Optymalizacja konstrukcji
|
|
- Seweryna Urbańska
- 9 lat temu
- Przeglądów:
Transkrypt
1 Optymalizacja konstrukcji Kształtowanie konstrukcyjne: nadanie właściwych cech konstrukcyjnych przeszłej maszynie określenie z jakiego punktu widzenia (wg jakiego kryterium oceny) będą oceniane alternatywne rozwiązania konstrukcyjne. Ścisłe (sformułowane matematycznie) określenie punktu widzenia funkcja celu (funkcja jakości, funkcja efektywności) Punkt oceny kryterium optymalizacji.
2 Optymalizacja to działalność, której celem jest uzyskanie najlepszego rezultatu w danych warunkach i dla określonej funkcji celu. Najlepszy z otrzymanych wyników nazywa się optymalnym.
3 Optymalizacja - myślenie w kategoriach celów
4
5 Przykład: lornetka Kryterium optymalizacji (zmienna zależna) ostrość obrazu Zmienna niezależna odległość soczewek Wartość optymalna najostrzejszy obraz ostrość obrazu optimum odległość soczewek
6 Optymalizacja to działalność, której celem jest uzyskanie najlepszego rezultatu w danych warunkach i dla określonej funkcji celu. Najlepszy z otrzymanych wyników nazywa się optymalnym.
7 Projektowanie Sformułowanie problemu Model problemu Optymalizacja
8 Po co optymalizować? Korzyści finansowe Usprawnienie działania Podniesienie efektywności pracy Poprawa niezawodności Poprawa bezpieczeństwa Zmniejszenie zużycia zasobów
9 Kryteria optymalizacji Koszt Opóźnienie (szybkość działania) Niezawodność Efektywność Zużycie zasobów Bezpieczeństwo
10 Ograniczenia w optymalizacji Koszt Opóźnienie (szybkość działania) Niezawodność Efektywność Zużycie zasobów Bezpieczeństwo Inne
11 Załóżmy, że rozpatruje się trzy rodzaje przekładni o tej samej mocy i przełożeniu : ślimakową, planetarną, walcową. Załóżmy też, że kryterium optymalizacji są najmniejsze gabaryty tej przekładni, które można wyrazić w funkcji pozostałych cech konstrukcyjnych. Z punktu widzenia zadanego kryterium a więc wymiarów gabarytowych, optymalnym rozwiązaniem jest przekładnia planetarna.
12 Model matematyczny konstrukcji Zbudowanie funkcji celu, niezbędnej w procesie optymalizacji konstrukcji, wymaga zapisu cech konstrukcyjnych maszyny (geometrycznych, materiałowych i dynamicznych) w postaci układu liczb i funkcji. Uzyskany w ten sposób zapis nazywa się modelem matematycznym konstrukcji.
13 Dla potrzeb modelowania matematycznego, konstrukcję K można potraktować jako punkt w pewnej przestrzeni N-wymiarowej czynnikowej, co można zapisać następująco: K = (C( 1,C 2,...,C N ) R N gdzie: K- konstrukcja, C i - cechy konstrukcji, R N -przestrzeń konstrukcji.
14 Jeżeli wszystkie współrzędne wektora K są liczbami, to taki punkt można traktować jako element N - wymiarowej przestrzeni euklidesowej E N : K = (C( 1, C 2,...,C N ) E N Wektor K należący do przestrzeni konstrukcji jednoznacznie opisuje konstrukcję.
15 Niech opisywanym elementem będzie śrubowa sprężyna naciskowa. α D D w D z p d
16 Umiejscowienie jej środka ciężkości w maszynie można określić za pomocą wartości liczbowych trzech współrzędnych: x, y i z. Następne współrzędne mogą opisywać, np. średnicę drutu d, średnicę nawinięcia drutu D w, granicę plastyczności materiału sprężyny R e, wartość siły napięcia wstępnego P w, itp.
17 Wszystkie cechy opisujące konstrukcję można podzielić na: parametry P zmienne decyzyjne X. Parametry P są zadane i ich wartość jest niezmienna w procesie projektowania. Zmienne decyzyjne X są dobierane w procesie projektowania.
18 W przypadku rozpatrywanej sprężyny: parametrami P mogą być np.: wartość siły napięcia wstępnego i wymiary zewnętrzne sprężyny, zaś zmiennymi decyzyjnymi X, np. średnica drutu, granica plastyczności materiału sprężyny (materiał sprężyny).
19 Biorąc pod uwagę podział cech konstrukcyjnych na parametry P i zmienne decyzyjne X, konstrukcje można formalnie zapisać następująco: K = (P( 1, P 2,...,P N ; X 1,X 2,...X M ) E K Zbiór zmiennych decyzyjnych X można traktować jako punkt x w pewnej przestrzeni, zwanej przestrzenia zmiennych decyzyjnych (przestrzenia rozwiązań) E x : x = (x 1, x 2,,x n ) E x
20 Na złożoność modelu matematycznego wpływa głownie liczba zmiennych decyzyjnych - im jest ona większa, tym trudniejsze i kosztowniejsze jest prowadzenie obliczeń. Z drugiej zaś strony, ograniczenie liczby zmiennych decyzyjnych i ustalenie dużej liczby cech konstrukcyjnych jako parametrów zawęża możliwości poszukiwana najlepszych rozwiązań.
