Całki podwójne. Małgorzata Wyrwas. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Wielkość: px
Rozpocząć pokaz od strony:

Download "Całki podwójne. Małgorzata Wyrwas. Katedra Matematyki Wydział Informatyki Politechnika Białostocka"

Transkrypt

1 Całki podwójne Całki podwójne po prostokacie. Całki podwójne po obszarach normalnych. Zamiana zmiennych w całkach podwójnych. Zastosowania całek podwójnych. Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Całki podwójne str. 1/46

2 Podział prostokata Podziałem prostokatap nazywamy zbiór n złożony z prostokątówp 1,P 2,...,P n, które całkowicie wypełniają prostokąt P oraz mają parami rozłączne wnętrza (tzn.(intp i ) (intp j )=, dlai j). d y P 2 P 3 P k y k c a P 1 x k b x Całki podwójne str. 2/46

3 Oznaczenia w definicji całki po prostokacie x k, y k - wymiary prostokątap k, gdzie1kn; d k = ( x k ) 2 +( y k ) 2 - długość przekątnej prostokątap k, gdzie1kn; δ( n )=max 1kn d k - średnica podziału n ; A={A 1 (x 1,y 1),A 2 (x 2,y 2),...,A n (x n,y n)}, gdzie A k (x k,y k ) P k dla1kn,a-zbiór punktów pośrednich podziału n. Całki podwójne str. 3/46

4 Suma całkowa funkcji po prostokacie Niech funkcjaf będzie ograniczona na prostokąciep oraz niech n będzie podziałem tego prostokąta, aazbiorem punktów pośrednich. Suma całkowa funkcjif odpowiadajac a podziałowi n oraz punktom pośrednimanazywamy liczbę n k=1 f(x k,y k) ( x k ) ( y k ). Całki podwójne str. 4/46

5 Suma całkowa funkcji po prostokacie Uwaga: Suma całkowa jest przybliżeniem objętości bryły ograniczonej wykresem funkcjiz=f(x,y) 0leżącym nad prostokątemp oraz płaszczyznaxoy przez objętości prostopadłościanów o podstawachp k i wysokościachf(x k,y k ), dla1 k n. Całki podwójne str. 5/46

6 Całki podwójne po prostokacie Niech funkcjaf będzie ograniczona na prostokąciep. Całkę podwójna funkcjif po prostokaciep definiujemy wzorem P f(x,y)dxdy def = lim δ( n ) 0 n k=1 f(x k,y k) ( x k ) ( y k ), o ile granica po prawej stronie znaku równości jest właściwa i nie zależy od sposobu podziału n prostokątap ani od sposobu wyboru punktów pośrednicha. Mówimy wtedy, że funkcjaf jest całkowalna na prostokaciep. Całki podwójne str. 6/46

7 Całki podwójne po prostokacie Całkę podwójną z funkcjif po prostokąciep oznaczamy też symbolem: P f(x,y)dp. Całka podwójna po prostokącie jest uogólnieniem całki z funkcji jednej zmiennej po przedziale. Całki podwójne str. 7/46

8 Twierdzenie o całkowalności funkcji ciagłych: Funkcja ciągła na prostokącie jest na nim całkowalna. Twierdzenie o liniowości całki: Niech funkcjef ig będą całkowalne na prostokąciep oraz niech α,β R. Wtedy P [αf(x,y)+βg(x,y)]dxdy=α P f(x,y)dxdy+β P g(x, y)dxdy. Całki podwójne str. 8/46

9 Twierdzenie o addytywności całki względem obszaru całkowania Jeżeli funkcjaf jest całkowalna na prostokąciep, to dla dowolnego podziału tego prostokąta na prostokątyp 1 ip 2 o rozłącznych wnętrzach zachodzi równość P f(x,y)dxdy= P 1 f(x,y)dxdy+ P 2 f(x,y)dxdy. Całki podwójne str. 9/46

10 Twierdzenia o zamianie całki podwójnej na całkę iterowana Jeżeli funkcjaf jest całkowalna na prostokącie P= a,b c,d, to P f(x,y)dxdy= b a [ d c f(x,y)dy ] dx = d c [ b a f(x,y)dx ] dy. Całki podwójne str. 10/46

11 Całkę iterowaną b a [ d c f(x,y)dy ] dx możemy zapisywać umownie b a dx d c f(x,y)dy. Podobną umowę możemy przyjąć dla drugiej całki iterowanej, tzn. d c [ b a f(x,y)dx ] dy= d c dy b a f(x,y)dx. Całki podwójne str. 11/46

12 Przykład NiechP= Obliczyć P π 4,π 4 0, π. 4 sin(x+y)dxdy. Całki podwójne str. 12/46

13 Całka podwójna z funkcji o rozdzielonych zmiennych Jeżeli funkcjaf jest funkcją postacif(x,y)=g(x) h(y), gdzieg ihsą ciągłe odpowiednio na przedziałach a,b i c,d, to P g(x) h(y)dxdy= b a g(x)dx d c h(y)dy. Całki podwójne str. 13/46

14 Przykład NiechP= 0,1 1,1. Obliczyć P e x+y dxdy. Całki podwójne str. 14/46

15 Całki podwójne po obszarach Niechf będzie funkcją określoną i ograniczoną w obszarze ograniczonymd R 2 oraz niechp będzie dowolnym prostokątem zawierającym obszarp. Ponadto niechf oznacza rozszerzenie funkcjif nap określone wzorem: f (x,y) def = f(x,y), dla(x,y) D, 0, dla(x,y) P\D. Całki podwójne str. 15/46

16 Całki podwójne po obszarach Całkę podwójna funkcjif po obszarzed definiujemy wzorem: f(x,y)dxdy def = f (x,y)dxdy, D P o ile całka po prawej stronie znaku równości istnieje. Mówimy wtedy, że funkcjaf jest całkowana w obszarzed. Całka P f (x,y)dxdy nie zależy od wyboru prostokątap. Całki podwójne str. 16/46

17 Obszary normalne względem osi układu 1 Obszar domkniętyd nazywamy obszarem normalnym względem osiox, jeżeli można go zapisać w postaci: D={(x,y): a xb g(x) y h(x)}, gdzie funkcjeg ihsą ciągłe na a,b, przy czymg(x)<h(x) dlax (a,b). Całki podwójne str. 17/46

