Funkcje wielu zmiennych (c.d.)

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Funkcje wielu zmiennych (c.d.)"

Transkrypt

1 Funkcje wielu zmiennych (c.d.) Ekstrema funkcji wielu zmiennych Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Funkcje wielu zmiennych (c.d.) str. 1/40

2 Minimum lokalne Niechf:D f R,D f R n będzie funkcjąn-zmiennych. Niech U D f będzie zbiorem otwartym i P 0 (x 01,...,x 0n ) U. Funkcjaf ma w punkciep 0 minimum lokalne, jeżeli istnieje otoczenie U D f punktup 0, takie że dla każdego punktu P U ip P 0 spełniona jest nierówność f(p) f(p 0 ). Funkcjaf ma w punkciep 0 minimum lokalne właściwe, jeżeli istnieje otoczenie U D f punktup 0, takie że dla każdego punktup U ip P 0 spełniona jest nierówność f(p)>f(p 0 ). Funkcje wielu zmiennych (c.d.) str. 2/40

3 Maksimum lokalne Niechf:D f R,D f R n będzie funkcjąn-zmiennych. Niech U D f będzie zbiorem otwartym i P 0 (x 01,...,x 0n ) U. Funkcjaf ma w punkciep 0 maksimum lokalne, jeżeli istnieje otoczenie U D f punktup 0, takie że dla każdego punktu P U ip P 0 spełniona jest nierówność f(p) f(p 0 ). Funkcjaf ma w punkciep 0 maksimum lokalne właściwe, jeżeli istnieje otoczenie U D f punktup 0, takie że dla każdego punktup U ip P 0 spełniona jest nierówność f(p)<f(p 0 ). Funkcje wielu zmiennych (c.d.) str. 3/40

4 Ekstrema lokalne Minima i maksima lokalne nazywamy EKSTREMAMI LOKALNYMI. Funkcje wielu zmiennych (c.d.) str. 4/40

5 Minimum globalne Liczbamjest najmniejsza wartościa funkcjif na zbiorzea D f, jeżeli istnieje punkt P 0 (x 01,...,x 0n ) A, taki że f(p 0 )=m i dla każdego punktup A Liczbęmnazywamy f(p) f(p 0 )=m. minimum globalnym funkcjif na zbiorzea. Funkcje wielu zmiennych (c.d.) str. 5/40

6 Maksimum globalne LiczbaM jest największa wartościa funkcjif na zbiorzea D f, jeżeli istnieje punkt P 0 (x 01,...,x 0n ) A, taki że f(p 0 )=M i dla każdego punktup A LiczbęM nazywamy f(p) f(p 0 )=M. maksimum globalnym funkcjif na zbiorzea. Funkcje wielu zmiennych (c.d.) str. 6/40

7 Ekstrema globalne Minimum i maksimum globalne nazywamy EKSTREMAMI GLOBALNYMI. Funkcje wielu zmiennych (c.d.) str. 7/40

8 Warunek konieczny istnienia ekstremum Jeżeli f ma ekstremum w punkciep 0, istnieja pochodne f,i=1,...,n cząstkowe w punkcie x i P 0, to f x 1 (P 0 )=0, f x 2 (P 0 )=0,..., f x n (P 0 )=0 f(p 0 )=[0,0,...,0]= 0 Funkcje wielu zmiennych (c.d.) str. 8/40

9 Uwaga Z twierdzenia tego wynika, że funkcja może mieć ekstrema tylko w punktach, w których wszystkie jej pochodne cząstkowe są równe 0 albo w punktach, w których przynajmniej jedna pochodna cząstkowa nie istnieje. Zerowanie się pochodnych cząstkowych nie gwarantuje istnienia ekstremum lokalnego. Np. funkcjef(x,y)=x 3,f(x,y)=x 2 y 2 f spełniają warunki x (0,0)=0, f (0,0)=0 i nie y posiadają ekstremów w punkcie(0,0). Funkcje wielu zmiennych (c.d.) str. 9/40

10 Punkty krytyczne PunktP 0 R n, w którym przynajmniej jedna pochodna cząstkowa nie istnieje lub w którym wszystkie pochodne cząstkowe są równe zero nazywamy punktem krytycznym funkcjif Punkt krytycznyp 0, w którym jest spełniony warunek f(p 0 )= 0 nazywamy punktem stacjonarnym funkcjif. Funkcje wielu zmiennych (c.d.) str. 10/40

11 Hesjan Macierz Hf:= 2 f x f 2 f x 2 x 1 x f x 1 x f 2 f x n x 1 x n x f x 1 x n 2 f x 2 x n. 2 f x 2 n nazywamy HESJANEM funkcjif. Hesjan jest macierzą zależną od tych samych zmiennych, od których zależy funkcja. Funkcje wielu zmiennych (c.d.) str. 11/40

12 Rozważmy funkcjęf: R n R oraz zdefiniujmy funkcje i := 2 f x f 2 f x 2 x 1 x f x 1 x f 2 f x i x 1 x i x f x 1 x i 2 f x 2 x i. 2 f x 2 i, i=1,...,n. Zauważmy, że 1 := 2 f x 2 1 i n =dethf. Funkcje wielu zmiennych (c.d.) str. 12/40

13 Warunek wystarczający istnienia ekstremum Załóżmy, że f f f (P 0 )=0, (P 0 )=0,..., (P 0 )=0 x 1 x 2 x n (punktp 0 jest punktem stacjonarnym funkcjif). Jeżeli i (P 0 )>0,dlai=1,2,...,n, to w punkciep 0 funkcjaf ma minimum lokalne właściwe. 1 (P 0 )<0, 2 (P 0 )>0, 3 (P 0 )<0,..., ( 1) i i (P 0 )>0,i=1,...,n, to w punkciep 0 funkcjaf ma maksimum lokalne właściwe. Funkcje wielu zmiennych (c.d.) str. 13/40