21 Matematyczne sformułowanie owanie szczegółowych i ogólnych zasad konstrukcji Projektant może przyjmować tylko określone wartości zmiennych decyzyjnych X. Wynika to z ograniczeń narzuconych na poszczególne zmienne decyzyjne i na konstrukcję jako całość. Ograniczenia Ograniczenia te wynikają ze szczegółowych zasad konstrukcji.
22 Zgodnie z pierwszą zasadą, konstrukcja powinna spełniać wszystkie ograniczenia wynikające ze szczegółowych zasad w stopniu nie mniejszym od założonego. Z matematycznego punktu widzenia, ograniczenia te mogą mieć charakter nierównościowy: b i (x)= b i (x 1,x 2,...,x n )< 0; i = 1,2,...,m lub równościowy: g j (x)=g j ( x 1,x 2,...,x n )=0; j=1,2,...,p
23 Dla każdej zmiennej decyzyjnej x i można ustalić wstępnie zakres jej zmienności: x imin x i x imax; i = 1,...,n Na skutek ograniczeń wynikających ze szczegółowych zasad konstrukcji przedział ten ulega zawężeniu. Niektóre zmienne decyzyjne mogą przyjmować dowolne wartości z ciągłego przedziału [x imin,x imax ], a inne mogą przyjmować tylko wartości dyskretne.
24 Zmienne decyzyjne wynikające ze względów fizycznych i technologicznych, takie jak np.: wymiary, obciążenia, naprężenia., itp. mają z reguły charakter ciągły.
25 Zmienne decyzyjne ściśle określone przez normy, takie jak np.: moduły kół zębatych, wymiary łożysk tocznych, wymiary śrub, nitów, itp., mają charakter dyskretny i ich zakres zawęża się do zbioru liczb dyskretnych. Inne wartości zmiennych decyzyjnych są dyskretne z założenia, np. liczba zębów w kole zębatym.
26 Jednakże, zdecydowana większość ograniczeń ma charakter nierównościowy, np.: liczba zębów w kole zębatym nie może być mniejsza niż graniczna liczba zębów, obciążenie nie może wywoływać naprężeń większych od dopuszczalnych, prędkość obwodowa czopa podczas smarowania hydrodynamicznego musi być większa od granicznej.
27 W procesie budowy modelu matematycznego konstrukcji K wszystkie ograniczenia wynikające ze szczegółowych zasad konstrukcji musza być przedstawione w postaci jednoznacznej matematycznie, tak aby dla dowolnego wektora zmiennych decyzyjnych X można było jednoznacznie stwierdzić, czy należy on do zbioru rozwiązań dopuszczalnych, a więc czy są spełnione wszystkie ograniczenia, czy też nie.
28 Zbiór punktów w przestrzeni zmiennych decyzyjnych X, w których spełnione są wszystkie ograniczenia narzucone przez konstrukcję K, nazywa się zbiorem dopuszczalnym lub zbiorem rozwiązań dopuszczalnych: Φ= Φ (x) E x
29 W celu wyboru ze zbioru rozwiązań dopusczalnych Φ rozwiązania najlepszego, konieczne jest ustalenie kryteriów optymalizacji Q. Druga ogólna zasada konstrukcji mówi, że konstrukcja powinna być optymalna (polioptymalna) w danych warunkach ze względu na przyjęte kryterium optymalizacji, np.: najmniejszy ciężar, największa wytrzymałość, itp.
30 Problem jednokryterialny zagadnienie do rozwiązania (decyzja do podjęcia) wybór odbywa się w oparciu o jedno reprezentatywne kryterium oceny np. problem wyboru pojazdu cena zakupu Problem wielokryterialny zagadnienie do rozwiązania (decyzja do podjęcia) wybór odbywa się w oparciu o więcej niż jedno kryterium oceny np. problem wyboru pojazdu o najwyższej jakości trwałość, niezawodność, wyposażenie,...
31
32 Zadanie optymalizacji można przedstawić w kategoriach działania praktycznego, tj. osiągnięcie: pożądanego efektu przy najmniejszych nakładach, największego efektu przy wykorzystaniu zadanych nakładów.
33
34 Reguły te maja charakter praw ekonomicznych i już w tym podejściu widać jak istotny jest dobór kryteriów. Szczególnie niebezpieczne jest uleganie wyłącznie kryteriom ekonomicznym. Może to bowiem prowadzić do niebezpiecznych skutków ekologicznych, społecznych, a nawet technicznych.
35 W procesie, projektowania należy przede wszystkim uwzględniać kryteria techniczne, nie zapominając jednak o ekonomicznych. Kryteria techniczne wynikają ze szczegółowych zasad konstrukcji. Są to kryteria funkcjonalności, trwałości, niezawodności, sprawności, lekkości, taniości i dostępność materiałów, itp.
36 W projektowaniu wspomaganym komputerowo należy każde kryterium przedstawić jako funkcję zależną od zmiennych decyzyjnych X. Model matematyczny konstrukcji wektor zmiennych decyzyjnych x, zbiór rozwiązań dopuszczalnych Φ i kryterium optymalizacji Q, można zapisać następująco: x = (x 1,x 2,...,x n ) E x Φ = Φ (x) E x Q=f(x 1,x 2,...,x n )
37 Metody poszukiwania rozwiąza zań optymalnych Ogólnie można je podzielić na dwie zasadnicze grupy: metody analityczne, np. metoda pochodnych, metoda wariacyjna, metoda wyznaczników Lagrange'a, metody numeryczne, np. programowanie liniowe (metoda Simplex), programowanie nieliniowe.