18 Obszary normalne względem osi układu 2 Obszar domkniętyd nazywamy obszarem normalnym względem osioy, jeżeli można go zapisać w postaci: D={(x,y): c y d p(y) xq(y)}, gdzie funkcjepiq są ciągłe na c,d, przy czymp(y)<q(y) dlay (c,d). Całki podwójne str. 18/46

19 Przykład ObszarDograniczony krzywymiy=0,x=2 iy=x 2 jest obszarem normalnym zarówno względem osiox jak również względem osioy. ObszarDograniczony krzywymiy= 1,y=1, x=2 1 y 2 ix= 1 y 2 1 jest obszarem normalnym względem osioy. Całki podwójne str. 19/46

20 Całki iterowane po obszarach normalnych Jeżeli funkcjaf jest ciągła na obszarze domkniętym D={(x,y): a xb g(x) y h(x)} normalnym względem osiox, to D f(x,y)dxdy= b a [ h(x) g(x) f(x,y)dy ] dx. Całki podwójne str. 20/46

21 Całki iterowane po obszarach normalnych Jeżeli funkcjaf jest ciągła na obszarze domkniętym D={(x,y): c y d p(y) xq(y)} normalnym względem osioy, to D f(x,y)dxdy= d c [ q(y) p(y) f(x,y)dx ] dy. Całki podwójne str. 21/46

22 Przykład NiechD={(x,y): y x y 3x x 2 }. ( Obliczyć x 2 xy ) dxdy. D Całki podwójne str. 22/46

23 Obszar regularny na płaszczyźnie Sumę skończonej liczby obszarów normalnych względem osi układu o parami rozłącznych wnętrzach nazywamy obszarem regularnym na płaszczyźnie. Całki podwójne str. 23/46

24 Całka po obszarze regularnym Niech obszar regularnyd=d 1 D 2... D n i intd i intd j =, dlai j oraz niech funkcjaf będzie całkowalna nad. Wtedy D f(x,y)dxdy= D 1 f(x,y)dxdy+ + D 2 f(x,y)dxdy+...+ D n f(x,y)dxdy. Całki podwójne str. 24/46

25 Przykład NiechD={(x,y): xy 1 x y 1}. Obliczyć D xydxdy. Całki podwójne str. 25/46

26 Wartość średnia funkcjif w obszarzed Wartościa średnia funkcjif na obszarzed nazywamy liczbę def fśr = 1 D D f(x,y)dxdy, gdzie D oznacza pole obszarud. Wartość średnia funkcjif w obszarzed jest równa wysokości walca o podstawied, który ma tę samą objętość co bryłav. Całki podwójne str. 26/46

27 Wartość średnia funkcjif w obszarzed Przykład. Wysokość nad poziomem morza pewnego terenu jest opisana wzoremw(x,y)=20+sinxcos2y, gdzie (x,y) 0,π π 2,π. Oblicz średnie wzniesienie tego 2 terenu. Twierdzenie: Jeżeli funkcjaf jest ciągła na obszarze normalnym D, to w tym obszarze istnieje punkt(x 0,y 0 ), taki że fśr =f(x 0,y 0 ). Całki podwójne str. 27/46

28 Przekształcenia obszarów na płaszczyźnie Niech R 2 id R 2 będą obszarami odpowiednio na płaszczyznach U OV i XOY. Przekształceniem obszaru wobszard nazywamy funkcję F: D określoną wzorem gdzie(u,v). (x,y)=f(u,v)=(ϕ(u,v),ψ(u,v)), F( ) def ={(x,y):x=ϕ(u,v) y=ψ(u,v) (u,v) }F( )- obraz zbioru. Jeżeli funkcjeϕ,ψ są ciągłe na obszarze, to przekształcenief nazywamy ciagłym. Jeżeli różnym punktom obszaru odpowiadają różne punkty jego obrazud, to przekształcenief nazywamy różnowartościowym. Całki podwójne str. 28/46

29 Przekształcenia obszarów na płaszczyźnie J F (u,v)= ϕ u (u,v) ϕ v (u,v) ψ u (u,v) ψ v (u,v) - jakobian przekształceniaf. Twierdzenie: Obraz obszaru przy przekształceniu ciągłym i różnowartościowym jest również obszarem. Przykład: NiechF(u,v)=(u+v,u v) i ={(u,v):0 u1 2 v 4}. Całki podwójne str. 29/46

30 Zamiana zmiennych w całkach podwójnych Niech przekształcenief odwzorowuje różnowartościowo wnętrze obszaru regularnego na wnętrze obszaru regularnegod, funkcjeϕ,ψ mają ciągłe pochodne cząstkowe rzędu pierwszego na pewnym zbiorze otwartym zawierającym obszar, funkcjaf będzie ciągła na obszarzed, J F (u,v) 0, dla(u,v) int. Wtedy f(x,y)dxdy= f(ϕ(u,v),ψ(u,v)) J F (u,v) dudv. D Całki podwójne str. 30/46

31 Przykład NiechD będzie obszarem ograniczonym krzywymi2x+y=2, 2x+y=3,x y= 1 ix y=1. Obliczyć D (x+y)dxdy. Całki podwójne str. 31/46

32 Współrzędne biegunowe w całkach podwójnych Położenie punktua(x,y) na płaszczyźnie można opisać parą liczb (ϕ, ), gdzie: ϕ oznacza miara kąta między dodatnią częścią osiox a promieniem wodzącym punktua,0ϕ<2π lub π<ϕπ, oznacza odległość punktuaod początku układu współrzędnych,0 <. Parę liczb(ϕ, ) nazywamy współrzędnymi biegunowymi punktu płaszczyzny. Całki podwójne str. 32/46

33 Zależność między współrzędnymi biegunowymi i kartezjańskimi B: x= cosϕ y= sinϕ PrzekształcenieB, które każdemu punktowi(ϕ, ) przyporządkowuje punkt(x,y) określony powyższymi wzorami, nazywamy przekształceniem biegunowym. Jakobian przekształcenia biegunowegoj B =. Całki podwójne str. 33/46

34 Twierdzenie - współrzędne biegunowe w całce podwójnej Niech obszar we współrzędnych biegunowych będzie obszarem regularnym funkcjaf będzie ciągła na obszarzed, który jest obrazem obszaru przy przekształceniu biegunowym, tzn.d=b( ). Wtedy f(x,y)dxdy= f( cosϕ, sinϕ) d dϕ. D Całki podwójne str. 34/46

