Podział dziedzin: Teoria systemów, teoria sterowania: badanie zachowania w czasie systemów korzystając z modeli systemów

Wielkość: px
Rozpocząć pokaz od strony:

Download "Podział dziedzin: Teoria systemów, teoria sterowania: badanie zachowania w czasie systemów korzystając z modeli systemów"

Transkrypt

1 Podział dziedzin: Teoria systemów, teoria sterowania: badanie zachowania w czasie systemów korzystając z modeli systemów Analiza systemów, modelowanie: budowa modeli znajdujących stosowne zastosowanie Dwa zasadnicze podejścia do modelowania: Oparte na znanych teoriach: model jest wyprowadzany ze znanych praw fizyki, chemii itd. wykorzystując znane zasady matematyki (w skrócie: modelowanie teoretyczne, fenomenologiczne) Oparte na pomiarach: model jest budowany z wykorzystaniem mierzonych w systemie sygnałów (w skrócie modelowanie eksperymentalne, behawioralne, identyfikacja) 1

2 Modelowanie fenomenologiczne Modelowanie behawioralne Założenia upraszczające Wiedza aprioryczna o systemie Podstawowe działania w procesie modelowania Prawa: 1. równania równowagi 2. równania spójności 3. zależności wiążące Model fenomenologiczny (teoretyczny) Struktura Parametry Struktura znana Eksperyment Struktura nieznana Identyfikacja Parametryczna Nieparametryczna Model behawioralny (eksperymentalny) Parametryczny Struktura Parametry Nieparametryczny A ścieżka modelowania behawioralnego (eksperymentalnego) B ścieżka modelowania fenomenologicznego (teoretycznego) Upraszczanie Uproszczony model fenomenologiczny 1) Struktura 2) Parametry Przypadek B Porównanie Wynikowy model Przypadek A B/1 wykorzystanie działań ścieżki modelowania eksperymentalnego do określenia wartości parametrów A/1, A/2 wykorzystanie działań ścieżki modelowania teoretycznego do określenia struktury modelu 2

3 Działania upraszczające w modelowaniu fenomenologicznym Cząstkowe równania różniczkowe liniowe Linearyzac j a Cząstkowe równania różniczkowe nieliniowe Aproksymacja równaniami o parametrach skupionych Aproksymacja równaniami o parametrach skupionych Linearyzac j a Zwyczajne równania różniczkowe nieliniowe, rzędu n Zwyczajne równania różniczkowe liniowe, rzędu n Redukcja rzędu Zwyczajne równania różniczkowe liniowe, rzędu < n Redukcja rzędu Zwyczajne równania różniczkowe nieliniowe, rzędu < n Przyrównanie pochodnych do zera Równania algebraiczne liniowe Równania algebraiczne nieliniowe Przyrównanie pochodnych do zera Punkty wejścia procesu modelowania 3

4 Modelowanie fenomenologiczne Różne rodzaje modeli matematycznych Modelowanie behawioralne Prawa fizyczne znane Parametry znane Prawa fizyczne znane Parametry nieznane Sygnały mierzalne Reguły fizyczne znane Struktura modelu nieznana Parametry nieznane Sygnały mierzalne Sygnały wejścia/wyjścia mierzalne Założenie struktury modelu Liniowe/nieliniowe równania różniczkowe Równania różniczkowe z estymacją parametrów Modele neuronowo/rozmyte z estymacją parametrów Modele odpowiedzi impulsowej (transmitancje) Sieci neuronowe 4

5 Cechy modeli fenomenologicznych i behawioralnych Modelowanie teoretyczne Struktura modelu wynika z praw natury Możliwe modelowanie zachowań w relacji wejście/wyjście jak i zachowań wewnętrznych (stanu) Parametry modeli są dane jako funkcje własności systemu Model jest ważny dla całej klasy procesów rozważanego typu i dla różnych warunków operacyjnych Parametry modelu nie są znane dokładnie Model może być budowany dla systemów nie istniejących Modelowanie eksperymentalne Struktura modelu musi być założona Tylko zachowania w relacji wejście/wyjście mogą być identyfikowane Parametry modeli są tylko liczbami, w ogólności nie są znane związki z własnościami systemu Model jest ważny tylko dla badanego systemu i w przyjętych granicach warunków operacyjnych Parametry modelu są bardziej dokładne dla badanego systemu i przyjętych warunków operacyjnych Model może być identyfikowany tylko dla istniejącego systemu 5

6 Cechy modeli fenomenologicznych i behawioralnych c.d. Modelowanie teoretyczne Wewnętrzne zachowanie systemu musi być znane i opisywalne matematyczne Modelowanie jest zwykłe przewlekłym procesem zajmującym dużo czasu Model może być złożony i szczegółowy Modelowanie eksperymentalne Metody identyfikacji są niezależne od badanego systemu i mogą zatem być stosowane do wielu różnych systemów Modelowanie jest szybkim procesem, jeżeli istnieją stosowne metody identyfikacji Rozmiar modelu może być dostosowany do obszaru zastosowania 6

7 Modele dynamiczne typu white box, czyli modele fenomenologiczne Fakt: prawie każdy system rzeczywisty jest systemem dynamicznym Przypadki, kiedy cele modelowania wymagają budowy modeli dynamicznych: chcemy badać w oparciu o model stany przejściowe (nieustalone) systemu; chcemy przeprowadzać w oparciu o model analizę stabilności, obserwowalności, sterowalności; chcemy generować sterowania systemem w oparciu o predykcję wyjść systemu (sterowanie predykcyjne) 7

8 Propozycja kroków budowy modelu dynamicznego Krok I: Dokładne określenie systemu, który ma być modelowany i jego wyodrębnienie z otoczenia Krok II: Obmyślenie idealizowanej reprezentacji systemu, której właściwości będą w dostatecznym stopniu zgodne w zakresie interesujących nas cech (wynikających m. in. z celów modelowania) z właściwościami systemu rzeczywistego Krok III: Budowa modelu matematycznego, który będzie opisywał idealizowaną reprezentację systemu 8

9 Krok I Wyodrębnienie obiektu Wyodrębnienie obiektu wyraża się wyborem wielkości wejściowych tych wielkości, którymi otoczenie oddziałuje na obiekt oraz wielkości wyjściowych tych wielkości, którymi obiekt oddziałuje na otoczenie 9

10 Krok II Idealizowana reprezentacja Pod pojęciem idealizowanej reprezentacji rozumiemy utworzony w myśli system, który odpowiada rzeczywistemu pod względem jego istotnych cech wynikających z celów modelowania, ale jest prostszy (idealniejszy) i dlatego łatwiej poddający się analizie Idealizowana reprezentacja obiektu powstaje poprzez przyjęcie szeregu założeń, które w modelowanym obiekcie rzeczywistym są spełnione w określonym stopniu 10

