minus (gradient to wektor, który wskazuje kierunek najszybszego wzrostu pola skalarnego, np. potencjału, a wartość gradientu określa szybkość zmian tego pola w danym punkcie) 66
26 Użyteczna analogia potencjał = różnica wysokości (wzniesienie) natężenie pola elektrycznego = nachylenie (stromość) E 1 = dv dx V E 2 = dv dx V 0 E 1 > E 2 0 x 67
Elektrostatyczna energia potencjalna. Potencjał elektryczny
Elektrostatyczna energia potencjalna Potencjał elektryczny Elektrostatyczna energia potencjalna U Żeby zbliżyć do siebie dwa ładunki jednoimienne trzeba wykonać pracę przeciwko siłą pola nadając ładunkowi
Bardziej szczegółowoŁadunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się
Ładunki elektryczne Ładunki jednoimienne odpychają się Ładunki różnoimienne przyciągają się q = ne n - liczba naturalna e = 1,60 10-19 C ładunek elementarny Ładunek jest cechąciała i nie można go wydzielićz
Bardziej szczegółowoFizyka 2 Wróbel Wojciech. w poprzednim odcinku
Fizyka w poprzednim odcinku Obliczanie natężenia pola Fizyka Wyróżniamy ładunek punktowy d Wektor natężenia pola d w punkcie P pochodzący od ładunku d Suma składowych x-owych wektorów d x IĄGŁY ROZKŁAD
Bardziej szczegółowoElektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego
Elektrostatyka Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego 1 Prawo Coulomba odpychanie naelektryzowane szkło nie-naelektryzowana miedź F 1 4 0 q 1 q 2 r 2 0 8.85
Bardziej szczegółowoElektrostatyka. Potencjał pola elektrycznego Prawo Gaussa
Elektrostatyka Potencjał pola elektrycznego Prawo Gaussa 1 Potencjał pola elektrycznego Energia potencjalna zależy od (ładunek próbny) i Q (ładunek który wytwarza pole), ale wielkość definiowana jako:
Bardziej szczegółowoPotencjał pola elektrycznego
Potencjał pola elektrycznego Pole elektryczne jest polem zachowawczym, czyli praca wykonana przy przesunięciu ładunku pomiędzy dwoma punktami nie zależy od tego po jakiej drodze przesuwamy ładunek. Spróbujemy
Bardziej szczegółowoPotencjalne pole elektrostatyczne. Przypomnienie
Potencjalne pole elektrostatyczne Wszystkie rysunki i animacje zaczerpnięto ze strony http://webmitedu/802t/www/802teal3d/visualizations/electrostatics/indexhtm Tekst jest wolnym tłumaczeniem pliku guide03pdf
Bardziej szczegółowoElektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α
Elektrostatyka ŁADUNEK elektron: -e = -1.610-19 C proton: e = 1.610-19 C neutron: 0 C n p p n Cząstka α Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest
Bardziej szczegółowoOdp.: F e /F g = 1 2,
Segment B.IX Pole elektrostatyczne Przygotował: mgr Adam Urbanowicz Zad. 1 W atomie wodoru odległość między elektronem i protonem wynosi około r = 5,3 10 11 m. Obliczyć siłę przyciągania elektrostatycznego
Bardziej szczegółowoElektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................
Bardziej szczegółowoElektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................
Bardziej szczegółowoFizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics)
Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Koniec XIX / początek XX wieku Lata 90-te XIX w.: odkrycie elektronu (J. J. Thomson, promienie katodowe), promieniowania Roentgena
Bardziej szczegółowoPodstawy fizyki sezon 2 1. Elektrostatyka 1
Biblioteka AGH Podstawy fizyki sezon 2 1. Elektrostatyka 1 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha
Bardziej szczegółowoStrumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie
Problemy elektrodynamiki. Prawo Gaussa i jego zastosowanie przy obliczaniu pól ładunku rozłożonego w sposób ciągły. I LO im. Stefana Żeromskiego w Lęborku 19 marca 2012 Nowe spojrzenie na prawo Coulomba
Bardziej szczegółowoWymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C
Wymiana ciepła Ładunek jest skwantowany ładunek elementarny ładunek pojedynczego elektronu (e). Każdy ładunek q (dodatni lub ujemny) jest całkowitą wielokrotnością jego bezwzględnej wartości. q=n. e gdzie
Bardziej szczegółowoŁadunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl
Ładunki elektryczne i siły ich wzajemnego oddziaływania Pole elektryczne Copyright by pleciuga@ o2.pl Ładunek punktowy Ładunek punktowy (q) jest to wyidealizowany model, który zastępuje rzeczywiste naelektryzowane
Bardziej szczegółowoWykład 4 i 5 Prawo Gaussa i pole elektryczne w materii. Pojemność.