14 Uwaga NiechP 0 będzie punktem krytycznym funkcji f: R 2 R. Jeżeli 2 (P 0 )<0, to w punkciep 0 funkcjaf nie ma ekstremum. Np. dlaf(x,y)=x 2 y 2 mamy f x (0,0)=0, f y (0,0)=0 i 2 =dethf= = 4<0, więc funkcjaf nie ma ekstremum w punkcie krytycznym(0,0). Funkcje wielu zmiennych (c.d.) str. 14/40

15 Niechf: R 3 R i Przykład f(x,y,z)=x 2 +y 2 +z 2 xy+x+2z. Wtedy f x =2x y+1, f y =2y x, f z =2z+2. Ponieważ 2x y+1=0 2y x=0 2z+2=0 więcp 0 ( 2 3, 1 3, 1 ) x= 2 3 y= 1 3 z= 1 jest punktem krytycznym., Funkcje wielu zmiennych (c.d.) str. 15/40

16 Przykład f(x,y,z)=x 2 +y 2 +z 2 xy+x+2z Ponadto Hf= i 1 (P 0 )=2>0, 2 (P 0 )=3>0, 3 (P 0 )=6>0, ( więc funkcjaf ma w punkciep 0 2 ) 3, 1 3, 1 minimum lokalne, które wynosi f min =f(p 0 )= = 4 3. Funkcje wielu zmiennych (c.d.) str. 16/40

17 Niechf: R n R,n 2i Wtedy Ponieważ Przykład f(x 1,x 2,...,x n )= x 2 1 x2 2 x2 n. f x i = 2x i,i=1,...,n. 2x 1 =0. 2x n =0 x 1 =0. x n =0 więcp 0 (0,...,0) jest punktem krytycznym., Funkcje wielu zmiennych (c.d.) str. 17/40

18 Przykład f(x 1,x 2,...,x n )= x 2 1 x 2 2 x 2 n Ponadto Hf= i 1 (P 0 )= 2<0, 2 (P 0 )=4>0,..., n (P 0 )=( 2) n, więc ( 1) i i (P 0 )=( 1) i ( 2) i =2 i >0, funkcjaf ma w punkciep 0 (0,...,0) maksimum lokalne, które wynosif max =f(p 0 )=0. Funkcje wielu zmiennych (c.d.) str. 18/40

19 Ekstrema globalne NiechA R n if:a R. JeżeliAjest domknięty i ograniczony, af jest funkcja ciagł a, to funkcjaf osiaga w zbiorzea wartość najmniejsza i największa. Funkcje wielu zmiennych (c.d.) str. 19/40

20 Algorytm znajdowania ekstremów globalnych funkcji na obszarze domkniętym Znajdujemy wszystkie punkty krytyczne wewnątrz zbioruaiobliczmy wartości funkcji w tych punktach. Znajdujemy punkty krytyczne na brzegu obszaru A i obliczmy wartości funkcji w tych punktach. Porównujemy otrzymane wartości funkcji znajdując wartość najmniejszą i największą. Funkcje wielu zmiennych (c.d.) str. 20/40

21 Przykład Niechf:A R 2 R i f(x,y)=x 2 +2xy 4x+8y, gdzieajest trójkątem ograniczonym prostymix=0, y=0ix+y=4. Funkcje wielu zmiennych (c.d.) str. 21/40

22 Przykład Niechf:A R 2 R i f(x,y)=x 2 y 2 +18, gdziea= { (x,y):x 2 +y 2 9 }. Funkcje wielu zmiennych (c.d.) str. 22/40

23 Ekstrema warunkowe Ekstrema funkcjif: D R n R z ograniczeniem g(x 1,x 2,...,x n )=0.nazywamy ekstremami warunkowymi lub względnymi. Jeżeli potrafimy wyliczyć z równania ( ) g(x 1,x 2,...,x n )=0 jedną ze zmiennych, np.x n =φ(x 1,x 2,...,x n ), to możemy podstawić tę zależność zamiast zmiennejx n do wzoru badanej funkcji, redukując w ten sposób liczbę zmiennych o jeden. Funkcje wielu zmiennych (c.d.) str. 23/40

24 Metoda mnożników Lagrange a wyznaczania ekstremów Funkcję warunkowych L(λ,x 1,...,x n )=f(x 1,...,x n )+λ g(x 1,x 2,...,x n ) nazywamy funkcja Lagrange a. Załóżmy, że g(x 01,x 02,...,x 0n )=0 i g(x 01,x 02,...,x 0n ) 0. Twierdzenie: JeżeliP 0 (x 01,x 02,...,x 0n ) jest punktem ekstremalnym, to istnieje λ, taka że( λ,p 0 ) jest punktem krytycznym funkcji Lagrange a, tzn. L λ ( λ,p 0 )=0, L x i ( λ,p 0 )=0,i=1,...,n. Funkcje wielu zmiennych (c.d.) str. 24/40

25 Macierz HL= g 0 x 1 g 2 L x 1 x g g x n x L x 1 x L x 1 x n g 2 L 2 L x 2 x 2 x 1 x... 2 L g 2 L 2 L x n x n x 1 x n x L x 2 n x 2 x n. jest hesjanem funkcji Lagrange a. Funkcje wielu zmiennych (c.d.) str. 25/40