11 Krok III Budowa modelu (struktury) w oparciu o: (a) Wykorzystanie praw zachowania lub innych podstawowych praw o charakterze bilansowym (np. prawa Kirchhoff a, Newtona, zachowania masy, itd..) (b) zasadę najmniejszego działania, zwaną często zasadą Hamiltona 11

12 Wyprowadzenie równań modelu poprzedzamy: właściwym wyborem zmiennych, które będą opisywać chwilowy stan systemu Zmienne modelu dogodnie jest podzielić na zmienne: przepływu, naporu Zmienne przepływu są zmiennymi systemu, które wyrażają intensywność przepływu określonej wielkości przez element systemu, bądź szybkość zmian w czasie określonej wielkości Zmienne naporu są zmiennymi systemu, które są miarą różnicy stanów na dwóch końcach elementu systemu, wyrażają napór jakiemu poddany jest element 12

13 Centralne zagadnienie wyprowadzenia równań dynamiki Sformułowanie zależności (równań) wyrażających warunki równowagi, poprzez podanie bilansów wielkości właściwych dla rozważanego systemu, które muszą zachodzić dla całego systemu i jego podsystemów lub zależności (równań) wyrażających warunki spójności dynamiki, które muszą zachodzić pomiędzy elementami systemu ze względu na sposób w jaki elementy te łączą się ze sobą 13

14 Zależności równowagi są zawsze zależnościami pomiędzy zmiennymi przepływu i nazywane są czasem zależnościami dla węzłów lub zależnościami ciągłości (I prawo Kirchhoff a, równanie ciągłości strugi, równanie sił w węźle,...) Zależności spójności są zawsze zależnościami pomiędzy zmiennymi spadku (II prawo Kirchhoff a, spadek ciśnienia na połączonych kolejno odcinkach rurociągu,...) 14

15 Po wyprowadzeniu równań wynikających z praw zachowania rozwijamy (uszczegóławiamy) je przez uwzględnienie w nich zależności wiążących wielkości związane z poszczególnymi elementami systemu Zależności wiążące są zależnościami pomiędzy zmiennymi przepływu i spadku dla każdego poszczególnego elementu systemu (np., u i...) R Uwzględniamy również - przyjęte założenia - występujące w systemie tożsamości 15

16 Systematyczny porządek: 1) wybór zmiennych; 2) zestawienie równań równowagi lub spójności; 3) uwzględnienie zależności wiążących, założeń, tożsamości a wynikowe równania zestawiamy w układ, w którym pozostawiamy jedynie wybrane przez nas zmienne niezależne i zależne 16

17 Przykłady modelowania fenomenologicznego (teoretycznego) Zawory regulacyjne Pomiar poziomu - Pole powierzchni przekroju obydwu zbiorników A Zbiornik L Zbiornik R - Idealne mieszanie w zbiornikach Mieszadło Pomiar temperatury Pole przekroju otwarcia zaworu A v 17

18 - Równania układu pomiarowego k h, k t wzmocnienia przetworników pomiarowych - Obydwa zawory mają takie same charakterystyki przepływu i przyjmujemy, że k a współczynniki przepływu - Prawo zachowania masy dla zbiorników L i R Q w 18

19 - Energia cieplna zgromadzona w objętości zbiorników T 0 - temperatura odniesienia, możemy przyjąć T 0 = 0, wówczas ρ, c odpowiednio gęstość i ciepło właściwe wody - Dla przepływu przez kryzę otwór przyjmiemy, że słuszna jest zależność pierwiastkowa P - spadek ciśnienia na kryzie otworze, C d - stały współczynnik strat, A o pole powierzchni kryzy - otworu 19

20 - Ciśnienie hydrostatyczne cieczy na poziomie H poniżej powierzchni P a - ciśnienie atmosferyczne - Wypływ ze zbiornika R gdzie - Przepływ między zbiornikami L i R przy założeniu: H 1 > H 2 20

21 - Zasada zachowania energii dla zbiornika L i R - Dzieląc przez ρc i różniczkując - Podstawiając Q w oraz 21

22 Całościowy model: Q w 22

23 Schemat blokowy 23

24 Zmienne modelu: - Naturalny wybór zmiennych stanu wyjścia integratorów - Zakłócenia pole powierzchni otworu zaworu wypływowego ze zbiornika R, temperatury wody dopływającej - Sterowania napięcia siłowników zaworów dopływów do zbiornika R Zmienne stanu: Zmienne sterowania: Zmienne zakłócenia: Zmienne wyjścia: y t y y 1 2 H T

25 Równania stanu: Równania wyjścia: 25

26 Równania stanu nieliniowe: Linearyzacja w otoczeniu stacjonarnego punktu pracy: Dla naszego przykładu: 4 równania 9 zmiennych! 26

27 Jeżeli przyjąć np. wartości zmiennych sterowania i zmiennych zakłócenia Sterowania mogą zmieniać się w zakresie 0 10 V; Przyjmijmy: u u V Przyjmijmy: T w0 T c0 60C 30C Otrzymamy: 27

28 - Linearyzacja zmienne przyrostowe w otoczeniu stacjonarnego punktu pracy: - Linearyzacja rozwinięcie w szereg Taylor a w otoczeniu stacjonarnego punktu pracy: 28

29 - Linearyzacja jakobiany w stacjonarnym punkcie pracy równania stanu: 29

30 - Linearyzacja zlinearyzowane równanie stanu - Linearyzacja jakobiany w stacjonarnym punkcie pracy równania wyjścia - Linearyzacja zlinearyzowane równanie wyjścia 30

31 Dla naszego przykładu 31

32 Dla danych 32

33 Otrzymamy 33

34 Zlinearyzowany model przestrzeni stanu Ogólny schemat blokowy liniowego modelu przestrzeni stanu - ciągłego 34

35 Modele liniowe modele przestrzeni stanu z transmitancji Postać kanoniczna sterowalności (sterownika, regulatora) Transmitancja dana w postaci - wykonujemy pierwszy krok dzielenia wielomianów licznika i mianownika transmitancji - wprowadzamy zmienną pomocniczą 35

36 otrzymujemy - definiujemy zmienne stanu w dziedzinie zmiennej s - mnożymy każde z definicyjnych wyrażeń przez s i podstawiamy zmienne stanu w prawej stronie wyrażeń 36

37 - wykonujemy odwrotne przekształcenie Laplace a ostatnich wyrażeń i wyrażenia na s n V(s) - równanie stanu w postaci macierzowej 37