Wykład 4 i 5 Prawo Gaussa i pole elektryczne w materii. Pojemność. Maciej J. Mrowiński mrow@if.pw.edu.pl Wydział Fizyki Politechnika Warszawska 21 marca 2016 Maciej J. Mrowiński (IF PW) Wykład 4 i 5 21
Bardziej szczegółowoRozdział 22 Pole elektryczne
Rozdział 22 Pole elektryczne 1. NatęŜenie pola elektrycznego jest wprost proporcjonalne do A. momentu pędu ładunku próbnego B. energii kinetycznej ładunku próbnego C. energii potencjalnej ładunku próbnego
Bardziej szczegółowoPodstawy fizyki sezon 1 III. Praca i energia
Podstawy fizyki sezon 1 III. Praca i energia Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha F.Żarnecki Praca Rozważamy
Bardziej szczegółowoWŁAŚCIWOŚCI IDEALNEGO PRZEWODNIKA
WŁAŚCIWOŚCI IDEALNEGO PRZEWODNIKA Idealny przewodnik to materiał zawierająca nieskończony zapas zupełnie swobodnych ładunków. Z tej definicji wynikają podstawowe własności elektrostatyczne idealnych przewodników:
Bardziej szczegółowoMECHANIKA II. Praca i energia punktu materialnego
MECHANIKA II. Praca i energia punktu materialnego Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl
Bardziej szczegółowoPodstawy fizyki sezon 2 2. Elektrostatyka 2
Podstawy fizyki sezon 2 2. Elektrostatyka 2 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Strumień wektora
Bardziej szczegółowoEnergia potencjalna pola elektrostatycznego ładunku punktowego
Energia potencjalna pola elektrostatycznego ładunku punktowego Wszystkie rysunki i animacje zaczerpnięto ze strony http://web.mit.edu/8.02t/www/802teal3d/visualizations/electrostatics/index.htm. Tekst
Bardziej szczegółowoPodstawy fizyki wykład 8
Podstawy fizyki wykład 8 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Ładunek elektryczny Grecy ok. 600 r p.n.e. odkryli, że bursztyn potarty o wełnę przyciąga inne (drobne) przedmioty. słowo
Bardziej szczegółowoElektrostatyka. A. tyle samo B. będzie 2 razy mniejsza C. będzie 4 razy większa D. nie da się obliczyć bez znajomości odległości miedzy ładunkami
Elektrostatyka Zadanie 1. Dwa jednoimienne ładunki po 10C każdy odpychają się z siłą 36 10 8 N. Po dwukrotnym zwiększeniu odległości między tymi ładunkami i dwukrotnym zwiększeniu jednego z tych ładunków,
Bardziej szczegółowoWykład 2. POLE ELEKTROMEGNETYCZNE:
Wykład 2. POLE ELEKTROMEGNETYCZNE: Ładunek elektryczny Ładunki elektryczne: -dodatnie i ujemne - skwantowane, czyli że mają pewną najmniejszą wartość, której nie można już dalej podzielić. Nie można ładunków
Bardziej szczegółowoPole elektryczne. Zjawiska elektryczne często opisujemy za pomocą pojęcia pola elektrycznego wytwarzanego przez ładunek w otaczającej go przestrzeni.
Pole elektryczne Zjawiska elektryczne często opisujemy za pomocą pojęcia pola elektrycznego wytwarzanego przez ładunek w otaczającej go przestrzeni. Załóżmy pewien rozkład nieruchomych ładunków 1,...,
Bardziej szczegółowoPrzykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI.
Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. 1. Ładunki q 1 =3,2 10 17 i q 2 =1,6 10 18 znajdują się w próżni
Bardziej szczegółowoElektrostatyka, część pierwsza
Elektrostatyka, część pierwsza ZADANIA DO PRZEROBIENIA NA LEKJI 1. Dwie kulki naładowano ładunkiem q 1 = 1 i q 2 = 3 i umieszczono w odległości r = 1m od siebie. Oblicz siłę ich wzajemnego oddziaływania.
Bardziej szczegółowoPodstawy fizyki sezon 2
Podstawy fizyki sezon 2 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pole elektryczne i magnetyczne: Elektrostatyka.
Bardziej szczegółowoPodstawowe własności elektrostatyczne przewodników: Pole E na zewnątrz przewodnika jest prostopadłe do jego powierzchni
KONDENSATORY Podstawowe własności elektrostatyczne przewodników: Natężenie pola wewnątrz przewodnika E = 0 Pole E na zewnątrz przewodnika jest prostopadłe do jego powierzchni Potencjał elektryczny wewnątrz
Bardziej szczegółowoPole elektromagnetyczne
Pole elektromagnetyczne Pole magnetyczne Strumień pola magnetycznego Jednostką strumienia magnetycznego w układzie SI jest 1 weber (1 Wb) = 1 N m A -1. Zatem, pole magnetyczne B jest czasem nazywane gęstością
Bardziej szczegółowoznak minus wynika z faktu, że wektor F jest zwrócony
Wykład 6 : Pole grawitacyjne. Pole elektrostatyczne. Prąd elektryczny Pole grawitacyjne Każde dwa ciała o masach m 1 i m 2 przyciągają się wzajemnie siłą grawitacji wprost proporcjonalną do iloczynu mas,
Bardziej szczegółowoWykład 2. POLE ELEKTROMEGNETYCZNE:
Wykład 2. POLE ELEKTROMEGNETYCZNE: Ładunek elektryczny Ładunki elektryczne: -dodatnie i ujemne - skwantowane, czyli że mają pewną najmniejszą wartość, której nie można już dalej podzielić. Nie można ładunków
Bardziej szczegółowoBadanie rozkładu pola elektrycznego
Ćwiczenie 8 Badanie rozkładu pola elektrycznego 8.1. Zasada ćwiczenia W wannie elektrolitycznej umieszcza się dwie metalowe elektrody, połączone ze źródłem zmiennego napięcia. Kształt przekrojów powierzchni
Bardziej szczegółowoWykład 8 ELEKTROMAGNETYZM
Wykład 8 ELEKTROMAGNETYZM Równania Maxwella dive = ρ εε 0 prawo Gaussa dla pola elektrycznego divb = 0 rote = db dt prawo Gaussa dla pola magnetycznego prawo indukcji Faradaya rotb = μμ 0 j + εε 0 μμ 0
Bardziej szczegółowo5) W czterech rogach kwadratu o boku a umieszczono ładunki o tej samej wartości q jak pokazano na rysunku. k=1/(4πε 0 )
Zadania zamknięte 1 1) Ciało zostało wyrzucono z prędkością V 0 skierowną pod kątem α względem poziomu (x). Wiedząc iż porusza się ono w polu grawitacyjnym o przyspieszeniu g skierowanym pionowo w dół
Bardziej szczegółowoPOLE MAGNETYCZNE W PRÓŻNI
POLE MAGNETYCZNE W PRÓŻNI Oprócz omówionych już oddziaływań grawitacyjnych (prawo powszechnego ciążenia) i elektrostatycznych (prawo Couloma) dostrzega się inny rodzaj oddziaływań, które nazywa się magnetycznymi.
Bardziej szczegółowoBadanie rozkładu pola elektrycznego
Ćwiczenie E1 Badanie rozkładu pola elektrycznego E1.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie rozkładu pola elektrycznego dla różnych układów elektrod i ciał nieprzewodzących i przewodzących umieszczonych
Bardziej szczegółowoŁADUNEK I MATERIA Ładunki elektryczne są ściśle związane z atomową budową materii. Materia składa się z trzech rodzajów cząstek elementarnych:
POLE ELEKTRYCZNE Ładunek i materia Ładunek elementarny. Zasada zachowania ładunku Prawo Coulomba Elektryzowanie ciał Pole elektryczne i pole zachowawcze Natężenie i strumień pola elektrycznego Prawo Gaussa
Bardziej szczegółowoTadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii
Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą
Bardziej szczegółowokondensatory Jednostkę pojemności [Q/V] przyjęto nazywać faradem i oznaczać literą F.