35 Przykład NiechD będzie obszarem ograniczonym krzywąx 2 +y 2 =1. Obliczyć D ln(1+x 2 +y 2 )dxdy. Całki podwójne str. 35/46

36 Przykład NiechD będzie obszarem ograniczonym krzywąx 2 +y 2 =2. Obliczyć D e (x2 +y 2) dxdy. Całki podwójne str. 36/46

37 Zastosowania całek podwójnych w geometrii Pole obszaru Pole obszaru regularnegod R 2 wyraża się wzorem: D = D dxdy. Całki podwójne str. 37/46

38 Zastosowania całek podwójnych w geometrii Objętość bryły Objętość bryłyv położonej nad obszarem regularnymd R 2 i ograniczonej z dołu i z góry odpowiednio wykresami funkcji ciągłych z = d(x, y) i z = g(x, y) wyraża się wzorem: V = D [g(x,y) d(x,y)]dxdy. Całki podwójne str. 38/46

39 Zastosowania całek podwójnych w geometrii Pole płata Pole płataσ, który jest wykresem funkcjiz=f(x,y), gdzie (x, y) D wyraża się wzorem: Σ = D 1+( f x ) 2 + ( ) f 2 dxdy. y Całki podwójne str. 39/46

40 Zastosowania całek podwójnych w mechanice Masa obszaru Masa obszarud R 2 o gęstości powierzchniowej masyρwyraża się wzorem: M= D ρ(x, y)dxdy. Całki podwójne str. 40/46

41 Zastosowania całek podwójnych w mechanice Momenty statyczne Momenty statyczne względem osiox ioy obszarud R 2 o gęstości powierzchniowej masyρwyrażają się wzorami: MS x = D yρ(x, y)dxdy, MS y = D xρ(x, y)dxdy. Całki podwójne str. 41/46

42 Zastosowania całek podwójnych w mechanice Współrzędne środka masy Współrzędne środka masy obszarud R 2 o gęstości powierzchniowej masyρwyrażają się wzorami: x C = MS y M, y C = MS x M. Całki podwójne str. 42/46

43 Momenty bezwładności Momenty bezwładności względem osiox,oy obszarud R 2 o gęstości powierzchniowej masyρwyrażają się wzorami: I x = D y 2 (x,y)dxdy, I y = D x 2 (x,y)dxdy. Całki podwójne str. 43/46

44 Moment bezwładności względem punktuo(0,0) Moment bezwładności względem punktuo(0,0) obszarud R 2 o gęstości powierzchniowej masyρwyraża się wzorem: I O = D (x 2 +y 2 ) (x,y)dxdy. Całki podwójne str. 44/46

45 Podsumowanie Całki podwójne po prostokącie. Całki podwójne po obszarach normalnych. Zamiana zmiennych w całkach podwójnych. Współrzędne biegunowe w całkach podwójnych. Zastosowania całek podwójnych. Całki podwójne str. 45/46

46 Dziękuję za uwagę ;) Całki podwójne str. 46/46

Rachunek całkowy funkcji wielu zmiennych

Rachunek całkowy funkcji wielu zmiennych Rachunek całkowy funkcji wielu zmiennych Całki potrójne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki olitechnika Białostocka 1

Bardziej szczegółowo

Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 2. CAŁKA PODWÓJNA Całka podwójna po prostokącie

Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 2. CAŁKA PODWÓJNA Całka podwójna po prostokącie Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem..1. Całka podwójna po prostokącie.. CAŁKA POWÓJNA.. Całka podwójna po obszarach normalnych..3. Całka podwójna po obszarach regularnych..4.

Bardziej szczegółowo

Całki potrójne. Małgorzata Wyrwas. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Całki potrójne. Małgorzata Wyrwas. Katedra Matematyki Wydział Informatyki Politechnika Białostocka Całki potrójne Całki potrójne po prostopadłościanie. Całki potrójne po obszarach normalnych. Zamiana zmiennych w całkach potrójnych. Zastosowania całek potrójnych. Małgorzata Wyrwas Katedra Matematyki

Bardziej szczegółowo

Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 3. CAŁKA POTRÓJNA

Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 3. CAŁKA POTRÓJNA Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem 1 Całka potrójna po prostopadłościanie CAŁKA POTRÓJNA 2 Całka potrójna po obszarach normalnych Współrzędne walcowe 4 Współrzędne sferyczne

Bardziej szczegółowo

Całka podwójna po prostokącie

Całka podwójna po prostokącie Całka podwójna po prostokącie Rozważmy prostokąt = {(x, y) R : a x b, c y d}, gdzie a, b, c, d R, oraz funkcję dwóch zmiennych f : R ograniczoną w tym prostokącie. rostokąt dzielimy na n prostokątów i

Bardziej szczegółowo

Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej

Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej Definicja całki podwójnej Katedra Matematyki i Ekonomii Matematycznej 25 maja 2016 Definicja całki podwójnej Załóżmy, że f : K R, gdzie K = a, b c, d R 2, jest funkcją ograniczoną. Niech x 0, x 1,...,

Bardziej szczegółowo

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja) Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),

Bardziej szczegółowo

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki WYKŁA Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2005 Spis treści 1. Przestrzenie metryczne. 4 2. Granica i ciągłość funkcji

Bardziej szczegółowo

Rachunek różniczkowy i całkowy w przestrzeniach R n

Rachunek różniczkowy i całkowy w przestrzeniach R n Rachunek różniczkowy i całkowy w przestrzeniach R n Na dzisiejszym wykładzie rozważać będziemy funkcje f : R m R n Każda taka funkcję f można przedstawić jako wektor funkcji (f 1, f 2,, f n ), gdzie każda

Bardziej szczegółowo

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ FUNKCJE WÓCH ZMIENNYCH RZECZYWISTYCH efinicja 1. Niech A będzie dowolnym niepustym zbiorem. Metryką w zbiorze A nazywamy funkcję rzeczywistą d

Bardziej szczegółowo

WYKŁAD 2: CAŁKI POTRÓJNE

WYKŁAD 2: CAŁKI POTRÓJNE WYKŁAD : CAŁKI OTRÓJNE 1 CAŁKI OTRÓJNE O ROSTOADŁOŚCIANIE Oznaczenia w definicji całi po prostopadłościanie: = {(: a x, c y d, p z q} prostopadłościan w przestrzeni; = { 1,,, n } podział prostopadłościanu

Bardziej szczegółowo

Matematyka 2. Elementy analizy wektorowej cz IV Całka powierzchniowa niezorientowana