38 - wykonujemy odwrotne przekształcenie Laplace a na równaniu otrzymujemy - równanie wyjścia Uwagi: - terminologiczna: stopień licznika transmitancji = stopień mianownika transmitancji, mówimy transmitancja jest właściwa, system dynamiczny jest właściwy - terminologiczna: stopień licznika transmitancji < stopień mianownika transmitancji, mówimy transmitancja jest ściśle właściwa, system dynamiczny jest ściśle właściwy 38

39 Uwagi c.d.: - macierz D bezpośredniego sterowania pojawia się w modelu przestrzeni stanu tylko dla systemów właściwych; dla systemów ściśle właściwych macierz D nie występuje w modelu przestrzeni stanu - postać kanoniczna sterowalności jest bardzo efektywna w sensie liczby elementów niezerowych macierzy modelu - poza zerami i jedynkami elementy macierzy są takie same jak elementy transmitancji 39

40 Schemat blokowy postaci kanonicznej sterowalności systemu SISO 40

41 Przykład silnik prądu stałego Transmitancja w torze droga kątowa - napięcie Dla danych 41

42 Schemat blokowy postaci kanonicznej sterowalności Natura fizyczna zmiennych stanu w przykładzie? Odpowiedź - jak powstawał model silnika 42

43 Przykład 3 model silnika PS z obciążeniem inercyjnym przez elastyczny wał L indukcyjnoscobwodu twornika R rezys tan cja obwodu twornika J J m l moment bezwladnosci twornika moment bezwladnosci obciazenia u napiecie obwodu twornika i prad obwodu twornika polozenie katowe twornika m polozenie katowe obciazenia l k wspolczynnik sprezystosci polaczenia elastycznego b wspolczynnik tlumienia lepkiego polaczenia elastycznego 43

44 - z II zasady dynamiki Newtona Konwencja: T a moment obrotowy napedowy K b m a stala elektromechaniczna momentu napedowego wspolczynnik tarcia lepkiego lozysk twornika T T k b moment obrotowy sprezystosci walu moment obrotowy tlumienia lepkiego b l wspolczynnik tarcia lepkiego lozysk obciazenia - z II prawa Kirchhoff a lub k e stala mechanoelektryczna indukowania sily przeciwelektromotorycznej twornika 44

45 Schemat blokowy analogowy modelu silnika PS 1 wejście: ut 1 wyjście: l t i t t 5 zmiennych stanu:,,,, m m t l t l t 45

46 Zmienne modelu: - zmienne stanu - zmienna wyjścia Równania stanu: x y T i x x x x x T m T l x 4 m l l x 2 46

47 Równania stanu w postaci macierzowej: Równanie wyjścia: y x 4 Równania wyjścia w postaci macierzowej: 47

48 Przykład 4 model silnika PS z obciążeniem inercyjnym przez sztywny wał Teraz Schemat blokowy analogowy modelu silnika PS 48

49 Zmienne modelu: - zmienne stanu - zmienna wyjścia y x T i x x x T Równania stanu w postaci macierzowej: Równanie wyjścia: x 2 l y x 2 Równania wyjścia w postaci macierzowej: 49

50 Transmitancja: 1 Ls 1 Js 1 s K a Ls R Js 1 bb 1 s 50

51 K Ls RJs b a b 1 s K Ls RJs bb Kake a 1 s U s Ka 1 Ka 2 s Ls RJs b K k s s LJs Lb RJ s Rb K k b a e b b a e 51

52 Przykład 5 model małego silnika PS z obciążeniem inercyjnym przez sztywny wał Model podsystemu elektrycznego Model podsystemu mechanicznego bez zmian Zmienne modelu: - zmienne stanu - zmienna wyjścia y x 1 52

53 Schemat blokowy analogowy modelu silnika PS Równania stanu w postaci macierzowej: Równania wyjścia w postaci macierzowej: 53

54 Postać kanoniczna obserwowalności Transmitancja dana w postaci - wykonujemy pierwszy krok dzielenia wielomianów licznika i mianownika transmitancji - wprowadzamy zmienną pomocniczą W s s B A s U s 54

55 otrzymujemy - definiujemy zmienne stanu w dziedzinie zmiennej s 55

56 - wykonujemy odwrotne przekształcenie Laplace a dla ostatnich zależności - mnożymy przez s - bierzemy pod uwagę otrzymujemy A sw s BsU s 56

57 - równanie stanu w postaci macierzowej - równanie wyjścia w dziedzinie s stąd - równanie wyjścia w postaci macierzowej 57

58 Schemat blokowy postaci kanonicznej obserwowalności systemu SISO 58

59 59 Przekształcenia podobieństwa gdzie, P nieosobliwa macierz stałych (liczbowa) o wymiarze nxn k k k, k k 1 k D D D D u D x C y u B x A x Korzystając z przekształcenia podobieństwa możemy znaleźć model systemu wyrażony z użyciem nowych zmiennych stanu Możemy napisać: k k k, k k 1 k D 1 D D 1 D 1 u D z P C y u B z P A z P Mnożąc pierwsze równania lewostronnie przez P: k k k, k k 1 k D 1 D D 1 D u D z P C y u PB z P PA z

60 Nowa postać: z k 1 A zk B uk, yk C zk D uk Dt Dt Dt Dt gdzie, A t PAP 1, A Dt PA D P 1 B t PB, B Dt PB D C t CP 1, C Dt C D P 1 D t D, D Dt D D Jedno ze szczególnych przekształceń podobieństwa związane z wartościami własnymi, wektorami własnymi macierzy A (lub A D ) 60

61 Równanie charakterystyczne dla modelu systemu po transformacji podobieństwa Wniosek: macierze A i A t mają takie same wartości własne Macierze tranzycji a przekształcenia podobieństwa: - system ciągły: 61

62 - system dyskretny: Dt k 1 k k A PA P PA P PA P PA P Dt D D D D PA k D P 1 P Dt 1 kp 62

63 Przypadek 1: macierz A ma n różnych wartości własnych rzeczywistych n różnym wartościom własnym odpowiada n liniowo niezależnych wektorów własnych v i Związek wartości własnych i wektorów własnych lub 63

64 Oznaczając diagonalną macierz wartości własnych przez biorąc pod uwagę: macierz A ma n różnych wartości własnych Wniosek: macierz A może być transformowana do postaci diagonalnej za pomocą transformacji podobieństwa czyli 64

65 Model systemu po transformacji z k 1 zk B uk, yk C zk D uk Dt Dt Dt gdzie, M 1 AM, M 1 A D M B t M 1 B, B Dt M 1 B D C t CM, C Dt C D M D t D, D Dt D D 65

66 Model systemu po transformacji dla systemu ciągłego dla i tej zmiennej stanu! zmienne stanu niezależne od siebie (odsprzężone) 66