Pojemność elektryczna i kondensatory Umieśćmy na przewodniku ładunek. Przyjmijmy zero potencjału w nieskończoności. Potencjał przewodnika jest proporcjonalny do ładunku (dlaczego?). Współczynnik proporcjonalności
Bardziej szczegółowoLekcja 40. Obraz graficzny pola elektrycznego.
Lekcja 40. Obraz graficzny pola elektrycznego. Polem elektrycznym nazywamy obszar, w którym na wprowadzony doń ładunek próbny q działa siła. Pole elektryczne występuje wokół ładunków elektrycznych i ciał
Bardziej szczegółowoBadanie rozkładu pola elektrycznego
Ćwiczenie 8 Badanie rozkładu pola elektrycznego 8.1. Zasada ćwiczenia W wannie elektrolitycznej umieszcza się dwie metalowe elektrody, połączone ze źródłem zmiennego napięcia. Kształt przekrojów powierzchni
Bardziej szczegółowodr inż. Zbigniew Szklarski
Wykład 11: Elektrostatyka dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Kwantyzacja ładunku Każdy elektron ma masę m e ładunek -e i Każdy proton ma masę m p ładunek
Bardziej szczegółowoRóżniczkowe prawo Gaussa i co z niego wynika...
Różniczkowe prawo Gaussa i co z niego wynika... Niech ładunek będzie rozłożony w objętości V z ciągłą gęstością ρ(x,y,z). Wytworzone przez ten ładunek pole elektryczne będzie również zmieniać się w przestrzeni
Bardziej szczegółowoPraca w języku potocznym
Praca w języku potocznym Kto wykonuje większą pracę? d d https://www.how-to-draw-funny-cartoons.com/cartoontable.html http://redwoodbark.org/016/09/1/text-heavy-hidden-weight-papertextbook-use/ https://www.freepik.com/free-photos-vectors/boy
Bardziej szczegółowoPole magnetyczne. Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni.
Pole magnetyczne Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni. naładowane elektrycznie cząstki, poruszające się w przewodniku w postaci prądu elektrycznego,
Bardziej szczegółowoPojęcie ładunku elektrycznego
Elektrostatyka Trochę historii Zjawisko elektryzowania się niektórych ciał było znane już w starożytności. O zjawisku przyciągania drobnych, lekkich ciał przez potarty suknem bursztyn wspomina Tales z
Bardziej szczegółowoElektrodynamika. Część 5. Pola magnetyczne w materii. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.
Elektrodynamika Część 5 Pola magnetyczne w materii yszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 6 Pola magnetyczne w materii 3 6.1 Magnetyzacja.......................
Bardziej szczegółowoPodstawy fizyki sezon 2 2. Elektrostatyka 2
Podstawy fizyki sezon 2 2. Elektrostatyka 2 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Zebranie faktów
Bardziej szczegółowoWykład 8: Elektrostatyka Katarzyna Weron
Wykład 8: Elektrostatyka Katarzyna Weron Matematyka Stosowana Przewodniki i izolatory Przewodniki - niektóre ładunki ujemne mogą się dość swobodnie poruszać: metalach, wodzie, ciele ludzkim, Izolatory
Bardziej szczegółowoZasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd
Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Siły - wektory Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub
Bardziej szczegółowocz. 2. dr inż. Zbigniew Szklarski
Wykład 2: lektrostatyka cz. 2. dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Dygresja matematyczna - operatory Operator przyporządkowuje np. polu skalarnemu odpowiednie
Bardziej szczegółowoPojemność elektryczna. Pojemność elektryczna, Kondensatory Energia elektryczna
Pojemność elektryczna Pojemność elektryczna, Kondensatory Energia elektryczna Pojemność elektryczna - kondensatory Kondensator : dwa przewodniki oddzielone izolatorem zwykle naładowane ładunkami o przeciwnych
Bardziej szczegółowo1 Wymagania egzaminacyjne na egzamin maturalny - poziom rozszerzony: fizyka
1 Grawitacja i elektrostatyka 1 Wymagania egzaminacyjne na egzamin maturalny - poziom rozszerzony: fizyka 2005-2006 Teoria grawitacji i elektrostatyka Standard 1. Zdający potrafi: 1. Wyznaczać siłę działającą
Bardziej szczegółowoŁadunek elektryczny. Zastosowanie równania Laplace a w elektro- i magnetostatyce. Joanna Wojtal. Wprowadzenie. Podstawowe cechy pól siłowych
6 czerwca 2013 Ładunek elektryczny Ciała fizyczne mogą być obdarzone (i w znacznej większości faktycznie są) ładunkiem elektrycznym. Ładunek ten może być dodatni lub ujemny. Kiedy na jednym ciele zgromadzonych
Bardziej szczegółowoRÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?
RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1
Bardziej szczegółowoSiły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18
Siły zachowawcze i energia potencjalna Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Polecana literatura John R Taylor, Mechanika klasyczna, tom1 Wydawnictwo Naukowe
Bardziej szczegółowoWykład 18 Dielektryk w polu elektrycznym
Wykład 8 Dielektryk w polu elektrycznym Polaryzacja dielektryka Dielektryk (izolator), w odróżnieniu od przewodnika, nie posiada ładunków swobodnych zdolnych do przemieszczenia się na duże odległości.
Bardziej szczegółowocz. 2. dr inż. Zbigniew Szklarski
Wykład 14: Pole magnetyczne cz.. dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Prąd elektryczny jako źródło pola magnetycznego - doświadczenie Oersteda Kiedy przez
Bardziej szczegółowoMECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ
Bardziej szczegółowoMECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 11 Praca, moc, energia Prowadzący: dr Krzysztof Polko PRACA MECHANICZNA SIŁY STAŁEJ Pracą siły stałej na prostoliniowym przemieszczeniu w kierunku działania siły nazywamy iloczyn
Bardziej szczegółowoFizyka 5. Janusz Andrzejewski
Fizyka 5 Przykład R y F s x F n mg W kierunku osi Y: W kierunku osi X: m*0=r-f n m*a=f s F s =mgsinα F n =mgcosα Dynamiczne równania ruchu Interesujące jest tylko rozpatrywanie ruchu w kierunku osi X a=gsin
Bardziej szczegółowoSiły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18
Siły zachowawcze i energia potencjalna Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Polecana literatura John R Taylor, Mechanika klasyczna, tom1 Wydawnictwo Naukowe
Bardziej szczegółowoZasada zachowania energii
Zasada zachowania energii Fizyka I (B+C) Wykład XIV: Praca, siły zachowawcze i energia potencjalna Energia kinetyczna i zasada zachowania energii Zderzenia elastyczne dr P F n Θ F F t Praca i energia Praca
Bardziej szczegółowoELEKTRONIKA ELM001551W
ELEKTRONIKA ELM001551W Podstawy elektrotechniki i elektroniki Definicje prądu elektrycznego i wielkości go opisujących: natężenia, gęstości, napięcia. Zakres: Oznaczenia wielkości fizycznych i ich jednostek,
Bardziej szczegółowoPodstawy fizyki sezon 2
Podstawy fizyki sezon 2 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pole elektryczne i magnetyczne: Elektrostatyka.
Bardziej szczegółowopobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka
7. Pole magnetyczne zadania z arkusza I 7.8 7.1 7.9 7.2 7.3 7.10 7.11 7.4 7.12 7.5 7.13 7.6 7.7 7. Pole magnetyczne - 1 - 7.14 7.25 7.15 7.26 7.16 7.17 7.18 7.19 7.20 7.21 7.27 Kwadratową ramkę (rys.)