Matematyka 2. Elementy analizy wektorowej cz IV Całka powierzchniowa niezorientowana Matematyka 2 Elementy analizy wektorowej cz IV Całka powierzchniowa niezorientowana Literatura M.Gewert, Z.Skoczylas; Elementy analizy wektorowej; Oficyna Wydawnicza GiS, Wrocław, 2000 W.Żakowski, W.Kołodziej;

Bardziej szczegółowo

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1 SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,

Bardziej szczegółowo

Określenie całki oznaczonej na półprostej

Określenie całki oznaczonej na półprostej Określenie całki oznaczonej na półprostej Definicja 1 Niech funkcja f : [a, ) R będzie całkowalna na przedziałach [a, T ] dla każdego T > a. Całkę niewłaściwą funkcji f na półprostej [a, ) określamy wzorem

Bardziej szczegółowo

ef 3 (dziedzina, dziedzina naturalna) Niech f : A R, gdzie A jest podzbiorem płaszczyzny lub przestrzeni Zbiór A nazywamy dziedziną funcji f i oznacza

ef 3 (dziedzina, dziedzina naturalna) Niech f : A R, gdzie A jest podzbiorem płaszczyzny lub przestrzeni Zbiór A nazywamy dziedziną funcji f i oznacza FUNKCJE WÓCH I TRZECH ZMIENNYCH (było w semestrze II) ef 1 (funcja dwóch zmiennych) Funcją f dwóch zmiennych oreśloną na zbiorze A R o wartościach w R nazywamy przyporządowanie ażdemu puntowi ze zbioru

Bardziej szczegółowo

RACHUNEK CAŁKOWY FUNKCJI DWÓCH ZMIENNYCH

RACHUNEK CAŁKOWY FUNKCJI DWÓCH ZMIENNYCH RACHUNEK CAŁKOWY FUNKCJI WÓCH ZMIENNYCH einicja całki podwójnej po prostokącie einicja Podziałem prostokąta R ={ : a b c d} inaczej: R = [a b] [c d] nazwam zbiór Pn złożon z prostokątów R R... Rn które

Bardziej szczegółowo

Lista zadań nr 2 z Matematyki II

Lista zadań nr 2 z Matematyki II Lista zadań nr 2 z Matematyki II dla studentów wydziału Architektury, kierunku Gospodarka Przestrzenna. Wyznaczyć dziedzinę funkcji f(x, y) = ln(4 x 2 y 2 ), f(x, y) = x 2 + y 2, f(x, y) = ln(4 x 2 y 2

Bardziej szczegółowo

Całki krzywoliniowe skierowane

Całki krzywoliniowe skierowane Całki krzywoliniowe skierowane Zamiana całki krzywoliniowej skierowanej na całkę pojedyńcza. Twierdzenie Greena. Zastosowania całki krzywoliniowej skierowanej. Małgorzata Wyrwas Katedra Matematyki Wydział

Bardziej szczegółowo

Funkcje dwóch i trzech zmiennych

Funkcje dwóch i trzech zmiennych Funkcje dwóch i trzech zmiennych Niech R 2 = {(x, y) : x, y R} oznacza płaszczyznę, R 3 = {(x, y, z) : x, y, z R} przestrzeń. Odległość punktów będziemy określali następująco: P 1 P 0 = P 1 P 0 = (x 1

Bardziej szczegółowo

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12 Matematyka I Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12 Egzamin Termin: 28.01, godz. 10.15-11.45, sala 309 3 pytania teoretyczne 2 zadania wybór pytań i wybór zadań

Bardziej szczegółowo

Niektóre zastosowania całki krzywoliniowej niezorientowanej 1.Długość l łuku zwykłego gładkiego Γ

Niektóre zastosowania całki krzywoliniowej niezorientowanej 1.Długość l łuku zwykłego gładkiego Γ Niektóre zastosowania całki krzywoliniowej niezorientowanej 1.ługość l łuku zwykłego gładkiego l = 1dl = b a (x (t)) 2 + (y (t) 2 ) + (z (t)) 2 dt 2.Pole powierzchni walcowej = {(x, y, z) : (x, y), 0 z

Bardziej szczegółowo

lim = 0, gdzie d n oznacza najdłuższą przekątną prostokątów

lim = 0, gdzie d n oznacza najdłuższą przekątną prostokątów 9. CAŁKA POWÓJNA 9.. Całka podwójna w prostokącie Niech P będzie prostokątem opisanm na płaszczźnie OXY nierównościami: a < < b, c < < d, a f(,) funkcją określoną i ograniczoną w tm prostokącie. Prostokąt

Bardziej szczegółowo

y(t) = y 0 + R sin t, t R. z(t) = h 2π t

y(t) = y 0 + R sin t, t R. z(t) = h 2π t SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,

Bardziej szczegółowo

Całki powierzchniowe

Całki powierzchniowe Całki powierzchniowe Całki powierzchniowe niezorientowane. Całki powierzchniowe zorientowane. Elementy analizy wektorowej. Twierdzenia Gaussa-Ostrogradskiego oraz tokesa. Małgorzata Wyrwas Katedra Matematyki

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych Wykresy i warstwice funkcji wielu zmiennych. Granice i ciagłość funkcji wielu zmiennych. Pochodne czastkowe funkcji wielu zmiennych. Gradient. Pochodna kierunkowa. Różniczka zupełna.

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 2

ANALIZA MATEMATYCZNA 2 ANALIZA MATEMATYCZNA Opracowanie Marian Gewert Zbigniew Skoczylas ANALIZA MATEMATYCZNA Kolokwia i egzaminy Wydanie dziewiąte powiększone GiS Oficyna Wydawnicza GiS Wrocław Projekt okładki: IMPRESJA Studio

Bardziej szczegółowo

Rachunek caªkowy funkcji wielu zmiennych

Rachunek caªkowy funkcji wielu zmiennych Rachunek caªkowy funkcji wielu zmiennych I. Malinowska, Z. Šagodowski Politechnika Lubelska 8 czerwca 2015 Caªka iterowana podwójna Denicja Je»eli funkcja f jest ci gªa na prostok cie P = {(x, y) : a x

Bardziej szczegółowo

Definicja punktu wewnętrznego zbioru Punkt p jest punktem wewnętrznym zbioru, gdy należy do niego wraz z pewnym swoim otoczeniem

Definicja punktu wewnętrznego zbioru Punkt p jest punktem wewnętrznym zbioru, gdy należy do niego wraz z pewnym swoim otoczeniem Definicja kuli w R n ulą o promieniu r>0 r R i o środku w punkcie p R n nazywamy zbiór {x R n : ρ(xp)

Bardziej szczegółowo

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5 Dystrybucje Marcin Orchel Spis treści 1 Wstęp 1 1.1 Dystrybucje................................... 1 1.2 Pochodna dystrybucyjna............................ 3 1.3 Przestrzenie...................................