67 Przypadek 2: macierz A ma wielokrotne wartości własne rzeczywiste Nie można zagwarantować liniowej niezależności wektorów własnych i wówczas macierz M może być osobliwa Postępowanie Jordana dla znalezienia n liniowo niezależnych wektorów własnych Niech wartość własna jest wielokrotna razy - definiujemy wektory rekursywnie przyjmując Tak znalezione wektory własne są nazywane uogólnionymi wektorami własnymi i są liniowo niezależne 67

68 - uogólnione wektory własne tworzą zbiór liniowo niezależnych wektorów gdzie, l jest liczbą różnych wartości własnych oraz - zachodzi gdzie, Macierz blokowo-diagonalna, macierz Jordana Blok (klatka) Jordana 68

69 Przypadek 3: macierz A ma wartości własne zespolone Załóżmy, bez utraty ogólności Odpowiadające wektory własne, tez zespolone sprzężone Macierz transformacji Postać kanoniczna Jordana po transformacji 69

70 Przykład 6 Dany jest model systemu y 0 0 1x Znaleźć model systemu wykorzystując macierz diagonalizującą wektorów własnych Równanie charakterystyczne 70

71 Wartości własne Wektor własny dla Stąd i 71

72 Rozwiązanie np. Podobnie Macierz diagonalizująca i odwrotna do niej 72

73 Przekształcenie podobieństwa daje nowy model przestrzeni stanu gdzie, Związki pomiędzy zmiennymi stanu Sprawdzić, że zmiana zmiennych stanu nie prowadzi do zmiany transmitancji 73

74 Przykład 7 model małego silnika PS Korzystając z środowiska Matlab/Simulink znajdziemy wartości własne, wektory własne i macierz diagonalizującej transformacji podobieństwa 74

75 75

76 Macierze modelu po diagonalizującej transformacji podobieństwa 76

77 Przykład 8 Wartości własne Dwukrotna wartość własna 77

78 Ponieważ istnieje tylko jeden wektor własny związany z Korzystając a Matlab a możemy policzyć niezależne wektory własne Uogólniony wektor własny 78

79 Macierz transformacji Macierze modelu po diagonalizującej transformacji podobieństwa 79

80 Przykład 9 Wartości własne Korzystając a Matlab a możemy policzyć niezależne wektory własne 80

81 Macierz transformacji Macierze modelu po diagonalizującej transformacji podobieństwa 81

82 Dziękuję koniec materiału prezentowanego podczas wykładu 82

Sposoby modelowania układów dynamicznych. Pytania

Sposoby modelowania układów dynamicznych. Pytania Sposoby modelowania układów dynamicznych Co to jest model dynamiczny? PAScz4 Modelowanie, analiza i synteza układów automatyki samochodowej równania różniczkowe, różnicowe, równania równowagi sił, momentów,

Bardziej szczegółowo

Procedura modelowania matematycznego

Procedura modelowania matematycznego Procedura modelowania matematycznego System fizyczny Model fizyczny Założenia Uproszczenia Model matematyczny Analiza matematyczna Symulacja komputerowa Rozwiązanie w postaci modelu odpowiedzi Poszerzenie

Bardziej szczegółowo

przy warunkach początkowych: 0 = 0, 0 = 0

przy warunkach początkowych: 0 = 0, 0 = 0 MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych,

Bardziej szczegółowo

Transmitancje układów ciągłych

Transmitancje układów ciągłych Transmitancja operatorowa, podstawowe człony liniowe Transmitancja operatorowa (funkcja przejścia, G(s)) stosunek transformaty Laplace'a sygnału wyjściowego do transformaty Laplace'a sygnału wejściowego

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - podstawy matematyczne Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe, n.p. turbulencje, wiele

Bardziej szczegółowo

Opis systemów dynamicznych w przestrzeni stanu. Wojciech Kurek , Gdańsk

Opis systemów dynamicznych w przestrzeni stanu. Wojciech Kurek , Gdańsk Opis systemów dynamicznych Mieczysław Brdyś 27.09.2010, Gdańsk Rozważmy układ RC przedstawiony na rysunku poniżej: wejscie u(t) R C wyjście y(t)=vc(t) Niech u(t) = 2 + sin(t) dla t t 0 gdzie t 0 to chwila

Bardziej szczegółowo

Tematyka egzaminu z Podstaw sterowania

Tematyka egzaminu z Podstaw sterowania Tematyka egzaminu z Podstaw sterowania Rafał Trójniak 6 września 2009 Spis treści 1 Rozwiązane tematy 1 1.1 Napisać równanie różniczkowe dla zbiornika z odpływem grawitacyjnym...............................

Bardziej szczegółowo

Przekształcanie równań stanu do postaci kanonicznej diagonalnej

Przekształcanie równań stanu do postaci kanonicznej diagonalnej Przekształcanie równań stanu do postaci kanonicznej diagonalnej Przygotowanie: Dariusz Pazderski Liniowe przekształcenie równania stanu Rozważmy liniowe równanie stanu i równanie wyjścia układu niesingularnego

Bardziej szczegółowo

PODSTAWY AUTOMATYKI. Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki.

PODSTAWY AUTOMATYKI. Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki. WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki. Materiały pomocnicze do

Bardziej szczegółowo

Systemy. Krzysztof Patan

Systemy. Krzysztof Patan Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej

Bardziej szczegółowo

Podstawy Automatyki. Wykład 7 - obiekty regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 7 - obiekty regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 7 - obiekty regulacji Instytut Automatyki i Robotyki Warszawa, 2018 Obiekty regulacji Obiekt regulacji Obiektem regulacji nazywamy proces technologiczny podlegający oddziaływaniu zakłóceń, zachodzący

Bardziej szczegółowo

Przekształcanie schematów blokowych. Podczas ćwiczenia poruszane będą następujące zagadnienia:

Przekształcanie schematów blokowych. Podczas ćwiczenia poruszane będą następujące zagadnienia: Warszawa 2017 1 Cel ćwiczenia rachunkowego Podczas ćwiczenia poruszane będą następujące zagadnienia: zasady budowy schematów blokowych układów regulacji automatycznej na podstawie równań operatorowych;

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi

Bardziej szczegółowo

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24) Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA WYDZIAŁ GÓRNICTWA I GEOLOGII. Roman Kaula

POLITECHNIKA ŚLĄSKA WYDZIAŁ GÓRNICTWA I GEOLOGII. Roman Kaula POLITECHNIKA ŚLĄSKA WYDZIAŁ GÓRNICTWA I GEOLOGII Roman Kaula ZASTOSOWANIE NOWOCZESNYCH NARZĘDZI INŻYNIERSKICH LabVIEW oraz MATLAB/Simulink DO MODELOWANIA UKŁADÓW DYNAMICZNYCH PLAN WYKŁADU Wprowadzenie