Bardziej szczegółowoWykład FIZYKA II. 3. Magnetostatyka. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 3. Magnetostatyka Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ POLE MAGNETYCZNE Elektryczność zaobserwowana została
Bardziej szczegółowoMECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ
Bardziej szczegółowoMateriały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Siła Coulomba. F q q = k r 1 = 1 4πεε 0 q q r 1. Pole elektrostatyczne. To przestrzeń, w której na ładunek
Bardziej szczegółowoEgzamin z fizyki Informatyka Stosowana
Egzamin z fizyki Informatyka Stosowana 1) Dwie kulki odległe od siebie o d=8m wystrzelono w tym samym momencie czasu z prędkościami v 1 =4m/s i v 2 =8m/s, jak pokazano na rysunku. v 1 8 m v 2 α a) kulka
Bardziej szczegółowo4.1.1 Elektryzowanie ciał. Zasada zachowania ładunku
Rozdział 4 Pole elektryczne 4.1 Ładunki elektryczne 4.1.1 Elektryzowanie ciał. Zasada zachowania ładunku W niniejszym rozdziale zostaną przedstawione wybrane zagadnienia elektrostatyki. Elektrostatyka
Bardziej szczegółowoPodstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:
Dynamika Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: mamy ciało (zachowujące się jak punkt materialny) o znanych właściwościach (masa, ładunek itd.),
Bardziej szczegółowoPojemność elektryczna
Pojemność elektryczna Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Pojemność elektryczna Umieśćmy na pewnym
Bardziej szczegółowoPojemność elektryczna, Kondensatory Energia elektryczna
Pojemność elektryczna Pojemność elektryczna, Kondensatory Energia elektryczna 1 Pojemność elektryczna - kondensatory Kondensator : dwa przewodniki oddzielone izolatorem zwykle naładowane ładunkami o przeciwnych
Bardziej szczegółowoMateriały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Magnetyzm to zjawisko przyciągania kawałeczków stali przez magnesy. 2. Źródła pola magnetycznego. a. Magnesy
Bardziej szczegółowoWyznaczanie stosunku e/m elektronu
Ćwiczenie 27 Wyznaczanie stosunku e/m elektronu 27.1. Zasada ćwiczenia Elektrony przyspieszane w polu elektrycznym wpadają w pole magnetyczne, skierowane prostopadle do kierunku ich ruchu. Wyznacza się
Bardziej szczegółowoPOLE MAGNETYCZNE. Magnetyczna siła Lorentza Prawo Ampere a
POLE MAGNETYCZNE Magnetyczna siła Lorentza Prawo Ampere a 1 Doświadczenie Oersteda W 18 r. Hans C. Oersted odkrywa niezwykle interesujące zjawisko. Przepuszczając prąd elektryczny nad igiełką magnetyczną,
Bardziej szczegółowoR o z d z i a ł 7 POLE ELEKTRYCZNE
R o z d z i a ł 7 POLE ELEKTRYCZNE Zjawiska elektryczne towarzyszyły człowiekowi od samego początku jego pojawienia się. Wyładowania atmosferyczne napawały grozą, zaś zjawiska bioelektryczne i elektryzacja
Bardziej szczegółowoElektrodynamika Część 5 Pola magnetyczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 5 Pola magnetyczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 6 Pola magnetyczne w materii 3 6.1 Magnetyzacja.....................
Bardziej szczegółowoElektrostatyka, cz. 1
Podstawy elektromagnetyzmu Wykład 3 Elektrostatyka, cz. 1 Prawo Coulomba F=k q 1 q 2 r 2 1 q1 q 2 Notka historyczna: 1767: John Priestley - sugestia 1771: Henry Cavendish - eksperyment 1785: Charles Augustin
Bardziej szczegółowoLXVIII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA
ZAWODY II STOPNIA CZĘŚĆ TEORETYCZNA Za każde zadanie można otrzymać maksymalnie 0 punktów. Zadanie. Samochód rajdowy o masie m porusza się po płaskiej, poziomej nawierzchni. Współczynnik tarcia jego kół
Bardziej szczegółowoFIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY
FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY Każdy ruch jest zmienną położenia w czasie danego ciała lub układu ciał względem pewnego wybranego układu odniesienia. v= s/t RUCH
Bardziej szczegółowoRozdział 1. Pole elektryczne i elektrostatyka
Rozdział 1. Pole elektryczne i elektrostatyka 2018 Spis treści Ładunek elektryczny Prawo Coulomba Pole elektryczne Prawo Gaussa Zastosowanie prawa Gaussa: Izolowany przewodnik Zastosowanie prawa Gaussa:
Bardziej szczegółowoŁadunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych
Ładunek elektryczny Ładunek elektryczny jedna z własności cząstek elementarnych http://pl.wikipedia.org/wiki/%c5%81a dunek_elektryczny ładunki elektryczne o takich samych znakach się odpychają a o przeciwnych
Bardziej szczegółowocz.3 dr inż. Zbigniew Szklarski
Wykład : lektrostatyka cz.3 dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Przykłady Jaka musiałaby być powierzchnia okładki kondensatora płaskiego, aby, przy odległości
Bardziej szczegółowoPraca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne.