26 Zdefiniujmy W i := g g 0 x 1 g 2 L x 1 x 2 1 g 2 L 2 L x 2 x 2 x 1 x g x i x 2 x i. x L x 1 x L x 1 x i... 2 L... g 2 L 2 L x i x i x 1 x i x L x 2 i, i=2,3,...,n. Funkcje wielu zmiennych (c.d.) str. 26/40

27 Warunek wystarczający istnienia ekstremum warunkowego Załóżmy, że L λ ( λ,p 0 )=0, L x i ( λ,p 0 )=0,i=1,...,n. (( λ,p 0 ) jest punktem krytycznym funkcji Lagrange a). Jeżeli W i (P 0 )<0, dlai=2,3,...,n, to w punkciep 0 funkcja f osiąga minimum względne przy ograniczeniu g(x 1,x 2,...,x n )=0. i W i (P 0 )>0, dlai=2,3,...,n, to w punkciep 0 funkcjaf osiąga maksimum względne przy ograniczeniu g(x 1,x 2,...,x n )=0. Funkcje wielu zmiennych (c.d.) str. 27/40 ( 1)

28 Warunek wystarczający istnienia ekstremum warunkowego Niechn=2iniech( λ,x 0,y 0 ) będzie punktem krytycznym funkcji Lagrange al(λ,x,y)=f(x,y)+λ g(x,y), tzn. L λ ( λ,x 0,y 0 )=0, Jeżeli dethl( λ,x L x ( λ,x 0,y 0 )=0, L y ( λ,x 0,y 0 )=0. 0,y 0 )<0, to w punkcie(x 0,y 0 ) funkcjaf osiąga minimum lokalne warunkowe przy warunku g(x,y)=0. 0,y 0 )>0, to w punkcie(x 0,y 0 ) funkcjaf osiąga maksimum lokalne warunkowe przy warunku g(x,y)=0. Funkcje wielu zmiennych (c.d.) str. 28/40 dethl( λ,x

29 Przykład Wyznaczmy ekstrema lokalne funkcjif: R 2 R i f(x,y)= 2x+3y+2 przy ograniczeniux 2 +y 2 1=0. Funkcje wielu zmiennych (c.d.) str. 29/40

30 Przykład Wyznaczmy ekstrema lokalne funkcjif: R 2 R i f(x,y)=x 2 +y 2 przy ograniczeniux 2 y 2 =1. Funkcje wielu zmiennych (c.d.) str. 30/40

31 Funkcje uwikłane Funkcja uwikłana określoną przez warunek F(x,y)=0 nazywamy każdą funkcję y = ϕ(x), spełniajacą równość F(x, ϕ(x)) = 0 dla wszystkich x z pewnego przedziału I R. Podobnie określa się funkcję uwikłaną x=ψ(y), gdzie y J R. Wówczas F x + F y y =0 y = F x F y Funkcje wielu zmiennych (c.d.) str. 31/40

32 Przykłady Funkcja y= 1 x 2 jest funkcją uwikłaną określoną w przedziale 1,1 za pomocą równania x 2 +y 2 1=0 ponieważ dla każdegox 1,1 spełniony jest warunek x 2 + ( 1 x 2) 2 1=0. Równanie x 2 +y 2 +1=0 nie określa żadnej funkcji. Funkcje wielu zmiennych (c.d.) str. 32/40

33 Twierdzenie o istnieniu i różniczkowalności funkcji uwikłanej Jeżeli funkcjaf ma ciągłe pochodne cząstkowe pierwszego rzędu na otoczeniu punktu(x 0,y 0 ) i spełnia warunki 1 F(x 0,y 0 )=0 2 F y (x 0,y 0 ) 0, to na pewnym otoczeniu O punktux 0 istnieje jednoznacznie określona funkcja uwikłana y = ϕ(x) spełniająca warunki: dla każdegoxztego otoczenia, 0 )=y 0, F(x,ϕ(x))=0 ϕ(x =ϕ (x)= F x (x,ϕ(x)) F y (x,ϕ(x)), dla każdegox O. Funkcje wielu zmiennych (c.d.) str. 33/40 y

34 Przykłady Niechx+siny=xy. Obliczy (0)=... i y (0)=... Niechx=y+lny. Obliczy =... iy =... Napisz równanie stycznej do krzywej określonej równaniemx+x 3 =y 3 +y 5 w punkciea(1,1). Funkcje wielu zmiennych (c.d.) str. 34/40

35 Twierdzenie o ekstremach funkcji uwikłanej Niech funkcjaf będzie określona na otoczeniu punktu(x 0,y 0 ) i niech ma tam ciągłe pochodne cząstkowe rzędu drugiego. Ponadto niech 1 F(x 0,y 0 )=0 2 F x (x 0,y 0 )=0, F y (x 0,y 0 ) 0, 3 A= 2 F x 2(x 0,y 0 ) F y (x 0,y 0 ) 0. Wtedy funkcja uwikłanay=ϕ(x) określona przez równanie F(x,y)=0 ma w punkcie(x 0,y 0 ) ekstremum lokalne właściwe: minimum, gdya>0 maksimum, gdya<0. Funkcje wielu zmiennych (c.d.) str. 35/40

36 Uwaga RównośćF(x 0,y 0 )=0 jest warunkiem koniecznym, a nierówność 2 F x 2(x 0,y 0 ) 0 jest warunkiem wystarczającym istnienia ekstremum funkcji uwikłanej. Prawdziwe jest także analogiczne twierdzenie o ekstremach funkcji uwikłanej postaci x=ψ(y). Funkcje wielu zmiennych (c.d.) str. 36/40