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podstawy Automatyki Przygotowanie zadania sterowania do analizy i syntezy zestawienie schematu blokowego

Bardziej szczegółowo

1. Transformata Laplace a przypomnienie

1. Transformata Laplace a przypomnienie Transformata Laplace a - przypomnienie, transmitancja operatorowa, schematy blokowe, wprowadzenie do pakietu Matlab/Scilab i Simulink, regulatory PID - transmitancja, przykłady modeli matematycznych wybranych

Bardziej szczegółowo

Analityczne metody detekcji uszkodzeń

Analityczne metody detekcji uszkodzeń Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 5 Model procesu Rozważmy czasowo-dyskretny model liniowy gdzie: k dyskretny czas, x(k) R n wektor stanu, x(k + 1) = Ax(k)

Bardziej szczegółowo

Automatyka i sterowania

Automatyka i sterowania Automatyka i sterowania Układy regulacji Regulacja i sterowanie Przykłady regulacji i sterowania Funkcje realizowane przez automatykę: regulacja sterowanie zabezpieczenie optymalizacja Automatyka i sterowanie

Bardziej szczegółowo

Mechatronika i inteligentne systemy produkcyjne. Modelowanie systemów mechatronicznych Platformy przetwarzania danych

Mechatronika i inteligentne systemy produkcyjne. Modelowanie systemów mechatronicznych Platformy przetwarzania danych Mechatronika i inteligentne systemy produkcyjne Modelowanie systemów mechatronicznych Platformy przetwarzania danych 1 Sterowanie procesem oparte na jego modelu u 1 (t) System rzeczywisty x(t) y(t) Tworzenie

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - modelowanie matematyczne układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe,

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - modelowanie matematyczne układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2019 Wstęp Obiekty (procesy) rzeczywiste, a co za tym idzie układy regulacji, mają właściwości nieliniowe,

Bardziej szczegółowo

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach. WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

Bardziej szczegółowo

Stabilność II Metody Lapunowa badania stabilności

Stabilność II Metody Lapunowa badania stabilności Metody Lapunowa badania stabilności Interesuje nas w sposób szczególny system: Wprowadzamy dla niego pojęcia: - stabilności wewnętrznej - odnosi się do zachowania się systemu przy zerowym wejściu, czyli

Bardziej szczegółowo

Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy

Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy Automatyka i robotyka ETP2005L Laboratorium semestr zimowy 2017-2018 Liniowe człony automatyki x(t) wymuszenie CZŁON (element) OBIEKT AUTOMATYKI y(t) odpowiedź Modelowanie matematyczne obiektów automatyki

Bardziej szczegółowo

Teoria sterowania - studia niestacjonarne AiR 2 stopień

Teoria sterowania - studia niestacjonarne AiR 2 stopień Teoria sterowania - studia niestacjonarne AiR stopień Kazimierz Duzinkiewicz, dr hab. Inż. Katedra Inżynerii Systemów Sterowania Wykład 4-06/07 Transmitancja widmowa i charakterystyki częstotliwościowe

Bardziej szczegółowo

jest rozwiązaniem równania jednorodnego oraz dla pewnego to jest toŝsamościowo równe zeru.

jest rozwiązaniem równania jednorodnego oraz dla pewnego to jest toŝsamościowo równe zeru. Układy liniowe Układ liniowy pierwszego rzędu, niejednorodny. gdzie Jeśli to układ nazywamy jednorodnym Pamiętamy, Ŝe kaŝde równanie liniowe rzędu m moŝe zostać sprowadzone do układu n równań liniowych

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e

Bardziej szczegółowo

Automatyka i Regulacja Automatyczna, PRz, r.a. 2011/2012, Żabiński Tomasz

Automatyka i Regulacja Automatyczna, PRz, r.a. 2011/2012, Żabiński Tomasz Wykład 8 Transformata Laplace a - przypomnienie, transmitancja operatorowa, scematy bloko, wprowadzenie do pakietu Matlab/Scilab, regulatory PID - transmitancja, modele matematyczne wybranyc obiektów regulacji,

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

, (2.1) A powierzchnia przekroju zbiornika, Równanie bilansu masy cieczy w zbiorniku ma postać. , gdzie: q i dopływ,

, (2.1) A powierzchnia przekroju zbiornika, Równanie bilansu masy cieczy w zbiorniku ma postać. , gdzie: q i dopływ, 2. MODELE OBIEKTÓW STEROWANIA Równania bilansowe Bilans masy Bilans ten dotyczy wszelkich obiektów z przepływem cieczy, gazów, par, materiałów sypkich, takich jak zbiorniki, mieszalniki, kotły, reaktory

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - matematyczne modelowanie układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - matematyczne modelowanie układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - matematyczne modelowanie układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2019 Wstęp Obiekty (procesy) rzeczywiste, a co za tym idzie układy regulacji, mają właściwości nieliniowe,

Bardziej szczegółowo

1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI

1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI Podstawy automatyki / Józef Lisowski. Gdynia, 2015 Spis treści PRZEDMOWA 9 WSTĘP 11 1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI 17 1.1. Automatyka, sterowanie i regulacja 17 1.2. Obiekt regulacji

Bardziej szczegółowo

ELEMENTY AUTOMATYKI PRACA W PROGRAMIE SIMULINK 2013

ELEMENTY AUTOMATYKI PRACA W PROGRAMIE SIMULINK 2013 SIMULINK część pakietu numerycznego MATLAB (firmy MathWorks) służąca do przeprowadzania symulacji komputerowych. Atutem programu jest interfejs graficzny (budowanie układów na bazie logicznie połączonych

Bardziej szczegółowo

PODSTAWOWE CZŁONY DYNAMICZNE

PODSTAWOWE CZŁONY DYNAMICZNE PODSTAWOWE CZŁONY DYNAMICZNE Człon podstawowy jest to element przetwarzający wprowadzony do niego sygnał wejściowy x(t) na sygnał wyjściowy y(t) w sposób elementarny. Przetwarzanie elementarne oznacza,

Bardziej szczegółowo

Wprowadzenie do technik regulacji automatycznej. prof nzw. dr hab. inż. Krzysztof Patan

Wprowadzenie do technik regulacji automatycznej. prof nzw. dr hab. inż. Krzysztof Patan Wprowadzenie do technik regulacji automatycznej prof nzw. dr hab. inż. Krzysztof Patan Czym jest AUTOMATYKA? Automatyka to dziedzina nauki i techniki zajmująca się teorią i praktycznym zastosowaniem urządzeń

Bardziej szczegółowo

Filtr Kalmana. Struktury i Algorytmy Sterowania Wykład 1-2. prof. dr hab. inż. Mieczysław A. Brdyś mgr inż. Tomasz Zubowicz

Filtr Kalmana. Struktury i Algorytmy Sterowania Wykład 1-2. prof. dr hab. inż. Mieczysław A. Brdyś mgr inż. Tomasz Zubowicz Filtr Kalmana Struktury i Algorytmy Sterowania Wykład 1-2 prof. dr hab. inż. Mieczysław A. Brdyś mgr inż. Tomasz Zubowicz Politechnika Gdańska, Wydział Elektortechniki i Automatyki 2013-10-09, Gdańsk Założenia

Bardziej szczegółowo

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi

Bardziej szczegółowo

Temat /6/: DYNAMIKA UKŁADÓW HYDRAULICZNYCH. WIADOMOŚCI PODSTAWOWE.