PRACA Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. Rozważmy sytuację, gdy w krótkim czasie działająca siła spowodowała przemieszczenie ciała o bardzo małą wielkość Δs Wtedy praca wykonana
Bardziej szczegółowoELEKTROSTATYKA. cos tg60 3
Włodzimierz Wolczyński 45 POWTÓRKA 7 ELEKTROSTATYKA Zadanie 1 Na nitkach nieprzewodzących o długościach 1 m wiszą dwie jednakowe metalowe kuleczki. Po naładowaniu obu ładunkiem jednoimiennym 1μC nitki
Bardziej szczegółowoWykład FIZYKA II. 4. Indukcja elektromagnetyczna. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 4. Indukcja elektromagnetyczna Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ PRAWO INDUKCJI FARADAYA SYMETRIA W FIZYCE
Bardziej szczegółowoWyznaczanie sił działających na przewodnik z prądem w polu magnetycznym
Ćwiczenie 11A Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym 11A.1. Zasada ćwiczenia W ćwiczeniu mierzy się przy pomocy wagi siłę elektrodynamiczną, działającą na odcinek przewodnika
Bardziej szczegółowoIV.4.4 Ruch w polach elektrycznym i magnetycznym. Siła Lorentza. Spektrometry magnetyczne
r. akad. 005/ 006 IV.4.4 Ruch w polach elektrycznym i magnetycznym. Siła Lorentza. Spektrometry magnetyczne Jan Królikowski Fizyka IBC 1 r. akad. 005/ 006 Pole elektryczne i magnetyczne Pole elektryczne
Bardziej szczegółowoWykład 5: Praca i Energia. Matematyka Stosowana
Wykład 5: Praca i Energia Matematyka Stosowana Praca w codziennym życiu Czynności w codziennym życiu: Podnosisz pudło z książkami Popychasz zepsute auto Co dokładnie robisz? Działasz z pewną siłą Ciało
Bardziej szczegółowoFizyka 2 Podstawy fizyki
Fizyka Podstawy fizyki dr hab. inż. Wydział Fizyki e-mail: wrobel.studia@gmail.com konsultacje: Gmach Mechatroniki, pok. 34; środa 13-14 i po umówieniu mailowym http://www.if.pw.edu.pl/~wrobel/simr_f_17.html
Bardziej szczegółowoFizyka 2 Wróbel Wojciech. w poprzednim odcinku
w poprzednim odcinku 1 Potencjał pola elektrycznego U ab ΔV W q b a F dx q b a F q dx b a (x)dx U gradv ab ΔV b a dv dv dv x,y,z i j k (x)dx dx dy dz Natężenie pola wskazuje kierunek w którym potencjał
Bardziej szczegółowoElektrostatyka. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Elektrostatyka Projekt współfinansowany przez Unię Europejską w ramach Europejskiego unduszu Społecznego Ładunek elektryczny Materia zbudowana jest z atomów. Atom składa się z dodatnie naładowanego jądra
Bardziej szczegółowoWyprowadzenie prawa Gaussa z prawa Coulomba
Wyprowadzenie prawa Gaussa z prawa Coulomba Natężenie pola elektrycznego ładunku punktowego q, umieszczonego w początku układu współrzędnych (czyli prawo Coulomba): E = Otoczmy ten ładunek dowolną powierzchnią
Bardziej szczegółowoFizyka 2 Wróbel Wojciech. w poprzednim odcinku
w poprzednim odcinku 1 Model przewodnictwa metali Elektrony przewodnictwa dla metalu tworzą tzw. gaz elektronowy Elektrony poruszają się chaotycznie (ruchy termiczne), ulegają zderzeniom z atomami sieci
Bardziej szczegółowo