37 Algorytm znajdowania ekstremów lokalnych funkcji uwikłanej 1 Punkty, w których funkcja uwikłana może mieć ekstrema, znajdujemy korzystając z warunku koniecznego istnienia ekstremum. W tym celu rozwiązujemy układ warunków: F F(x,y)=0, x (x,y)=0, F y (x,y) 0, 2 W otrzymanych punktach(x 0,y 0 ) sprawdzamy warunek wystarczający istnienia ekstremum, tj. określamy znak 2 F wyrażenia A= x 2(x 0,y 0 ) 0. Na podstawie znaku tego F y (x 0,y 0 ) wyrażenia ustalamy rodzaj ekstremum. Funkcje wielu zmiennych (c.d.) str. 37/40

38 Przykład Wyznaczyć ekstrema lokalne funkcji uwikłanej y = ϕ(x) określonej przez warunek x 3 +y 3 8xy=0. Funkcje wielu zmiennych (c.d.) str. 38/40

39 Podsumowanie Ekstrema lokalne funkcji wielu zmiennych. Ekstrema globalne funkcji wielu zmiennych. Warunki na istnienie ekstremów lokalnych. Algorytm znajdowania ekstremów globalnych. Ekstrema warunkowe funkcji wielu zmiennych. Funkcje uwikłane. Funkcje wielu zmiennych (c.d.) str. 39/40

40 Dziękuję za uwagę Funkcje wielu zmiennych (c.d.) str. 40/40

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji.

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Pochodna funkcji Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika

Bardziej szczegółowo

22 Pochodna funkcji definicja

22 Pochodna funkcji definicja 22 Pochodna funkcji definicja Rozważmy funkcję f : (a, b) R, punkt x 0 b = +. (a, b), dopuszczamy również a = lub Definicja 33 Mówimy, że funkcja f jest różniczkowalna w punkcie x 0, gdy istnieje granica

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji.

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. Twierdzenie 1.1. (Rolle a) Jeżeli funkcja f jest ciągła w przedziale domkniętym

Bardziej szczegółowo

Funkcje wielu zmiennych (c.d.)

Funkcje wielu zmiennych (c.d.) Funkcje wielu zmiennych (c.d.) Pochodne czastkowe. Pochodna kierunkowa. Gradient. Różniczka zupełna. Pochodna odwzorowania. Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Bardziej szczegółowo

1 Pochodne wyższych rzędów

1 Pochodne wyższych rzędów 1 Pochodne wyższych rzędów Definicja 1.1 (Pochodne cząstkowe drugiego rzędu) Niech f będzie odwzorowaniem o wartościach w R m, określonym na zbiorze G R k. Załóżmy, że zbiór tych x G, dla których istnieje

Bardziej szczegółowo

Programowanie matematyczne

Programowanie matematyczne dr Adam Sojda Badania Operacyjne Wykład Politechnika Śląska Programowanie matematyczne Programowanie matematyczne, to problem optymalizacyjny w postaci: f ( x) max przy warunkach g( x) 0 h( x) = 0 x X

Bardziej szczegółowo

Ekstrema globalne funkcji

Ekstrema globalne funkcji SIMR 2013/14, Analiza 1, wykład 9, 2013-12-13 Ekstrema globalne funkcji Definicja: Funkcja f : D R ma w punkcie x 0 D minimum globalne wtedy i tylko (x D) f(x) f(x 0 ). Wartość f(x 0 ) nazywamy wartością

Bardziej szczegółowo

Pochodne wyższych rzędów. Wzór Taylora

Pochodne wyższych rzędów. Wzór Taylora Analiza Matematyczna Pochodne wyższych rzędów. Wzór Taylora Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045

Bardziej szczegółowo

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja

Bardziej szczegółowo

KURS FUNKCJE WIELU ZMIENNYCH

KURS FUNKCJE WIELU ZMIENNYCH KURS FUNKCJE WIELU ZMIENNYCH Lekcja 7 Największe i najmniejsze wartości funkcji (ekstrema globalne) ZADANIE DOMOWE www.etrapez.pl Strona 1 Częśd 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa).

Bardziej szczegółowo

Elementy Modelowania Matematycznego

Elementy Modelowania Matematycznego Elementy Modelowania Matematycznego Wykład 8 Programowanie nieliniowe Spis treści Programowanie nieliniowe Zadanie programowania nieliniowego Zadanie programowania nieliniowego jest identyczne jak dla

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja Politechnika Wrocławska, Wydział Informatyki i Zarządzania Optymalizacja Dla podanych niżej problemów decyzyjnych (zad.1 zad.5) należy sformułować zadania optymalizacji, tj.: określić postać zmiennych

Bardziej szczegółowo

AB = x a + yb y a + zb z a 1

AB = x a + yb y a + zb z a 1 1. Wektory w przestrzeni trójwymiarowej EFINICJA. Uporzadkowana pare punktów (A, B) nazywamy wektorem i oznaczamy AB. Punkt A to poczatek wektora, punkt B to koniec wektora. EFINICJA. Je±li B = A, to wektor

Bardziej szczegółowo

Lokalna odwracalność odwzorowań, odwzorowania uwikłane

Lokalna odwracalność odwzorowań, odwzorowania uwikłane Lokalna odwracalność odwzorowań, odwzorowania uwikłane Katedra Matematyki i Ekonomii Matematycznej Szkoła Główna Handlowa 17 maja 2012 Definicja Mówimy, że odwzorowanie F : X R n, gdzie X R n, jest lokalnie

Bardziej szczegółowo

KURS FUNKCJE WIELU ZMIENNYCH

KURS FUNKCJE WIELU ZMIENNYCH KURS FUNKCJE WIELU ZMIENNYCH Lekcja Ekstrema (lokalne) funkcji wielu zmiennych ZADANIE DOMOWE www.etrapez.pl Strona Częśd : TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie Wykres