Temat /6/: DYNAMIKA UKŁADÓW HYDRAULICZNYCH. WIADOMOŚCI PODSTAWOWE. 1 Temat /6/: DYNAMIKA UKŁADÓW HYDRAULICZNYCH. WIADOMOŚCI PODSTAWOWE. Celem ćwiczenia jest doświadczalne określenie wskaźników charakteryzujących właściwości dynamiczne hydraulicznych układów sterujących

Bardziej szczegółowo

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Sterowanie ciągłe. Teoria sterowania układów jednowymiarowych

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Sterowanie ciągłe. Teoria sterowania układów jednowymiarowych Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Sterowanie ciągłe Teoria sterowania układów jednowymiarowych 1 Informacja o prowadzących zajęcia Studia stacjonarne rok II Automatyka i Robotyka

Bardziej szczegółowo

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi

Bardziej szczegółowo

Wykład 12 i 13 Macierz w postaci kanonicznej Jordana , 0 A 2

Wykład 12 i 13 Macierz w postaci kanonicznej Jordana , 0 A 2 Wykład 12 i 13 Macierz w postaci kanonicznej Jordana Niech A - macierz kwadratowa stopnia n Jak obliczyć np A 100? a 11 0 0 0 a 22 0 Jeśli A jest macierzą diagonalną tzn A =, to Ak = 0 0 a nn Niech B =

Bardziej szczegółowo

Badanie stabilności liniowych układów sterowania

Badanie stabilności liniowych układów sterowania Badanie stabilności liniowych układów sterowania ver. 26.2-6 (26-2-7 4:6). Badanie stabilności liniowych układów sterowania poprzez analizę równania charakterystycznego. Układ zamknięty liniowy i stacjonarny

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Procesy wykładniczego wzrostu i spadku (np populacja bakterii, rozpad radioaktywny, wymiana ciepła) można modelować równaniem

Bardziej szczegółowo

Wykład z Technologii Informacyjnych. Piotr Mika

Wykład z Technologii Informacyjnych. Piotr Mika Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły

Bardziej szczegółowo

Laboratorium. Hydrostatyczne Układy Napędowe

Laboratorium. Hydrostatyczne Układy Napędowe Laboratorium Hydrostatyczne Układy Napędowe Instrukcja do ćwiczenia nr Eksperymentalne wyznaczenie charakteru oporów w przewodach hydraulicznych opory liniowe Opracowanie: Z.Kudżma, P. Osiński J. Rutański,

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2018 Wstęp Stabilność O układzie możemy mówić, że jest stabilny jeżeli jego odpowiedź na wymuszenie (zakłócenie)

Bardziej szczegółowo

Inżynieria Systemów Dynamicznych (4)

Inżynieria Systemów Dynamicznych (4) Inżynieria Systemów Dynamicznych (4) liniowych (układów) Piotr Jacek Suchomski Katedra Systemów Automatyki WETI, Politechnika Gdańska 2 grudnia 2010 O czym będziemy mówili? 1 2 WE OKREŚLO 3 ASYMPTO 4 DYNAMICZ

Bardziej szczegółowo

Podstawy robotyki wykład VI. Dynamika manipulatora

Podstawy robotyki wykład VI. Dynamika manipulatora Podstawy robotyki Wykład VI Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Dynamika opisuje sposób zachowania się manipulatora poddanego wymuszeniu

Bardziej szczegółowo

Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transform

Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transform Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transformata Z. March 20, 2013 Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transformata Z. Sygnał i system Sygnał jest opisem

Bardziej szczegółowo

Plan wykładu. Własności statyczne i dynamiczne elementów automatyki:

Plan wykładu. Własności statyczne i dynamiczne elementów automatyki: Plan wykładu Własności statyczne i dynamiczne elementów automatyki: - charakterystyka statyczna elementu automatyki, - sygnały standardowe w automatyce: skok jednostkowy, impuls Diraca, sygnał o przebiegu

Bardziej szczegółowo

IX. MECHANIKA (FIZYKA) KWANTOWA

IX. MECHANIKA (FIZYKA) KWANTOWA IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji

Bardziej szczegółowo

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie

Bardziej szczegółowo

Wykaz ważniejszych oznaczeń Podstawowe informacje o napędzie z silnikami bezszczotkowymi... 13

Wykaz ważniejszych oznaczeń Podstawowe informacje o napędzie z silnikami bezszczotkowymi... 13 Spis treści 3 Wykaz ważniejszych oznaczeń...9 Przedmowa... 12 1. Podstawowe informacje o napędzie z silnikami bezszczotkowymi... 13 1.1.. Zasada działania i klasyfikacja silników bezszczotkowych...14 1.2..

Bardziej szczegółowo

1. Podstawowe pojęcia

1. Podstawowe pojęcia 1. Podstawowe pojęcia Sterowanie optymalne obiektu polega na znajdowaniu najkorzystniejszej decyzji dotyczącej zamierzonego wpływu na obiekt przy zadanych ograniczeniach. Niech dany jest obiekt opisany

Bardziej szczegółowo

Obiekt. Obiekt sterowania obiekt, który realizuje proces (zaplanowany).