Bardziej szczegółowo

Wykłady ostatnie. Rodzinę P podzbiorów przestrzeni X nazywamy σ - algebrą, jeżeli dla A, B P (2) A B P, (3) A \ B P,

Wykłady ostatnie. Rodzinę P podzbiorów przestrzeni X nazywamy σ - algebrą, jeżeli dla A, B P (2) A B P, (3) A \ B P, Wykłady ostatnie CAŁKA LBSGU A Zasadnicza różnica koncepcyjna między całką Riemanna i całką Lebesgue a polega na zamianie ról przestrzeni wartości i przestrzeni argumentów przy konstrukcji sum górnych

Bardziej szczegółowo

Analiza matematyczna 2 zadania z odpowiedziami

Analiza matematyczna 2 zadania z odpowiedziami Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści I Całki niewłaściwe pierwszego rodzaju II Całki niewłaściwe drugiego rodzaju 5 III Szeregi liczbowe 6 IV Szeregi potęgowe

Bardziej szczegółowo

Uniwersytet Warmińsko-Mazurski w Olsztynie

Uniwersytet Warmińsko-Mazurski w Olsztynie Uniwersytet Warmińsko-Mazurski w Olsztynie ZETAW II Całka podwójna.. Obliczyć całki iterowane (a 4 4 2 ( (x + y ( 2 4 ( y x y dy dx y 3 x 2 + y 2 dx dy. 2. Zmienić kolejność całkowania (a (d 2 e ( 2x x

Bardziej szczegółowo

Rachunek całkowy - całka oznaczona

Rachunek całkowy - całka oznaczona SPIS TREŚCI. 2. CAŁKA OZNACZONA: a. Związek między całką oznaczoną a nieoznaczoną. b. Definicja całki oznaczonej. c. Własności całek oznaczonych. d. Zastosowanie całek oznaczonych. e. Zamiana zmiennej

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami

ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami ANALIZA MATEMATYCZNA zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Całki niewłaściwe pierwszego rodzaju Całki niewłaściwe drugiego rodzaju Szeregi liczbowe 4 4 Szeregi potęgowe 5 5

Bardziej szczegółowo

1 Układy równań liniowych

1 Układy równań liniowych 1 Układy równań liniowych 1. Rozwiązać układy równań liniowych metodą eliminacji Gaussa x + 2y z = 4 y 2z = 4x y + z = 0 x y + z = 0 2y + 5z = 1 6x 4y z = 1 x + y t = 1 x + y z = 0 y + z + t = 1 x + +

Bardziej szczegółowo

Całki krzywoliniowe wiadomości wstępne

Całki krzywoliniowe wiadomości wstępne Całki krzywoliniowe wiadomości wstępne Łuk na płaszczyźnie to zbiór punktów (x, y o współrzędnych x = x(t, y = y(t, gdzie (x(t, y(t są funkcjami ciągłymi określonymi na przedziale bez punktów wielokrotnych.

Bardziej szczegółowo

22. CAŁKA KRZYWOLINIOWA SKIEROWANA

22. CAŁKA KRZYWOLINIOWA SKIEROWANA CAŁA RZYWOLINIOWA SIEROWANA Niech łuk o równaniach parametrycznych: x x(t), y y(t), a < t < b, będzie łukiem regularnym skierowanym, tzn łukiem w którym przyjęto punkt A(x(a), y(a)) za początek łuku, zaś

Bardziej szczegółowo

1 Funkcje dwóch zmiennych podstawowe pojęcia

1 Funkcje dwóch zmiennych podstawowe pojęcia 1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej

Bardziej szczegółowo

24. CAŁKA POWIERZCHNIOWA ZORIENTOWANA

24. CAŁKA POWIERZCHNIOWA ZORIENTOWANA 4. CAŁA POWIERZCHNIOWA ZORIENTOWANA Płat powierzchniowy gładki o równaniach parametrycznych: x = x( u, v ), y = y( u, v ), z = z( u, v ),, (u,v) w którym rozróżniamy dwie jego stron dodatnią i ujemną.

Bardziej szczegółowo

7 Twierdzenie Fubiniego

7 Twierdzenie Fubiniego M. Beśka, Wstęp do teorii miary, wykład 7 19 7 Twierdzenie Fubiniego 7.1 Miary produktowe Niech i będą niepustymi zbiorami. Przez oznaczmy produkt kartezjański i tj. zbiór = { (x, y : x y }. Niech E oraz

Bardziej szczegółowo

Rachunek całkowy funkcji wielu zmiennych Całki podwójne i potrójne

Rachunek całkowy funkcji wielu zmiennych Całki podwójne i potrójne Rchunek cłkowy funkcji wielu zmiennych Cłki podwójne i potrójne wykłd z MATEMATYKI Automtyk i Robotyk studi stcjonrne sem. II, rok k. 2009/2010 Ktedr Mtemtyki Wydził Informtyki olitechnik Biłostock 1 Cłki

Bardziej szczegółowo

Elementy analizy wektorowej

Elementy analizy wektorowej Elementy analizy wektorowej Całki krzywoliniowe wykład z MATEMATYKI Automatyka i Robotyka studia niestacjonarne sem. II, rok ak. 2009/2010 Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 2

ANALIZA MATEMATYCZNA 2 ANALIZA MATEMATYCZNA Lista zadań 3/4 Opracowanie: dr Marian Gewert, dr Zbigniew Skoczylas Lista pierwsza Zadanie. Korzystając z definicji zbadać zbieżność podanych całek niewłaściwych pierwszego rodzaju:

Bardziej szczegółowo

Funkcje wielu zmiennych (c.d.)