Bardziej szczegółowo

Programowanie nieliniowe. Badania operacyjne Wykład 3 Metoda Lagrange a

Programowanie nieliniowe. Badania operacyjne Wykład 3 Metoda Lagrange a Programowanie nieliniowe Badania operacyjne Wykład 3 Metoda Lagrange a Plan wykładu Przykład problemu z nieliniową funkcją celu Sformułowanie problemu programowania matematycznego Podstawowe definicje

Bardziej szczegółowo

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych wyliczamy według wzoru (x, x 2,..., x n ) f(x, x 2,..., x n )

Bardziej szczegółowo

Definicja pochodnej cząstkowej

Definicja pochodnej cząstkowej 1 z 8 gdzie punkt wewnętrzny Definicja pochodnej cząstkowej JeŜeli iloraz ma granicę dla to granicę tę nazywamy pochodną cząstkową funkcji względem w punkcie. Oznaczenia: Pochodną cząstkową funkcji względem

Bardziej szczegółowo

Pochodna funkcji. Zastosowania

Pochodna funkcji. Zastosowania Pochodna funkcji Zastosowania Informatyka (sem.1 2015/16) Analiza Matematyczna Temat 3 1 / 33 Niektóre zastosowania pochodnych 1 Pochodna jako narzędzie do przybliżania wartości 2 Pochodna jako narzędzie

Bardziej szczegółowo

Wykład 6. Matematyka 2, semestr letni 2010/2011 Brak fragmentu dotyczącego twierdzenia o odwzorowaniu odwrotnym

Wykład 6. Matematyka 2, semestr letni 2010/2011 Brak fragmentu dotyczącego twierdzenia o odwzorowaniu odwrotnym Wykład 6. Matematyka 2, semestr letni 2010/2011 Brak fragmentu dotyczącego twierdzenia o odwzorowaniu odwrotnym Niechf: R n RbędziefunkcjąróżniczkowalnąnapewnymobszarzeO R 2.Przyjrzyjmy się zbiorowi f

Bardziej szczegółowo

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe. Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych Wykresy i warstwice funkcji wielu zmiennych. Granice i ciagłość funkcji wielu zmiennych. Pochodne czastkowe funkcji wielu zmiennych. Gradient. Pochodna kierunkowa. Różniczka zupełna.

Bardziej szczegółowo

9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI

9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Ekstrema i monotoniczność funkcji Oznaczmy przez D f dziedzinę funkcji f Mówimy, że funkcja f ma w punkcie 0 D f maksimum lokalne (minimum lokalne), gdy dla każdego

Bardziej szczegółowo

2. Definicja pochodnej w R n

2. Definicja pochodnej w R n 2. Definicja pochodnej w R n Niech będzie dana funkcja f : U R określona na zbiorze otwartym U R n. Pochodną kierunkową w punkcie a U w kierunku wektora u R n nazywamy granicę u f(a) = lim t 0 f(a + tu)

Bardziej szczegółowo

Analiza matematyczna 2 zadania z odpowiedziami

Analiza matematyczna 2 zadania z odpowiedziami Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści I Całki niewłaściwe pierwszego rodzaju II Całki niewłaściwe drugiego rodzaju 5 III Szeregi liczbowe 6 IV Szeregi potęgowe

Bardziej szczegółowo

Temat: Zastosowania pochodnej

Temat: Zastosowania pochodnej Temat: Zastosowania pochodnej A n n a R a j u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga A n n a R a j u r a, M a

Bardziej szczegółowo

Wykład 11 i 12. Informatyka Stosowana. 9 stycznia Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39

Wykład 11 i 12. Informatyka Stosowana. 9 stycznia Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39 Wykład 11 i 12 Informatyka Stosowana 9 stycznia 2017 Informatyka Stosowana Wykład 11 i 12 9 stycznia 2017 1 / 39 Twierdzenie Lagrange a Jeżeli funkcja f spełnia warunki: 1 jest ciagła na [a, b] 2 f istnieje

Bardziej szczegółowo

Metody optymalizacji. notatki dla studentów matematyki semestr zimowy 2015/2016

Metody optymalizacji. notatki dla studentów matematyki semestr zimowy 2015/2016 Metody optymalizacji notatki dla studentów matematyki semestr zimowy 2015/2016 Aktualizacja: 11 stycznia 2016 Spis treści Spis treści 2 1 Wprowadzenie do optymalizacji 1 11 Podstawowe definicje i własności

Bardziej szczegółowo

FUNKCJE WIELU ZMIENNYCH

FUNKCJE WIELU ZMIENNYCH FUNKCJE WIELU ZMIENNYCH 1. Wyznaczyć i narysować dziedziny naturalne podanych funkcji: 4 x 2 y 2 ; (b) g(x, y) = e y x 2 1 ; (c) u(x, y) = arc sin xy; (d) v(x, y) = sin(x 2 + y 2 ); (e) w(x, y) = x sin

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw 1 1. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y 1+x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

Rachunek całkowy funkcji wielu zmiennych

Rachunek całkowy funkcji wielu zmiennych Rachunek całkowy funkcji wielu zmiennych Całki potrójne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki olitechnika Białostocka 1

Bardziej szczegółowo

Funkcje ciagłe. Matematyka. Aleksander Denisiuk. Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza Elblag.