Obiekt. Obiekt sterowania obiekt, który realizuje proces (zaplanowany). SWB - Systemy wbudowane w układach sterowania - wykład 13 asz 1 Obiekt sterowania Wejście Obiekt Wyjście Obiekt sterowania obiekt, który realizuje proces (zaplanowany). Fizyczny obiekt (proces, urządzenie)

Bardziej szczegółowo

SPIS TREŚCI PRZEDMOWA WYKAZ WAŻNIEJSZYCH OZNACZEŃ 1. PODSTAWOWE INFORMACJE O NAPĘDZIE Z SILNIKAMI BEZSZCZOTKOWYMI 1.1. Zasada działania i

SPIS TREŚCI PRZEDMOWA WYKAZ WAŻNIEJSZYCH OZNACZEŃ 1. PODSTAWOWE INFORMACJE O NAPĘDZIE Z SILNIKAMI BEZSZCZOTKOWYMI 1.1. Zasada działania i SPIS TREŚCI PRZEDMOWA WYKAZ WAŻNIEJSZYCH OZNACZEŃ 1. PODSTAWOWE INFORMACJE O NAPĘDZIE Z SILNIKAMI BEZSZCZOTKOWYMI 1.1. Zasada działania i klasyfikacja silników bezszczotkowych 1.2. Moment elektromagnetyczny

Bardziej szczegółowo

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn Metody numeryczne Wykład 3 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Pojęcia podstawowe Algebra

Bardziej szczegółowo

MECHANIKA PŁYNÓW LABORATORIUM

MECHANIKA PŁYNÓW LABORATORIUM MECANIKA PŁYNÓW LABORATORIUM Ćwiczenie nr 4 Współpraca pompy z układem przewodów. Celem ćwiczenia jest sporządzenie charakterystyki pojedynczej pompy wirowej współpracującej z układem przewodów, przy różnych

Bardziej szczegółowo

Mechanika kwantowa Schrödingera

Mechanika kwantowa Schrödingera Fizyka 2 Wykład 2 1 Mechanika kwantowa Schrödingera Hipoteza de Broglie a wydawała się nie zgadzać z dynamiką Newtona. Mechanika kwantowa Schrödingera zawiera mechanikę kwantową jako przypadek graniczny

Bardziej szczegółowo

Układ regulacji ze sprzężeniem zwrotnym: - układ regulacji kaskadowej - układ regulacji stosunku

Układ regulacji ze sprzężeniem zwrotnym: - układ regulacji kaskadowej - układ regulacji stosunku Układ regulacji ze sprzężeniem zwrotnym: - układ regulacji kaskadowej - układ regulacji stosunku Przemysłowe Układy Sterowania PID Opracowanie: dr inż. Tomasz Rutkowski Katedra Inżynierii Systemów Sterowania

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 3 - Metodyka projektowania sterowania. Opis bilansowy Instytut Automatyki i Robotyki Warszawa, 2015 Metodyka projektowania sterowania Zrozumienie obiektu, możliwości, ograniczeń zapoznanie się z

Bardziej szczegółowo

Podstawy automatyki. Energetyka Sem. V Wykład 1. Sem /17 Hossein Ghaemi

Podstawy automatyki. Energetyka Sem. V Wykład 1. Sem /17 Hossein Ghaemi Podstawy automatyki Energetyka Sem. V Wykład 1 Sem. 1-2016/17 Hossein Ghaemi Hossein Ghaemi Katedra Automatyki i Energetyki Wydział Oceanotechniki i Okrętownictwa Politechnika Gdańska pok. 222A WOiO Tel.:

Bardziej szczegółowo

Przekształcenia całkowe. Wykład 1

Przekształcenia całkowe. Wykład 1 Przekształcenia całkowe Wykład 1 Przekształcenia całkowe Tematyka wykładów: 1. Liczby zespolone -wprowadzenie, - funkcja zespolona zmiennej rzeczywistej, - funkcja zespolona zmiennej zespolonej. 2. Przekształcenie

Bardziej szczegółowo

Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych

Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z metodą wyznaczania odpowiedzi skokowych oraz impulsowych podstawowych obiektów regulacji.

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz

Bardziej szczegółowo

Materiały pomocnicze do egzaminu Dynamika Systemów Elektromechanicznych

Materiały pomocnicze do egzaminu Dynamika Systemów Elektromechanicznych Materiały pomocnicze do egzaminu Dynamika Systemów Elektromechanicznych Studia Magisterskie IIgo stopnia Specjalności: PTiB, EiNE, APiAB, Rok I Opracował: dr hab. inż. Wiesław Jażdżynski, prof.nz.agh Kraków,

Bardziej szczegółowo

Wektory i wartości własne

Wektory i wartości własne Treść wykładu Podprzestrzenie niezmiennicze Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń

Bardziej szczegółowo

WYKŁAD PROF. DR HAB. INŻ. TADEUSZA KACZORKA

WYKŁAD PROF. DR HAB. INŻ. TADEUSZA KACZORKA W pracy tej zostaną przedstawione: - warunki konieczne i wystarczające cykliczności macierzy A normalności macierzy transmitancji T(s); - warunki istnienia i metody doboru sprzężeń zwrotnych od stanu tak,

Bardziej szczegółowo

Rys. 1 Otwarty układ regulacji

Rys. 1 Otwarty układ regulacji Automatyka zajmuje się sterowaniem, czyli celowym oddziaływaniem na obiekt, w taki sposób, aby uzyskać jego pożądane właściwości. Sterowanie często nazywa się regulacją. y zd wartość zadana u sygnał sterujący

Bardziej szczegółowo

Sterowanie napędów maszyn i robotów

Sterowanie napędów maszyn i robotów Sterowanie napędów maszyn i robotów dr inż. Jakub Możaryn Wykład 3 Instytut Automatyki i Robotyki Wydział Mechatroniki Politechnika Warszawska, 2014 Projekt współfinansowany przez Unię Europejską w ramach

Bardziej szczegółowo

Dynamika manipulatora. Robert Muszyński Janusz Jakubiak Instytut Cybernetyki Technicznej Politechnika Wrocławska. Podstawy robotyki wykład VI

Dynamika manipulatora. Robert Muszyński Janusz Jakubiak Instytut Cybernetyki Technicznej Politechnika Wrocławska. Podstawy robotyki wykład VI Podstawy robotyki Wykład VI Robert Muszyński Janusz Jakubiak Instytut Cybernetyki Technicznej Politechnika Wrocławska Dynamika opisuje sposób zachowania się manipulatora poddanego wymuszeniu w postaci

Bardziej szczegółowo

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki

Bardziej szczegółowo

Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka

Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka SPIS TREŚCI Przedmowa... 7 1. PODSTAWY MECHANIKI... 11 1.1. Pojęcia podstawowe... 11 1.2. Zasada d Alemberta... 18 1.3. Zasada prac

Bardziej szczegółowo

Wektory i wartości własne

Wektory i wartości własne Treść wykładu Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń W V nazywamy niezmienniczą

Bardziej szczegółowo

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26 Spis treści Zamiast wstępu... 11 1. Elementy teorii mnogości... 13 1.1. Algebra zbiorów... 13 1.2. Iloczyny kartezjańskie... 15 1.2.1. Potęgi kartezjańskie... 16 1.2.2. Relacje.... 17 1.2.3. Dwa szczególne

Bardziej szczegółowo

Własności wyznacznika

Własności wyznacznika Własności wyznacznika Rozwinięcie Laplace a względem i-tego wiersza: n det(a) = ( 1) i+j a ij M ij (A), j=1 gdzie M ij (A) to minor (i, j)-ty macierzy A, czyli wyznacznik macierzy uzyskanej z macierzy

Bardziej szczegółowo

PAiTM. materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż.