38 Przykład - zadanie Przesyłki przewożone na statku mogą być pakowane w skrzynie, których suma wszystkich boków podstawy i wysokości nie przekracza 240 cm, zaś podstawa jest kwadratem. W przeciwnym razie naliczane są opłaty dodatkowe. Obliczyć wymiary skrzyni maksymalizujące jej objętość.
39 H x x
40 Metoda pochodnych Metoda pochodnych zasadza się na wyznaczeniu dwóch pochodnych w celu znalezienia wartości ekstremalnych danej funkcji celu Q(x). W pierwszym kroku, dla znalezienia wartości ekstremalnych, wyznacza się pierwszą pochodną funkcji Q(x) i przyrównuję się ją do zera a następnie oblicza się wartość zmiennej niezależnej x. dq dx = 0 Równanie to pozwala na wyznaczenie wartości ekstremalnych.
41 W kroku drugim wyznacza się druga pochodną funkcji Q(x). Jeśli wyznaczone wartości ekstremalne są mniejsze od zera to funkcja osiąga maksimum, jeśli większe od zera to funkcja osiąga minimum. 2 d Q 2 dx < 0 funkcja Q(x) osiąga maksimum 2 d Q 2 dx > 0 funkcja Q(x) osiąga minimum
42 Funkcja celu ma postać: Q( x) = x 2 H Ograniczenie równościowe ma postać: b ( x) = H + 4 x 240 = 0
43 Wyznaczając H z poprzedniego równania: H = 4 x i podstawiając do funkcji celu uzyskuje się: ( x) = 4x 3 240x 2 Q +
44 Pierwsza pochodna ma postać: dq 2 dx = 12x + 480x = 0 Rozwiązaniem tego równania są wartości: x 1 = 0 oraz x 2 = 40.
45 W celu upewnienia się czy funkcja Q(x) osiąga maksimum przy x 2 = 40, wyznacza się drugą pochodną: d 2 Q dx 2 = 24x = 0
46 i oblicza się jej wartość dla x 2 = 40: d 2 dx Q 2 x 1 = 40 = 480
47 Następnie oblicza się H z zależności na ograniczenie równościowe: H = 240 4x = = 80 cm Wówczas największa pojemność skrzyni wyniesie: V 2 = x H = = cm 3
INSTRUKCJA DO ĆWICZENIA NR 1
L01 ---2014/10/17 ---10:52---page1---#1 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 1 PRZEDMIOT TEMAT Wybrane zagadnienia z optymalizacji elementów
Bardziej szczegółowoZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI
Wstęp ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Problem podejmowania decyzji jest jednym z zagadnień sterowania nadrzędnego. Proces podejmowania decyzji
Bardziej szczegółowoSpis treści. Przedmowa 11
Przykłady obliczeń z podstaw konstrukcji maszyn. [Tom] 2, Łożyska, sprzęgła i hamulce, przekładnie mechaniczne / pod redakcją Eugeniusza Mazanka ; autorzy: Andrzej Dziurski, Ludwik Kania, Andrzej Kasprzycki,
Bardziej szczegółowoDefinicja problemu programowania matematycznego
Definicja problemu programowania matematycznego minimalizacja lub maksymalizacja funkcji min (max) f(x) gdzie: x 1 x R n x 2, czyli: x = [ ] x n przy ograniczeniach (w skrócie: p.o.) p.o. g i (x) = b i
Bardziej szczegółowoProgramowanie nieliniowe. Badania operacyjne Wykład 3 Metoda Lagrange a
Programowanie nieliniowe Badania operacyjne Wykład 3 Metoda Lagrange a Plan wykładu Przykład problemu z nieliniową funkcją celu Sformułowanie problemu programowania matematycznego Podstawowe definicje
Bardziej szczegółowoPodstawy Konstrukcji Maszyn. Wykład nr. 1_01
Podstawy Konstrukcji Maszyn Wykład nr. 1_01 Zaliczenie: Kolokwium na koniec semestru obejmujące : - część teoretyczną - obliczenia (tylko inż. i zarz.) Minimum na ocenę dostateczną 55% - termin zerowy
Bardziej szczegółowoPrzekładnie ślimakowe / Henryk Grzegorz Sabiniak. Warszawa, cop Spis treści
Przekładnie ślimakowe / Henryk Grzegorz Sabiniak. Warszawa, cop. 2016 Spis treści Przedmowa XI 1. Podział przekładni ślimakowych 1 I. MODELOWANIE I OBLICZANIE ROZKŁADU OBCIĄŻENIA W ZAZĘBIENIACH ŚLIMAKOWYCH
Bardziej szczegółowoSchemat programowania dynamicznego (ang. dynamic programming)
Schemat programowania dynamicznego (ang. dynamic programming) Jest jedną z metod rozwiązywania problemów optymalizacyjnych. Jej twórcą (1957) był amerykański matematyk Richard Ernest Bellman. Schemat ten
Bardziej szczegółowo11. 11. OPTYMALIZACJA KONSTRUKCJI
11. OPTYMALIZACJA KONSTRUKCJI 1 11. 11. OPTYMALIZACJA KONSTRUKCJI 11.1. Wprowadzenie 1. Optymalizacja potocznie i matematycznie 2. Przykład 3. Kryterium optymalizacji 4. Ograniczenia w zadaniach optymalizacji
Bardziej szczegółowoWielokryteriowa optymalizacja liniowa
Wielokryteriowa optymalizacja liniowa 1. Przy decyzjach złożonych kierujemy się zwykle więcej niż jednym kryterium. Postępowanie w takich sytuacjach nie jest jednoznaczne. Pojawiło się wiele sposobów dochodzenia
Bardziej szczegółowodoc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505.