Funkcje ciagłe. Matematyka. Aleksander Denisiuk. Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza Elblag. Matematyka Funkcje ciagłe Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag Matematyka p. 1 Funkcje ciagłe Najnowsza wersja tego dokumentu

Bardziej szczegółowo

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu:

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu: Funkcja jednej zmiennej - przykładowe rozwiązania Zadanie 4 c) Badając przebieg zmienności funkcji postępujemy według poniższego schematu:. Analiza funkcji: (a) Wyznaczenie dziedziny funkcji (b) Obliczenie

Bardziej szczegółowo

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu 1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie

Bardziej szczegółowo

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne Szeregi potęgowe i trygonometryczne Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne str. 1/36 Szereg potęgowy Szeregiem potęgowym o

Bardziej szczegółowo

Wykład 6, pochodne funkcji. Siedlce

Wykład 6, pochodne funkcji. Siedlce Wykład 6, pochodne funkcji Siedlce 20.12.2015 Definicja pochodnej funkcji w punkcie Niech f : (a; b) R i niech x 0 ; x 1 (a; b), x0 x1. Wyrażenie nazywamy ilorazem różnicowym funkcji f między punktami

Bardziej szczegółowo

Zadanie 1. Rozważ funkcję f(x, y) = (x + y)(x + 6)( y 3) określoną na zbiorze R 2.

Zadanie 1. Rozważ funkcję f(x, y) = (x + y)(x + 6)( y 3) określoną na zbiorze R 2. Zadanie 1. Rozważ funkcję f(x, y) = (x + y)(x + 6)( y 3) określoną (ii) (3pt) Zbadaj, czy w punktach A = ( 3, 0), B = (1, 2), C = ( 6, 3) funkcja f ma maksimum lokalne. (iii) (2pt) Zbadaj, czy w punktach

Bardziej szczegółowo

WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU

WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU Karolina Kalińska MATEMATYKA: PRZYKŁADY I ZADANIA Włocławek 2011 REDAKCJA WYDAWNICTWA PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU Matematyka:

Bardziej szczegółowo

Metoda mnożników Lagrange'a

Metoda mnożników Lagrange'a Metoda mnożników Lagrange'a Przemysław Ryś 1. Motywacja i założenia W analizie mikroekonomicznej spotykamy się często z problemem znalezienia miejsca, gdzie zadana funkcja przyjmuje największą lub najmniejszą

Bardziej szczegółowo

Funkcje dwóch zmiennych

Funkcje dwóch zmiennych Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Funkcje dwóch zmiennych 1. Funkcje dwóch zmiennych: pojęcia podstawowe Definicja 1. Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach

Bardziej szczegółowo

2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2.

2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2. 2. ZASTOSOWANIA POCHODNYCH. Koniecznie trzeba znać: twierdzenia o ekstremach (z wykorzystaniem pierwszej i drugiej pochodnej), Twierdzenie Lagrange a, Twierdzenie Taylora (z resztą w postaci Peano, Lagrange

Bardziej szczegółowo

Egzamin podstawowy (wersja przykładowa), 2014

Egzamin podstawowy (wersja przykładowa), 2014 Egzamin podstawowy (wersja przykładowa), Analiza Matematyczna I W rozwiązaniach prosimy formułować lub nazywać wykorzystywane twierdzenia, przytaczać stosowane wzory, uzasadniać wyciągane wnioski oraz

Bardziej szczegółowo

Metoda mnożników Lagrange a i jej zastosowania w ekonomii

Metoda mnożników Lagrange a i jej zastosowania w ekonomii Maciej Grzesiak Metoda mnożników Lagrange a i jej zastosowania w ekonomii 1 Metoda mnożników Lagrange a znajdowania ekstremum warunkowego Pochodna kierunkowa i gradient Dla prostoty ograniczymy się do

Bardziej szczegółowo

5 Równania różniczkowe zwyczajne rzędu drugiego

5 Równania różniczkowe zwyczajne rzędu drugiego 5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu miennch wkład MATEMATYKI Automatka i robotka studia niestacjonarne sem I, rok ak 2009/2010 Katedra Matematki Wdiał Informatki Politechnika Białostocka Niech R ndef ={( 1, 2,, n ): 1 R 2 R

Bardziej szczegółowo

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ

Bardziej szczegółowo

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na

Bardziej szczegółowo

Równania różniczkowe. Równania różniczkowe zwyczajne rzędun,n 2. Małgorzata Wyrwas. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Równania różniczkowe. Równania różniczkowe zwyczajne rzędun,n 2. Małgorzata Wyrwas. Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe Równania różniczkowe zwyczajne rzędun,n 2 Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe str. 1/38 Równania różniczkowe zwyczajne

Bardziej szczegółowo

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Równania różniczkowe pierwszego rzędu Równaniem różniczkowym zwyczajnym pierwszego rzędu nazywamy równanie postaci (R) y = f(x, y). Najogólniejszą

Bardziej szczegółowo

Pochodna funkcji: definicja, podstawowe własności wykład 6

Pochodna funkcji: definicja, podstawowe własności wykład 6 Pochodna funkcji: definicja, podstawowe własności wykład 6 dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu r. akad. 2016/2017 Problem obliczanie prędkości chwilowej Droga

Bardziej szczegółowo

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i

Bardziej szczegółowo

2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. (c.d.