Funkcje wielu zmiennych (c.d.) Funkcje wielu zmiennych (c.d.) Ekstrema funkcji wielu zmiennych Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Funkcje wielu zmiennych (c.d.) str. 1/40 Minimum lokalne

Bardziej szczegółowo

Całki powierzchniowe w R n

Całki powierzchniowe w R n Całki powierzchniowe w R n Na początek małe uzupełnienie z algebry liniowej. Niech R n k oznacza przestrzeń liniową macierzy o n wierszach i k kolumnach. Dla dowolnej macierzy A R n k, gdzie k n, połóżmy

Bardziej szczegółowo

Zadania do Rozdziału X

Zadania do Rozdziału X Zadania do Rozdziału X 1. 2. Znajdź wszystkie σ-ciała podzbiorów X, gdy X = (i) {1, 2}, (ii){1, 2, 3}. (b) Znajdź wszystkie elementy σ-ciała generowanego przez {{1, 2}, {2, 3}} dla X = {1, 2, 3, 4}. Wykaż,

Bardziej szczegółowo

Wykłady... b i a i. i=1. m(d k ) inf

Wykłady... b i a i. i=1. m(d k ) inf Wykłady... CŁKOWNIE FUNKCJI WIELU ZMIENNYCH Zaczniemy od konstrukcji całki na przedziale domkniętym. Konstrukcja ta jest, w gruncie rzeczy, powtórzeniem definicji całki na odcinku domkniętym w R 1. Przedziałem

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y +x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

Analiza Matematyczna II dla Inżynierii Biomedycznej Lista zadań

Analiza Matematyczna II dla Inżynierii Biomedycznej Lista zadań Analiza Matematyczna II dla Inżynierii Biomedycznej Lista zadań Jacek Cichoń, WPPT PWr, 05/6 Pochodne i całki funkcji jednej zmiennej Zadanie Oblicz pierwszą i drugą pochodną następujących funkcji. f(x)

Bardziej szczegółowo

Elementy analizy wektorowej

Elementy analizy wektorowej Elementy analizy wektorowej Całki powierzchniowe wykład z MATEMATKI Automatyka i robotyka studia niestacjonarne sem. II, rok ak. 2009/2010 Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Bardziej szczegółowo

ANALIZA MATEMATYCZNA

ANALIZA MATEMATYCZNA ANALIZA MATEMATYCZNA TABLICE Spis treści: 1.) Pochodne wzory 2 2.) Całki wzory 3 3.) Kryteria zbieżności szeregów 4 4.) Przybliżona wartość wyrażenia 5 5.) Równanie płaszczyzny stycznej i prostej normalnej

Bardziej szczegółowo

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne Szeregi potęgowe i trygonometryczne Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne str. 1/36 Szereg potęgowy Szeregiem potęgowym o

Bardziej szczegółowo

1 Zmienne losowe wielowymiarowe.

1 Zmienne losowe wielowymiarowe. 1 Zmienne losowe wielowymiarowe. 1.1 Definicja i przykłady. Definicja1.1. Wektorem losowym n-wymiarowym(zmienna losowa n-wymiarowa )nazywamywektorn-wymiarowy,któregoskładowymisązmiennelosowex i dlai=1,,...,n,

Bardziej szczegółowo

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji.

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Pochodna funkcji Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika

Bardziej szczegółowo

Całki oznaczone. Funkcja górnej granicy całkowania. Zastosowania całek oznaczonych. Całki niewłaściwe. Małgorzata Wyrwas

Całki oznaczone. Funkcja górnej granicy całkowania. Zastosowania całek oznaczonych. Całki niewłaściwe. Małgorzata Wyrwas Cłki oznczone Definicj, włsności i oblicznie cłek oznczonych. Wrtość średni funkcji. Funkcj górnej grnicy cłkowni. Zstosowni cłek oznczonych. Cłki niewłściwe. Młgorzt Wyrws Ktedr Mtemtyki Wydził Informtyki

Bardziej szczegółowo

Całki oznaczone. Funkcja górnej granicy całkowania. Zastosowania całek oznaczonych. Całki niewłaściwe. Małgorzata Wyrwas

Całki oznaczone. Funkcja górnej granicy całkowania. Zastosowania całek oznaczonych. Całki niewłaściwe. Małgorzata Wyrwas Cłki oznczone Definicj, włsności i oblicznie cłek oznczonych. Wrtość średni funkcji. Funkcj górnej grnicy cłkowni. Zstosowni cłek oznczonych. Cłki niewłściwe. Młgorzt Wyrws Ktedr Mtemtyki Wydził Informtyki

Bardziej szczegółowo

Funkcje wielu zmiennych (wykład 14; )

Funkcje wielu zmiennych (wykład 14; ) Funkcje wielu zmiennych (wykład 14; 15.01.07) Przestrzeń dwuwymiarowa, oznaczana w literaturze matematycznej symbolem R 2, może być utożsamiona z parami liczb rzeczywistych: R 2 = {(x 1, x 2 ), x 1, x

Bardziej szczegółowo

Matematyka 2. Elementy analizy wektorowej cz V Całka powierzchniowa zorientowana

Matematyka 2. Elementy analizy wektorowej cz V Całka powierzchniowa zorientowana Matematyka 2 Elementy analizy wektorowej cz V Całka powierzchniowa zorientowana Literatura M.Gewert, Z.Skoczylas; Elementy analizy wektorowej; Oficyna Wydawnicza GiS, Wrocław, 2000 W.Żakowski, W.Kołodziej;

Bardziej szczegółowo

1 Przestrzenie metryczne

1 Przestrzenie metryczne 1 Przestrzenie metryczne Definicja 1.1 (metryka) Niech będzie niepustym zbiorem. Funkcję d: R + nazywamy metryką, jeśli spełnia warunki: 1 o d(x, y) = d(y, x) (symetria) 2 o d(x, y) + d(y, z) d(x, z) (nierówność

Bardziej szczegółowo

1 x + 1 dxdy, gdzie obszar D jest ograniczo-

1 x + 1 dxdy, gdzie obszar D jest ograniczo- Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Zad.1 Całkę podwójną przez: a) y =, y =, = 1; b) y =, y =, y = 1; c) y =, y = 1, y = 5; d) y = ln, y = + 1, y = 1; e) y = ln, = e, y = 1;

Bardziej szczegółowo

1 Relacje i odwzorowania

1 Relacje i odwzorowania Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X

Bardziej szczegółowo

Analiza Matematyczna Praca domowa

Analiza Matematyczna Praca domowa Analiza Matematyczna Praca domowa J. de Lucas Zadanie 1. Pokazać, że dla wszystkich n naturalnych ( n ) exp kx k dx 1 dx n = 1 n (e k 1). (0,1) n k=1 n! k=1 Zadanie. Obliczyć dla dowolnego n. (0,1) n (x