doc. dr Beata Pułska-Turyna Zakład Badań Operacyjnych Zarządzanie B506 mail: turynab@wz.uw.edu.pl mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. Tel.: (22)55 34 144 Mail: student@pgadecki.pl
Bardziej szczegółowoAproksymacja funkcji a regresja symboliczna
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą
Bardziej szczegółowoPolitechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Optymalizacja Dla podanych niżej problemów decyzyjnych (zad.1 zad.5) należy sformułować zadania optymalizacji, tj.: określić postać zmiennych
Bardziej szczegółowoProgramowanie celowe #1
Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem
Bardziej szczegółowoĆwiczenia laboratoryjne - Dobór optymalnego asortymentu produkcji programowanie liniowe. Logistyka w Hutnictwie Ćw. L.
Ćwiczenia laboratoryjne - Dobór optymalnego asortymentu produkcji programowanie liniowe Ćw. L. Typy optymalizacji Istnieją trzy podstawowe typy zadań optymalizacyjnych: Optymalizacja statyczna- dotyczy
Bardziej szczegółowoOptymalizacja. doc. dr inż. Tadeusz Zieliński r. ak. 2013/14. Metody komputerowe w inżynierii komunikacyjnej. ograniczenie kosztów budowy.
koszty optimum ograniczenie kosztów budowy Metody komputerowe w inżynierii komunikacyjnej Optymalizacja koszty całkowite koszty budowy koszty eksploatacji zła jakość rozwiązania dobra doc. dr inż. Tadeusz
Bardziej szczegółowoSpis treści Przedmowa
Spis treści Przedmowa 1. Wprowadzenie do problematyki konstruowania - Marek Dietrich (p. 1.1, 1.2), Włodzimierz Ozimowski (p. 1.3 -i-1.7), Jacek Stupnicki (p. l.8) 1.1. Proces konstruowania 1.2. Kryteria
Bardziej szczegółowo3. Wstępny dobór parametrów przekładni stałej
4,55 n1= 3500 obr/min n= 1750 obr/min N= 4,55 kw 0,70 1,00 16 37 1,41 1,4 8 30,7 1,41 1. Obliczenie momentu Moment na kole n1 obliczam z zależności: 9550 9550 Moment na kole n obliczam z zależności: 9550
Bardziej szczegółowoKoła stożkowe o zębach skośnych i krzywoliniowych oraz odpowiadające im zastępcze koła walcowe wytrzymałościowo równoważne
Spis treści PRZEDMOWA... 9 1. OGÓLNA CHARAKTERYSTYKA I KLASYFIKACJA PRZEKŁADNI ZĘBATYCH... 11 2. ZASTOSOWANIE I WYMAGANIA STAWIANE PRZEKŁADNIOM ZĘBATYM... 22 3. GEOMETRIA I KINEMATYKA PRZEKŁADNI WALCOWYCH
Bardziej szczegółowoKodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11,
1 Kwantyzacja skalarna Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11, 10.05.005 Kwantyzacja polega na reprezentowaniu dużego zbioru wartości (być może nieskończonego) za pomocą wartości
Bardziej szczegółowoModele i narzędzia optymalizacji w systemach informatycznych zarządzania
Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5
Bardziej szczegółowoSpis treści. Przedmowa 11
Podstawy konstrukcji maszyn. T. 1 / autorzy: Marek Dietrich, Stanisław Kocańda, Bohdan Korytkowski, Włodzimierz Ozimowski, Jacek Stupnicki, Tadeusz Szopa ; pod redakcją Marka Dietricha. wyd. 3, 2 dodr.