2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. (c.d. 2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. (c.d.) 10 października 2009 r. 20. Która liczba jest większa,

Bardziej szczegółowo

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Leszek Skrzypczak 1. Niech E = {x [0, 1] : x = k 2 n k = 1, 2,... 2 n, n = 1, 2, 3,...} Wówczas: (a) Dla dowolnych liczb wymiernych p, q [0,

Bardziej szczegółowo

1. Podstawy matematyki

1. Podstawy matematyki 1. Podstawy matematyki 1.1. Pola Pole wiąże wielkość fizyczną z położeniem punktu w przestrzeni W przypadku, gdy pole jest zależne od czasu, możemy je zapisać jako. Najprostszym przykładem pola jest pole

Bardziej szczegółowo

Analiza Matematyczna MAEW101

Analiza Matematyczna MAEW101 Analiza Matematyczna MAEW Wydział Elektroniki Listy zadań nr 8-4 (część II) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 5 M.Gewert, Z Skoczylas,

Bardziej szczegółowo

4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze. ϕ : K(x 0, δ) (y 0 η, y 0 + η), taka że

4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze. ϕ : K(x 0, δ) (y 0 η, y 0 + η), taka że 4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze taka że K(x 0, δ) (y 0 η, y 0 + η) R n R, f(x 0, y 0 ) = 0, y f(x 0, y 0 ) 0. Wówczas dla odpowiednio

Bardziej szczegółowo

11. Pochodna funkcji

11. Pochodna funkcji 11. Pochodna funkcji Definicja pochodnej funkcji w punkcie. Niech X R będzie zbiorem niepustym, f:x >R oraz niech x 0 X. Funkcję określoną wzorem, nazywamy ilorazem różnicowym funkcji f w punkcie Mówimy,

Bardziej szczegółowo

Szeregi liczbowe. Szeregi liczbowe i ich kryteria zbieżności. Małgorzata Wyrwas. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Szeregi liczbowe. Szeregi liczbowe i ich kryteria zbieżności. Małgorzata Wyrwas. Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi liczbowe Szeregi liczbowe i ich kryteria zbieżności Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi liczbowe str. 1/25 Szereg liczbowy Niech(a n ) będzie

Bardziej szczegółowo

ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ

ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie minimalizacji bez ograniczeń f(ˆx) = min x R nf(x) f : R n R funkcja ograniczona z dołu Algorytm rozwiazywania Rekurencyjny

Bardziej szczegółowo

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5 Dystrybucje Marcin Orchel Spis treści 1 Wstęp 1 1.1 Dystrybucje................................... 1 1.2 Pochodna dystrybucyjna............................ 3 1.3 Przestrzenie...................................

Bardziej szczegółowo

f(x + x) f(x) . x Pochodne ważniejszych funkcji elementarnych (c) = 0 (x α ) = αx α 1, gdzie α R \ Z (sin x) = cos x (cos x) = sin x

f(x + x) f(x) . x Pochodne ważniejszych funkcji elementarnych (c) = 0 (x α ) = αx α 1, gdzie α R \ Z (sin x) = cos x (cos x) = sin x Iloraz różnicowy Niech x 0 R i niech funkcja y = fx) będzie określona w pewnym otoczeniu punktu x 0. Niech x oznacza przyrost argumentu x może być ujemny!). Wtedy przyrost wartości funkcji wynosi: y =

Bardziej szczegółowo

1 Granice funkcji wielu zmiennych.

1 Granice funkcji wielu zmiennych. AM WNE 008/009. Odpowiedzi do zada«przygotowawczych do czwartego kolokwium. Granice funkcji wielu zmiennych. Zadanie. Zadanie. Pochodne. (a) 0, Granica nie istnieje, (c) Granica nie istnieje, (d) Granica

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne

1 Równania różniczkowe zwyczajne Równania różniczkowe zwyczajne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe Równaniem

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Analiza matematyczna 2 Rok akademicki: 2014/2015 Kod: EME-1-202-s Punkty ECTS: 5 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Mikroelektronika w technice

Bardziej szczegółowo

Zamiana zmiennych w wyrażeniach różniczkowych

Zamiana zmiennych w wyrażeniach różniczkowych Zamiana zmiennych w wyrażeniach różniczkowych Poniższy tekst stanowi treść jednego z moich wykładów dla studentów mechaniki. Postanowiłem go udostępnić szerszemu gronu, dotychczas korzystali z niego wyłącznie

Bardziej szczegółowo

Analiza Matematyczna I Wydział Nauk Ekonomicznych. wykład XI

Analiza Matematyczna I Wydział Nauk Ekonomicznych. wykład XI Analiza Matematyczna I Wydział Nauk Ekonomicznyc wykład XI dr ab. Krzysztof Barański, prof. UW dr Waldemar Pałuba Uniwersytet Warszawski rok akad. 0/3 semestr zimowy Racunek różniczkowy Pocodna funkcji

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Analiza Matematyczna III Mathematical Analysis III Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom przedmiotu: I

Bardziej szczegółowo

20 zorganizowanych w Uczelni (ZZU) Liczba godzin całkowitego 150 nakładu pracy studenta (CNPS)

20 zorganizowanych w Uczelni (ZZU) Liczba godzin całkowitego 150 nakładu pracy studenta (CNPS) Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA.3 A Nazwa w języku angielskim Mathematical Analysis Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

KADD Minimalizacja funkcji

KADD Minimalizacja funkcji Minimalizacja funkcji Poszukiwanie minimum funkcji Foma kwadratowa Metody przybliżania minimum minimalizacja Minimalizacja w n wymiarach Metody poszukiwania minimum Otaczanie minimum Podział obszaru zawierającego

Bardziej szczegółowo

WYDZIAŁ ***** KARTA PRZEDMIOTU

WYDZIAŁ ***** KARTA PRZEDMIOTU 9815Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA.1 A Nazwa w języku angielskim Mathematical Analysis.1 A Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

10 zadań związanych z granicą i pochodną funkcji.