Bardziej szczegółowo

Wykład 11. Matematyka 2, semestr letni 2010/2011

Wykład 11. Matematyka 2, semestr letni 2010/2011 Wykład 11. Matematyka 2, semestr letni 21/211 Uwaga! Notatki dotyczące całki Riemanna nie będą zawierały szczegółowych rozwiązań wszystkich przykładów. Wykład11.poświęconyjestcałceRiemannana R n.jakzwyklenajczęściejpracowaćbędziemyna

Bardziej szczegółowo

Matematyki i Nauk Informacyjnych, Zakład Procesów Stochastycznych i Matematyki Finansowej B. Ogólna charakterystyka przedmiotu

Matematyki i Nauk Informacyjnych, Zakład Procesów Stochastycznych i Matematyki Finansowej B. Ogólna charakterystyka przedmiotu Kod przedmiotu TR.SIK205 Nazwa przedmiotu Matematyka II Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Stacjonarne

Bardziej szczegółowo

Opis przedmiotu. Karta przedmiotu - Matematyka II Katalog ECTS Politechniki Warszawskiej

Opis przedmiotu. Karta przedmiotu - Matematyka II Katalog ECTS Politechniki Warszawskiej Kod przedmiotu TR.NIK203 Nazwa przedmiotu Matematyka II Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Niestacjonarne

Bardziej szczegółowo

Rozdział 5. Twierdzenia całkowe. 5.1 Twierdzenie o potencjale. Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej C w przestrzeni

Rozdział 5. Twierdzenia całkowe. 5.1 Twierdzenie o potencjale. Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej C w przestrzeni Rozdział 5 Twierdzenia całkowe 5.1 Twierdzenie o potencjale Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej w przestrzeni trójwymiarowej, I) = A d r, 5.1) gdzie A = A r) jest funkcją polem)

Bardziej szczegółowo

Wstęp. W razie zauważenia jakichś błędów w tym tekście proszę o sygnał, na przykład mailowy: michal.musielak@utp.edu.pl.

Wstęp. W razie zauważenia jakichś błędów w tym tekście proszę o sygnał, na przykład mailowy: michal.musielak@utp.edu.pl. Wstęp Niniejsze opracowanie zawiera notatki z ćwiczeń z matematyki prowadzonych na UTP kierunkach: Budownictwo, Mechanika i Budowa Maszyn, Inżynieria Odnawialnych Źródeł Energii, Transport, Teleinformatyka,

Bardziej szczegółowo

Opis przedmiotu: Matematyka II

Opis przedmiotu: Matematyka II 24.09.2013 Karta - Matematyka II Opis : Matematyka II Kod Nazwa Wersja TR.NIK203 Matematyka II 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

Analiza Matematyczna. Zastosowania Całek

Analiza Matematyczna. Zastosowania Całek Analiza Matematyczna. Zastosowania Całek Aleksander Denisiuk denisiuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 8-45 Gdańsk 9 maja 217

Bardziej szczegółowo

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ FUNKCJE DWÓCH ZMIENNYCH RZECZYWISTYCH Definicja 1. Niech A będzie dowolnym niepustym zbiorem. Metryką w zbiorze A nazywamy funkcję rzeczywistą

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 1

RÓWNANIA RÓŻNICZKOWE WYKŁAD 1 RÓWNANIA RÓŻNICZKOWE WYKŁAD 1 Przedmiot realizowany w układzie wykład 2 godz. tygodniowo ćwiczenia 2 godz. tygodniowo Regulamin zaliczeń www.mini.pw.edu.pl/~figurny 2 Program zajęć Równania różniczkowe

Bardziej szczegółowo

ZASTOSOWANIA CAŁEK OZNACZONYCH

ZASTOSOWANIA CAŁEK OZNACZONYCH YH JJ, MiF UP 13 D BL PÓL FGUR PYŹ e wszystkich wzorach zakładamy, że funkcje: f (x), g(x), r(ϕ), x(t), y(t) sa cia głe w odpowiednich przedziałach oraz że r(ϕ). D BL PÓL FGUR PYŹ Pole obszaru D = {(x,

Bardziej szczegółowo

Całka oznaczona zastosowania (wykład 9; ) Definicja całki oznaczonej dla funkcji ciagłej

Całka oznaczona zastosowania (wykład 9; ) Definicja całki oznaczonej dla funkcji ciagłej Całka oznaczona zastosowania (wykład 9;26.11.7) Definicja całki oznaczonej dla funkcji ciagłej Definicja 1 Załózmy, że funkcja f jest ciagła na przedziale [a, b]. Całkę oznaczona z funkcji ci b a f(x)dx

Bardziej szczegółowo

Rachunek różniczkowy funkcji dwóch zmiennych

Rachunek różniczkowy funkcji dwóch zmiennych Rachunek różniczkowy funkcji dwóch zmiennych Definicja Spis treści: Wykres Ciągłość, granica iterowana i podwójna Pochodne cząstkowe Różniczka zupełna Gradient Pochodna kierunkowa Twierdzenie Schwarza

Bardziej szczegółowo

Obliczanie długości łuku krzywych. Autorzy: Witold Majdak

Obliczanie długości łuku krzywych. Autorzy: Witold Majdak Obliczanie długości łuku krzywych Autorzy: Witold Majdak 7 Obliczanie długości łuku krzywych Autor: Witold Majdak DEFINICJA Definicja : Długość łuku krzywej zadanej parametrycznie Rozważmy krzywą Γ zadaną

Bardziej szczegółowo

Całki niewłaściwe. Całki w granicach nieskończonych

Całki niewłaściwe. Całki w granicach nieskończonych Całki niewłaściwe Całki w granicach nieskończonych Wiemy, co to jest w przypadku skończonego przedziału i funkcji ograniczonej. Okazuje się potrzebne uogólnienie tego pojęcia w różnych kierunkach (przedział

Bardziej szczegółowo

Funkcje wielu zmiennych (c.d.)