Bardziej szczegółowoZAGADNIENIA PROGRAMOWANIA LINIOWEGO
ZAGADNIENIA PROGRAMOWANIA LINIOWEGO Maciej Patan Uniwersytet Zielonogórski WSTĘP często spotykane w życiu codziennym wybór asortymentu produkcji jakie wyroby i w jakich ilościach powinno produkować przedsiębiorstwo
Bardziej szczegółowoistocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy
MODEL REGRESJI LINIOWEJ. METODA NAJMNIEJSZYCH KWADRATÓW Analiza regresji zajmuje się badaniem zależności pomiędzy interesującymi nas wielkościami (zmiennymi), mające na celu konstrukcję modelu, który dobrze
Bardziej szczegółowoKADD Minimalizacja funkcji
Minimalizacja funkcji Poszukiwanie minimum funkcji Foma kwadratowa Metody przybliżania minimum minimalizacja Minimalizacja w n wymiarach Metody poszukiwania minimum Otaczanie minimum Podział obszaru zawierającego
Bardziej szczegółowoDefinicje i przykłady
Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest
Bardziej szczegółowoKomputerowa analiza zagadnień różniczkowych 10. Dwupunktowe problemy brzegowe (BVP, Boundary Value Problems)
Komputerowa analiza zagadnień różniczkowych 10. Dwupunktowe problemy brzegowe (BVP, Boundary Value Problems) P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Wprowadzenie Rozważmy
Bardziej szczegółowoDefinicja pochodnej cząstkowej
1 z 8 gdzie punkt wewnętrzny Definicja pochodnej cząstkowej JeŜeli iloraz ma granicę dla to granicę tę nazywamy pochodną cząstkową funkcji względem w punkcie. Oznaczenia: Pochodną cząstkową funkcji względem
Bardziej szczegółowoModelowanie w projektowaniu maszyn i procesów cz.5
Modelowanie w projektowaniu maszyn i procesów cz.5 Metoda Elementów Skończonych i analizy optymalizacyjne w środowisku CAD Dr hab inż. Piotr Pawełko p. 141 Piotr.Pawełko@zut.edu.pl www.piopawelko.zut.edu.pl
Bardziej szczegółowoTOZ -Techniki optymalizacji w zarządzaniu
TOZ -Techniki optymalizacji w zarządzaniu Wykład dla studentów II roku studiów II stopnia na kierunku Zarządzanie Semestr zimowy 2009/2010 Wykładowca: prof. dr hab. inż. Michał Inkielman Wykład 2 Optymalizacja
Bardziej szczegółowoOBLICZANIE KÓŁK ZĘBATYCH
OBLICZANIE KÓŁK ZĘBATYCH koło podziałowe linia przyporu P R P N P O koło podziałowe Najsilniejsze zginanie zęba następuje wówczas, gdy siła P N jest przyłożona u wierzchołka zęba. Siłę P N można rozłożyć
Bardziej szczegółowoAnaliza wielokryterialna wstęp do zagadnienia
Organizacja, przebieg i zarządzanie inwestycją budowlaną Analiza wielokryterialna wstęp do zagadnienia dr hab. Mieczysław Połoński prof. SGGW 1 Wprowadzenie Jednym z podstawowych, a równocześnie najważniejszym
Bardziej szczegółowoZ52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.
Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie
Bardziej szczegółowo7. OPTYMALIZACJA PARAMETRÓW SKRAWANIA. 7.1 Cel ćwiczenia. 7.2 Wprowadzenie
7. OPTYMALIZACJA PAAMETÓW SKAWANIA 7.1 Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z wyznaczaniem optymalnych parametrów skrawania metodą programowania liniowego na przykładzie toczenia. 7.2
Bardziej szczegółowoDobór sprzęgieł hydrokinetycznych 179 Bibliografia 183
Podstawy konstrukcji maszyn. T. 3 / autorzy: Tadeusz Kacperski, Andrzej Krukowski, Sylwester Markusik, Włodzimierz Ozimowski ; pod redakcją Marka Dietricha. wyd. 3, 3 dodr. Warszawa, 2015 Spis treści 1.
Bardziej szczegółowow analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą
Bardziej szczegółowoKarta (sylabus) modułu/przedmiotu Mechanika i Budowa Maszyn Studia pierwszego stopnia. Podstawy konstrukcji maszyn I
Karta (sylabus) modułu/przedmiotu Mechanika i Budowa Maszyn Studia pierwszego stopnia Przedmiot: Podstawy konstrukcji maszyn I Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: MBM S 0 4 43-0_ Rok: II Semestr:
Bardziej szczegółowoAnaliza wielokryterialna
Analiza wielokryterialna dr hab. inż. Krzysztof Patan, prof. PWSZ Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa w Głogowie k.patan@issi.uz.zgora.pl Wprowadzenie Wielokryterialny wybór wariantu
Bardziej szczegółowo1. Zasady konstruowania elementów maszyn
3 Przedmowa... 10 O Autorów... 11 1. Zasady konstruowania elementów maszyn 1.1 Ogólne zasady projektowania.... 14 Pytania i polecenia... 15 1.2 Klasyfikacja i normalizacja elementów maszyn... 16 1.2.1.
Bardziej szczegółowoProgramowanie liniowe
Badania operacyjne Ćwiczenia 2 Programowanie liniowe Metoda geometryczna Plan zajęć Programowanie liniowe metoda geometryczna Przykład 1 Zbiór rozwiązań dopuszczalnych Zamknięty zbiór rozwiązań dopuszczalnych
Bardziej szczegółowoPrzekładnie zębate. Klasyfikacja przekładni zębatych. 1. Ze względu na miejsce zazębienia. 2. Ze względu na ruchomość osi