PAiTM. materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż. PAiTM materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż. Sebastian Korczak Poniższe materiały tylko dla studentów uczęszczających na zajęcia.

Bardziej szczegółowo

1 Pochodne wyższych rzędów

1 Pochodne wyższych rzędów 1 Pochodne wyższych rzędów Definicja 1.1 (Pochodne cząstkowe drugiego rzędu) Niech f będzie odwzorowaniem o wartościach w R m, określonym na zbiorze G R k. Załóżmy, że zbiór tych x G, dla których istnieje

Bardziej szczegółowo

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności

Bardziej szczegółowo

Analiza wymiarowa jest działem matematyki stosowanej, którego zadaniem jest wyznaczenie, poprawnej pod względem wymiarowym, postaci wzorów fizycznych.

Analiza wymiarowa jest działem matematyki stosowanej, którego zadaniem jest wyznaczenie, poprawnej pod względem wymiarowym, postaci wzorów fizycznych. Analiza wymiarowa Prof. dr hab. Małgorzata Jaros, prof. SGGW Analiza wymiarowa jest działem matematyki stosowanej, którego zadaniem jest wyznaczenie, poprawnej pod względem wymiarowym, postaci wzorów fizycznych.

Bardziej szczegółowo

MODELOWANIE I SYMULACJE SYSTEMÓW ELEKTROMECHATRONICZNYCH. dr inż. Michał MICHNA

MODELOWANIE I SYMULACJE SYSTEMÓW ELEKTROMECHATRONICZNYCH. dr inż. Michał MICHNA MODELOWANIE I SYMULACJE SYSTEMÓW ELEKTROMECHATRONICZNYCH dr inż. Michał MICHNA Harmonogram wykład, ćwiczenia E1 data kto temat 8 lut 15 lut MM Mechatronika/Systemy EM w 22 lut MM Modelowanie/Symulacja/Analiza

Bardziej szczegółowo

Termodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 12 Procesy transportu Janusz Brzychczyk, Instytut Fizyki UJ Zjawiska transportu Zjawiska transportu są typowymi procesami nieodwracalnymi zachodzącymi w przyrodzie. Zjawiska te polegają

Bardziej szczegółowo

Modelowanie i obliczenia techniczne. dr inż. Paweł Pełczyński

Modelowanie i obliczenia techniczne. dr inż. Paweł Pełczyński Modelowanie i obliczenia techniczne dr inż. Paweł Pełczyński ppelczynski@swspiz.pl Literatura Z. Fortuna, B. Macukow, J. Wąsowski: Metody numeryczne, WNT Warszawa, 2005. J. Awrejcewicz: Matematyczne modelowanie

Bardziej szczegółowo

INSTRUKCJA Regulacja PID, badanie stabilności układów automatyki

INSTRUKCJA Regulacja PID, badanie stabilności układów automatyki Opracowano na podstawie: INSTRUKCJA Regulacja PID, badanie stabilności układów automatyki 1. Kaczorek T.: Teoria sterowania, PWN, Warszawa 1977. 2. Węgrzyn S.: Podstawy automatyki, PWN, Warszawa 1980 3.

Bardziej szczegółowo

Automatyka i robotyka

Automatyka i robotyka Automatyka i robotyka Wykład 5 - Stabilność układów dynamicznych Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 43 Plan wykładu Wprowadzenie Stabilność modeli

Bardziej szczegółowo

Inteligentnych Systemów Sterowania

Inteligentnych Systemów Sterowania Laboratorium Inteligentnych Systemów Sterowania Mariusz Nowak Instytut Informatyki Politechnika Poznańska ver. 200.04-0 Poznań, 2009-200 Spis treści. Układ regulacji automatycznej z regulatorami klasycznymi

Bardziej szczegółowo

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k. Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy

Bardziej szczegółowo

Finanse i Rachunkowość studia niestacjonarne/stacjonarne Model Przepływów Międzygałęziowych

Finanse i Rachunkowość studia niestacjonarne/stacjonarne Model Przepływów Międzygałęziowych dr inż. Ryszard Rębowski 1 OPIS ZJAWISKA Finanse i Rachunkowość studia niestacjonarne/stacjonarne Model Przepływów Międzygałęziowych 8 listopada 2015 1 Opis zjawiska Będziemy obserwowali proces tworzenia

Bardziej szczegółowo

Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji

Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji Opracowanie: mgr inż. Krystian Łygas, inż. Wojciech Danilczuk Na podstawie materiałów Prof. dr hab.

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność - definicja 1 O układzie możemy mówić, że jest stabilny gdy wytrącony ze stanu równowagi

Bardziej szczegółowo

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9 Matematyka I Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9 Przykład z fizyki Rozpatrzmy szeregowe połączenie dwu elementów elektronicznych: opornika i diody półprzewodnikowej.

Bardziej szczegółowo

Dynamika układów podstawy analizy i symulacji. IV. Układy wielowymiarowe (MIMO)

Dynamika układów podstawy analizy i symulacji. IV. Układy wielowymiarowe (MIMO) 10. Układ równań różniczkowych 10.1. Wprowadzenie - układ równań stanu IV. Układy wielowymiarowe (MIMO 10.1.1. Obiekty SISO i MIMO Modele dynamiki układów analizowane w części III miały postać pojedynczego

Bardziej szczegółowo

Technika regulacji automatycznej

Technika regulacji automatycznej Technika regulacji automatycznej Wykład 1 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 30 Plan wykładu Podstawowe informacje Modele układów elektrycznych

Bardziej szczegółowo

Ćwiczenia nr 7. TEMATYKA: Krzywe Bézier a

Ćwiczenia nr 7. TEMATYKA: Krzywe Bézier a TEMATYKA: Krzywe Bézier a Ćwiczenia nr 7 DEFINICJE: Interpolacja: przybliżanie funkcji za pomocą innej funkcji, zwykle wielomianu, tak aby były sobie równe w zadanych punktach. Poniżej przykład interpolacji

Bardziej szczegółowo

3 Podstawy teorii drgań układów o skupionych masach

3 Podstawy teorii drgań układów o skupionych masach 3 Podstawy teorii drgań układów o skupionych masach 3.1 Drgania układu o jednym stopniu swobody Rozpatrzmy elementarny układ drgający, nazywany też oscylatorem harmonicznym, składający się ze sprężyny

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ... Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x

Bardziej szczegółowo