Funkcje wielu zmiennych (c.d.) Funkcje wielu zmiennych (c.d.) Pochodne czastkowe. Pochodna kierunkowa. Gradient. Różniczka zupełna. Pochodna odwzorowania. Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Bardziej szczegółowo

Równania różniczkowe. Równania różniczkowe zwyczajne rzędu pierwszego. Małgorzata Wyrwas

Równania różniczkowe. Równania różniczkowe zwyczajne rzędu pierwszego. Małgorzata Wyrwas Równania różniczkowe Równania różniczkowe zwyczajne rzędu pierwszego Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe str. 1/49 Równania różniczkowe

Bardziej szczegółowo

Funkcje dwóch zmiennych, pochodne cząstkowe

Funkcje dwóch zmiennych, pochodne cząstkowe Wykłady z matematyki inżynierskiej Funkcje dwóch zmiennych, pochodne cząstkowe JJ, IMiF UTP 17 f (x, y) DEFINICJA. Funkcja dwóch zmiennych określona w zbiorze D R 2, to przyporządkowanie każdemu punktowi

Bardziej szczegółowo

Zastosowania geometryczne całek

Zastosowania geometryczne całek Matematyka Zastosowania geometryczne całek Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-3 Elblag Matematyka p. 1 Zastosowania geometryczne całek

Bardziej szczegółowo

AB = x a + yb y a + zb z a 1

AB = x a + yb y a + zb z a 1 1. Wektory w przestrzeni trójwymiarowej EFINICJA. Uporzadkowana pare punktów (A, B) nazywamy wektorem i oznaczamy AB. Punkt A to poczatek wektora, punkt B to koniec wektora. EFINICJA. Je±li B = A, to wektor

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw 1 1. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y 1+x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

XI. Rachunek całkowy funkcji wielu zmiennych. 1. Całka podwójna Całka podwójna po prostokącie. Oznaczenia:

XI. Rachunek całkowy funkcji wielu zmiennych. 1. Całka podwójna Całka podwójna po prostokącie. Oznaczenia: XI. Rhunek łkowy funkji wielu zmiennyh. 1. Cłk podwójn. 1.1. Cłk podwójn po prostokąie. Oznzeni: P = {(x, y) R 2 : x b, y d} = [, b] [, d] - prostokąt n płszzyźnie, f(x, y) - funkj określon i ogrnizon

Bardziej szczegółowo

Funkcje dwóch zmiennych

Funkcje dwóch zmiennych Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Funkcje dwóch zmiennych 1. Funkcje dwóch zmiennych: pojęcia podstawowe Definicja 1. Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach

Bardziej szczegółowo

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki WYKŁAD Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2006 Spis treści 1. CIĄGI LICZBOWE 2 1.1. Własności ciągów liczbowych o wyrazach

Bardziej szczegółowo

CAŁKI NIEOZNACZONE C R}.

CAŁKI NIEOZNACZONE C R}. CAŁKI NIEOZNACZONE Definicja 1 Funkcja F jest funkcją pierwotną funkcji f na przedziale I, jeżeli F (x) = f(x) dla każdego x I. Np. funkcjami pierwotnymi funkcji f(x) = sin x na R są cos x, cos x+1, cos

Bardziej szczegółowo

Elementy rachunku różniczkowego i całkowego

Elementy rachunku różniczkowego i całkowego Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami

Bardziej szczegółowo

Wykład 14 i 15. Równania różniczkowe. Równanie o zmiennych rozdzielonych. Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie

Wykład 14 i 15. Równania różniczkowe. Równanie o zmiennych rozdzielonych. Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie Wykład 14 i 15 Równania różniczkowe Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (x, y, y, y,..., y (n) ) = 0 (1) gdzie: y = y(x) niewiadoma funkcja zmiennej rzeczywistej

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 2.2B (2017/18)

ANALIZA MATEMATYCZNA 2.2B (2017/18) ANALIZA MATEMATYCZNA.B (7/8) ANALIZA MATEMATYCZNA.A,.A LISTA. (na ćwiczenia) Całki niewłaściwe Część A. Zadania do samodzielnego rozwiązania, czyli to, co należy umieć z poprzedniego semestru... Podać

Bardziej szczegółowo

Rachunek różniczkowy i całkowy 2016/17

Rachunek różniczkowy i całkowy 2016/17 Rachunek różniczkowy i całkowy 26/7 Zadania domowe w pakietach tygodniowych Tydzień 3-7..26 Zadanie O. Czy dla wszelkich zbiorów A, B i C zachodzą następujące równości: (A B)\C = (A\C) (B\C), A\(B\C) =

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9 Matematyka I Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9 Przykład z fizyki Rozpatrzmy szeregowe połączenie dwu elementów elektronicznych: opornika i diody półprzewodnikowej.

Bardziej szczegółowo

III. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE

III. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE III. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE 1. Pojęcia wstępne Przykład 1.1. (Rozpad substancji promieniotwórczej ) Z doświadczeń wiadomo, że prędkość rozpa pierwiastka promieniotwórczego jest ujemna i proporcjonalna

Bardziej szczegółowo

Z-ZIP-0530 Analiza Matematyczna II Calculus II

Z-ZIP-0530 Analiza Matematyczna II Calculus II KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-ZIP-0530 Analiza Matematyczna II Calculus II A. USYTUOWANIE MODUŁU

Bardziej szczegółowo

1. Definicja granicy właściwej i niewłaściwej funkcji.

1. Definicja granicy właściwej i niewłaściwej funkcji. V. Granica funkcji jednej zmiennej. 1. Definicja granicy właściwej i niewłaściwej funkcji. Definicja 1.1. (sąsiedztwa punktu i sąsiedztwa nieskończoności) Niech x 0 R, r > 0, a, b R. Definiujemy S(x 0,

Bardziej szczegółowo

Matematyka Mathematics. Inżynieria bezpieczeństwa I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny)

Matematyka Mathematics. Inżynieria bezpieczeństwa I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny) KARTA MODUŁU / KARTA PRZEDMIOTU Kod Nazwa Nazwa w języku angielskim Obowiązuje od roku akademickiego 2013/2014 Matematyka Mathematics A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek studiów Poziom kształcenia

Bardziej szczegółowo

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza

Bardziej szczegółowo

Zadania do samodzielnego rozwiązania zestaw 11

Zadania do samodzielnego rozwiązania zestaw 11 Zadania do samodzielnego rozwiązania zestaw 11 1 Podać definicję pochodnej funkcji w punkcie, a następnie korzystając z tej definicji obliczyć ( ) π (a) f, jeśli f(x) = cos x, (e) f (0), jeśli f(x) = 4

Bardziej szczegółowo

5 Równania różniczkowe zwyczajne rzędu drugiego

5 Równania różniczkowe zwyczajne rzędu drugiego 5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =

Bardziej szczegółowo