Przekładnie zębate Klasyfikacja przekładni zębatych 1. Ze względu na miejsce zazębienia O zazębieniu zewnętrznym O zazębieniu wewnętrznym 2. Ze względu na ruchomość osi O osiach stałych Planetarne przynajmniej
Bardziej szczegółowoAgnieszka Nowak Brzezińska
Agnieszka Nowak Brzezińska jeden z algorytmów regresji nieparametrycznej używanych w statystyce do prognozowania wartości pewnej zmiennej losowej. Może również byd używany do klasyfikacji. - Założenia
Bardziej szczegółowo1. Obliczenia wytrzymałościowe elementów maszyn przy obciążeniu zmiennym PRZEDMOWA 11
SPIS TREŚCI 1. Obliczenia wytrzymałościowe elementów maszyn przy obciążeniu zmiennym PRZEDMOWA 11 1. ZARYS DYNAMIKI MASZYN 13 1.1. Charakterystyka ogólna 13 1.2. Drgania mechaniczne 17 1.2.1. Pojęcia podstawowe
Bardziej szczegółowoProgramowanie liniowe. Tadeusz Trzaskalik
Programowanie liniowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Model matematyczny Cel, środki, ograniczenia Funkcja celu funkcja kryterium Zmienne decyzyjne Model optymalizacyjny Układ warunków
Bardziej szczegółowoANALIZA MATEMATYCZNA
ANALIZA MATEMATYCZNA TABLICE Spis treści: 1.) Pochodne wzory 2 2.) Całki wzory 3 3.) Kryteria zbieżności szeregów 4 4.) Przybliżona wartość wyrażenia 5 5.) Równanie płaszczyzny stycznej i prostej normalnej
Bardziej szczegółowoKarta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Podstawy konstrukcji maszyn Rodzaj przedmiotu: obowiązkowy Kod przedmiotu:
Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia Przedmiot: Podstawy konstrukcji maszyn Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: MT N 0 4 6-0_ Rok: II Semestr: 4 Forma studiów:
Bardziej szczegółowo3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA
3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA 1 3. 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA Analizując płaski stan naprężenia posługujemy się składowymi tensora naprężenia w postaci wektora {,,y } (3.1) Za dodatnie
Bardziej szczegółowoPlan. Zakres badań teorii optymalizacji. Teoria optymalizacji. Teoria optymalizacji a badania operacyjne. Badania operacyjne i teoria optymalizacji
Badania operacyjne i teoria optymalizacji Instytut Informatyki Poznań, 2011/2012 1 2 3 Teoria optymalizacji Teoria optymalizacji a badania operacyjne Teoria optymalizacji zajmuje się badaniem metod optymalizacji
Bardziej szczegółowoSterowanie optymalne
Sterowanie optymalne Sterowanie Procesami Ciągłymi 2017 Optymalizacja statyczna funkcji Funkcja celu/kryterialna/kosztów Ograniczenie Q(x) min x x = arg min Q(x) x x X, gdzie X zbiór rozwiązań dopuszczalnych
Bardziej szczegółowox+h=10 zatem h=10-x gdzie x>0 i h>0
Zadania optymalizacyjne. Jaka jest największa możliwa wartość iloczynu dwóch liczb, których suma jest równa 60? Rozwiązanie: KROK USTALENIE WZORU Liczby oznaczamy przez a i b więc x+y=60 Następnie wyznaczamy
Bardziej szczegółowoRozdział 1 PROGRAMOWANIE LINIOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.2 Ćwiczenia komputerowe Ćwiczenie 1.1 Wykorzystując
Bardziej szczegółowoPOD- I NADOKREŚLONE UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
POD- I NADOKREŚLONE UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko
Bardziej szczegółowoMetody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015
Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane
Bardziej szczegółowoProgramowanie liniowe
Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.
Bardziej szczegółowoWielokryteriowa optymalizacja liniowa cz.2
Wielokryteriowa optymalizacja liniowa cz.2 Metody poszukiwania końcowych rozwiązań sprawnych: 1. Metoda satysfakcjonujących poziomów kryteriów dokonuje się wyboru jednego z kryteriów zadania wielokryterialnego
Bardziej szczegółowoPROGRAMOWANIE NIELINIOWE
PROGRAMOWANIE NIELINIOWE Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie programowania nieliniowego (ZPN) min f(x) g i (x) 0, h i (x) = 0, i = 1,..., m g i = 1,..., m h f(x) funkcja celu g i (x) i
Bardziej szczegółowoPODSTAWY KONSTRUKCJI MASZYN KLASA IV TECHNIKUM ZAWODOWE ZAWÓD TECHNIK MECHANIK
DZIAŁ WAŁY, OSIE, ŁOśYSKA WYMAGANIA EDUKACYJNE PODSTAWY KONSTRUKCJI MASZYN KLASA IV TECHNIKUM ZAWODOWE scharakteryzować sztywność giętą i skrętną osi i wałów; obliczać osie i wały dwupodporowe; obliczać
Bardziej szczegółowoKADD Minimalizacja funkcji
Minimalizacja funkcji n-wymiarowych Forma kwadratowa w n wymiarach Procedury minimalizacji Minimalizacja wzdłuż prostej w n-wymiarowej przestrzeni Metody minimalizacji wzdłuż osi współrzędnych wzdłuż kierunków
Bardziej szczegółowoSpis treści 377 379 WSTĘP... 9
Spis treści 377 379 Spis treści WSTĘP... 9 ZADANIE OPTYMALIZACJI... 9 PRZYKŁAD 1... 9 Założenia... 10 Model matematyczny zadania... 10 PRZYKŁAD 2... 10 PRZYKŁAD 3... 11 OPTYMALIZACJA A POLIOPTYMALIZACJA...
Bardziej szczegółowoOptymalizacja procesów technologicznych przy zastosowaniu programowania liniowego
Optymalizacja procesów technologicznych przy zastosowaniu programowania liniowego Wstęp Spośród różnych analitycznych metod stosowanych do rozwiązywania problemów optymalizacji procesów technologicznych
Bardziej szczegółowoZadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby
Zadania 1 Przedsiębiorstwo wytwarza cztery rodzaje wyrobów: A, B, C, D, które są obrabiane na dwóch maszynach M 1 i M 2. Czas pracy maszyn przypadający na obróbkę jednostki poszczególnych wyrobów podany
Bardziej szczegółowoZaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Wstęp
Bardziej szczegółowoPodstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany
Bardziej szczegółowoAlgebra liniowa. Macierze i układy równań liniowych
Algebra liniowa Macierze i układy równań liniowych Własności wyznaczników det I = 1, det(ab) = det A det B, det(a T ) = det A. Macierz nieosobliwa Niech A będzie macierzą kwadratową wymiaru n n. Mówimy,
Bardziej szczegółowoEstymacja wektora stanu w prostym układzie elektroenergetycznym
Zakład Sieci i Systemów Elektroenergetycznych LABORATORIUM INFORMATYCZNE SYSTEMY WSPOMAGANIA DYSPOZYTORÓW Estymacja wektora stanu w prostym układzie elektroenergetycznym Autorzy: dr inż. Zbigniew Zdun
Bardziej szczegółowoINSTRUKCJA DO ĆWICZENIA NR 5
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 5 PRZEDMIOT TEMAT OPRACOWAŁ MODELOWANIE UKŁADÓW MECHANICZNYCH Badania analityczne układu mechanicznego
Bardziej szczegółowoDYNAMIKA SIŁA I JEJ CECHY
DYNAMIKA SIŁA I JEJ CECHY Wielkość wektorowa to wielkość fizyczna mająca cztery cechy: wartość liczbowa punkt przyłożenia (jest początkiem wektora, zaznaczamy na rysunku np. kropką) kierunek (to linia
Bardziej szczegółowoINTERPOLACJA I APROKSYMACJA FUNKCJI
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Wprowadzenie Na czym polega interpolacja? Interpolacja polega
Bardziej szczegółowoPROGRAMOWANIE WIELOKRYTERIALNE (CELOWE)
PROGRAMOWANIE WIELOKRYTERIALNE (CELOWE) Przykład 14. Zakład zamierza rozpocząć produkcję wyrobów W 1 i W 2. Wśród środków produkcyjnych, które zostaną użyte w produkcji dwa są limitowane. Limity te wynoszą:
Bardziej szczegółowoMECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO Prowadzący: dr Krzysztof Polko WSTĘP z r C C(x C,y C,z C ) r C -r B B(x B,y B,z B ) r C -r A r B r B -r A A(x A,y A,z A ) Ciało sztywne
Bardziej szczegółowoKONSPEKT FUNKCJE cz. 1.
KONSPEKT FUNKCJE cz. 1. DEFINICJA FUNKCJI Funkcją nazywamy przyporządkowanie, w którym każdemu elementowi zbioru X odpowiada dokładnie jeden element zbioru Y Zbiór X nazywamy dziedziną, a jego elementy
Bardziej szczegółowoDefinicja i własności wartości bezwzględnej.
Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności
Bardziej szczegółowo17. 17. Modele materiałów
7. MODELE MATERIAŁÓW 7. 7. Modele materiałów 7.. Wprowadzenie Podstawowym modelem w mechanice jest model ośrodka ciągłego. Przyjmuje się, że materia wypełnia przestrzeń w sposób ciągły. Możliwe jest wyznaczenie
Bardziej szczegółowoALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ
ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ Zalety: nie wprowadzają żadnych ograniczeń na sformułowanie problemu optymalizacyjnego. Funkcja celu może być wielowartościowa i nieciągła, obszar
Bardziej szczegółowoTomasz M. Gwizdałła 2012/13
METODY METODY OPTYMALIZACJI OPTYMALIZACJI Tomasz M. Gwizdałła 2012/13 Informacje wstępne Tomasz Gwizdałła Katedra Fizyki Ciała Stałego UŁ Pomorska 149/153, p.523b tel. 6355709 tomgwizd@uni.lodz.pl http://www.wfis.uni.lodz.pl/staff/tgwizdalla
Bardziej szczegółowoFunkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki
Bardziej szczegółowoMODUŁ 3. WYMAGANIA EGZAMINACYJNE Z PRZYKŁADAMI ZADAŃ
MODUŁ 3. WYMAGANIA EGZAMINACYJNE Z PRZYKŁADAMI ZADAŃ 2. Przykład zadania do części praktycznej egzaminu dla wybranych umiejętności z kwalifikacji M.44. Organizacja i nadzorowanie procesów produkcji maszyn
Bardziej szczegółowoPierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe)
METODA ELEMENTÓW W SKOŃCZONYCH 1 Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe) stałych własnościach
Bardziej szczegółowoZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA
ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA DYNAMICZNYCH LOKAT KAPITAŁOWYCH Krzysztof Gąsior Uniwersytet Rzeszowski Streszczenie Celem referatu jest zaprezentowanie praktycznego zastosowania
Bardziej szczegółowoStandardowe zadanie programowania liniowego. Gliwice 1
Standardowe zadanie programowania liniowego 1 Standardowe zadanie programowania liniowego Rozważamy proces, w którym zmiennymi są x 1, x 2,, x n. Proces poddany jest m ograniczeniom, zapisanymi w postaci
Bardziej szczegółowoĆwiczenia nr 7. TEMATYKA: Krzywe Bézier a
TEMATYKA: Krzywe Bézier a Ćwiczenia nr 7 DEFINICJE: Interpolacja: przybliżanie funkcji za pomocą innej funkcji, zwykle wielomianu, tak aby były sobie równe w zadanych punktach. Poniżej przykład interpolacji
Bardziej szczegółowoW naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.
1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy
Bardziej szczegółowoWYKŁAD 9 METODY ZMIENNEJ METRYKI
WYKŁAD 9 METODY ZMIENNEJ METRYKI Kierunki sprzężone. Metoda Newtona Raphsona daje dobre przybliżenie najlepszego kierunku poszukiwań, lecz jest to okupione znacznym kosztem obliczeniowym zwykle postać
Bardziej szczegółowoAlgorytmy optymalizacji systemu ICT wspomagające zarządzanie siecią wodociągową
Katowice GPW 2014 Algorytmy optymalizacji systemu ICT wspomagające zarządzanie siecią wodociągową Jan Studziński 1 1. Wstęp Cel projektu Usprawnienie zarządzania siecią wodociągową za pomocą nowoczesnych
Bardziej szczegółowo13. Równania różniczkowe - portrety fazowe
13. Równania różniczkowe - portrety fazowe Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny 13. wrównania Krakowie) różniczkowe - portrety fazowe 1 /
Bardziej szczegółowoSZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 13. PROBLEMY OPTYMALIZACYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska PROBLEMY OPTYMALIZACYJNE Optymalizacja poszukiwanie
Bardziej szczegółowo3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B
1. Dla macierzy a) A = b) A = c) A = d) A = 3 1 + i 1 i i i 0 i i 0 1 + i 1 i 0 0 0 0 1 0 1 0 1 + i 1 i Wyznaczyć macierze spełniające własność komutacji: A, X = B. Obliczyć pierwiaski z macierzy: A =
Bardziej szczegółowoInstrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia:
Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne Temat ćwiczenia: Programowanie liniowe, metoda geometryczna, dobór struktury asortymentowej produkcji Zachodniopomorski Uniwersytet
Bardziej szczegółowoSpis treści. Wstęp 13. Część I. UKŁADY REDUKCJI DRGAŃ Wykaz oznaczeń 18. Literatura Wprowadzenie do części I 22
Spis treści Wstęp 13 Literatura - 15 Część I. UKŁADY REDUKCJI DRGAŃ - 17 Wykaz oznaczeń 18 1. Wprowadzenie do części I 22 2. Teoretyczne podstawy opisu i analizy układów wibroizolacji maszyn 30 2.1. Rodzaje
Bardziej szczegółowoMetoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych
inż. Marek Duczkowski Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych słowa kluczowe: algorytm gradientowy, optymalizacja, określanie wodnicy W artykule
Bardziej szczegółowoPrzykład 4.2. Sprawdzenie naprężeń normalnych
Przykład 4.. Sprawdzenie naprężeń normalnych Sprawdzić warunki nośności przekroju ze względu na naprężenia normalne jeśli naprężenia dopuszczalne są równe: k c = 0 MPa k r = 80 MPa 0, kn 0 kn m 0,5 kn/m
Bardziej szczegółowoElementy Modelowania Matematycznego
Elementy Modelowania Matematycznego Wykład 6 Metoda simpleks Spis treści Wstęp Zadanie programowania liniowego Wstęp Omówimy algorytm simpleksowy, inaczej metodę simpleks(ów). Jest to stosowana w matematyce
Bardziej szczegółowoOpis przedmiotu. Karta przedmiotu - Podstawy budowy maszyn II Katalog ECTS Politechniki Warszawskiej
Kod przedmiotu TR.NIK408 Nazwa przedmiotu Podstawy budowy maszyn II Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów
Bardziej szczegółowoMETODY OPTYMALIZACJI. Tomasz M. Gwizdałła 2018/19
METODY OPTYMALIZACJI Tomasz M. Gwizdałła 2018/19 Informacje wstępne Tomasz Gwizdałła Katedra Fizyki Ciała Stałego UŁ Pomorska 149/153, p.524b tel. 6355709 tomgwizd@uni.lodz.pl http://www.wfis.uni.lodz.pl/staff/tgwizdalla
Bardziej szczegółowoOptymalizacja ciągła
Optymalizacja ciągła 1. Optymalizacja funkcji jednej zmiennej Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 28.02.2019 1 / 54 Plan wykładu Optymalizacja funkcji jednej
Bardziej szczegółowoWymiary tolerowane i pasowania. Opracował: mgr inż. Józef Wakuła
Wymiary tolerowane i pasowania Opracował: mgr inż. Józef Wakuła Pojęcia podstawowe Wykonanie przedmiotu zgodnie z podanymi na rysunku wymiarami, z uwagi na ograniczone dokładności wykonawcze oraz pomiarowe
Bardziej szczegółowoRozróżnia proste przypadki obciążeń elementów konstrukcyjnych
roces projektowania części maszyn Wpisany przez iotr ustelny Moduł: roces projektowania części maszyn Typ szkoły: Technikum Jednostka modułowa C rojektowanie połączeń rozłącznych i nierozłącznych Zna ogólne
Bardziej szczegółowoProgramowanie dynamiczne. Tadeusz Trzaskalik
Programowanie dynamiczne Tadeusz Trzaskalik 9.. Wprowadzenie Słowa kluczowe Wieloetapowe procesy decyzyjne Zmienne stanu Zmienne decyzyjne Funkcje przejścia Korzyści (straty etapowe) Funkcja kryterium
Bardziej szczegółowoRÓWNANIA NIELINIOWE Maciej Patan
RÓWNANIA NIELINIOWE Maciej Patan Uniwersytet Zielonogórski Przykład 1 Prędkość v spadającego spadochroniarza wyraża się zależnością v = mg ( 1 e c t) m c gdzie g = 9.81 m/s 2. Dla współczynnika oporu c
Bardziej szczegółowoDocument: Exercise*02*-*manual /11/ :31---page1of8 INSTRUKCJA DO ĆWICZENIA NR 2
Document: Exercise*02*-*manual ---2014/11/12 ---8:31---page1of8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 2 Wybrane zagadnienia z
Bardziej szczegółowo