10 zadań związanych z granicą i pochodną funkcji. 0 zadań związanych z granicą i pochodną funkcji Znajdź przedziały monotoniczności funkcji f() 4, określonej dla (0,) W przedziale ( 0,) wyrażenie 4 przyjmuje wartości ujemne, dlatego dla (0,) funkcja f()

Bardziej szczegółowo

Granice funkcji-pojęcie pochodnej

Granice funkcji-pojęcie pochodnej Granice funkcji-pojęcie pochodnej Oznaczenie S(x 0 ) = S(x 0, r) dla pewnego r > 0 Definicja 1 Niech x 0 R oraz niech funkcja f będzie funkcja określona przynajmniej na sasiedztwie S(x 0, r) dla pewnego

Bardziej szczegółowo

Ekstrema funkcji wielu zmiennych.

Ekstrema funkcji wielu zmiennych. Ekstrema funkcji wielu zmiennych. Adam Kiersztyn Lublin 2013 Adam Kiersztyn () Ekstrema funkcji wielu zmiennych. kwiecień 2013 1 / 13 Niech dana b ¾edzie funkcja f (x, y) określona w pewnym otoczeniu punktu

Bardziej szczegółowo

4. Granica i ciągłość funkcji

4. Granica i ciągłość funkcji 4. Granica i ciągłość funkcji W niniejszym rozdziale wprowadzamy pojęcie granicy funkcji, definiujemy funkcje ciągłe i omawiamy ich podstawowe własności. Niech f będzie funkcją określoną na przedziale

Bardziej szczegółowo

Rozdział 7. Różniczkowalność. 7.1 Pochodna funkcji w punkcie

Rozdział 7. Różniczkowalność. 7.1 Pochodna funkcji w punkcie Rozdział 7 Różniczkowalność Jedną z konsekwencji pojęcia granicy funkcji w punkcie jest pojęcie pochodnej funkcji. W rozdziale tym podamy podstawowe charakteryzacje funkcji związane z pojęciem pochodnej.

Bardziej szczegółowo

a 1, a 2, a 3,..., a n,...

a 1, a 2, a 3,..., a n,... III. Ciągi liczbowe. 1. Definicja ciągu liczbowego. Definicja 1.1. Ciągiem liczbowym nazywamy funkcję a : N R odwzorowującą zbiór liczb naturalnych N w zbiór liczb rzeczywistych R i oznaczamy przez {a

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych 13 Zbiory w przestrzeni Definicja Przestrzeni a trójwymiarow a (przestrzeni a) nazywamy zbiór wszystkich trójek uporz adkowanych (x y z) gdzie x y z R. Przestrzeń tȩ oznaczamy symbolem

Bardziej szczegółowo

Pochodna funkcji c.d.-wykład 5 ( ) Funkcja logistyczna

Pochodna funkcji c.d.-wykład 5 ( ) Funkcja logistyczna Pochodna funkcji c.d.-wykład 5 (5.11.07) Funkcja logistyczna Rozważmy funkcję logistyczną y = f 0 (t) = 40 1+5e 0,5t Funkcja f może być wykorzystana np. do modelowania wzrostu masy ziaren kukurydzy (zmienna

Bardziej szczegółowo

Granica funkcji wykład 4

Granica funkcji wykład 4 Granica funkcji wykład 4 dr Mariusz Grządziel 27 października 2008 Problem obliczanie prędkości chwilowej Droga s, jaką przemierzy kulka ołowiana upuszczona z wysokiej wieży po czasie t: s = gt2 2, gdzie

Bardziej szczegółowo

Materiały do ćwiczeń z matematyki - przebieg zmienności funkcji

Materiały do ćwiczeń z matematyki - przebieg zmienności funkcji Materiały do ćwiczeń z matematyki - przebieg zmienności funkcji Kierunek: chemia Specjalność: podstawowa Zadanie 1. Zbadać przebieg zmienności funkcji Rozwiązanie. I Analiza funkcji f(x) = x 3 3x 2 + 2.

Bardziej szczegółowo

Notatki do wykładu z Analizy Matematycznej dla II roku 1 studiów zawodowych z matematyki

Notatki do wykładu z Analizy Matematycznej dla II roku 1 studiów zawodowych z matematyki Notatki do wykładu z nalizy Matematycznej dla II roku 1 studiów zawodowych z matematyki Jarosław Kotowicz Instytut Matematyki Uniwersytet w Białymstoku 23 stycznia 2008 1 c Jarosław Kotowicz 2007 Spis

Bardziej szczegółowo

1. Powtórka ze szkoły. Wykład: 4.10.2004 (4 godziny), ćwiczenia: 7.10.2004, kolokwium nr 1: 11.10.2004

1. Powtórka ze szkoły. Wykład: 4.10.2004 (4 godziny), ćwiczenia: 7.10.2004, kolokwium nr 1: 11.10.2004 ANALIZA MATEMATYCZNA A dla I roku, 2004/2005 1. Powtórka ze szkoły. Wykład: 4.10.2004 (4 godziny), ćwiczenia: 7.10.2004, kolokwium nr 1: 11.10.2004 Obliczyć sumy (postępów arytmetycznych i goemetrycznych):

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU

WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Zał. nr 4 do ZW 33/01 Nazwa w języku polskim: Analiza matematyczna.1 Nazwa w języku angielskim: Mathematical analysis.1 Kierunek

Bardziej szczegółowo

Pochodne wyższych rzędów definicja i przykłady

Pochodne wyższych rzędów definicja i przykłady Pochodne wyższych rzędów definicja i przykłady Pochodne wyższych rzędów Drugą pochodną funkcji nazywamy pochodną pochodnej tej funkcji. Trzecia pochodna jest pochodną drugiej pochodnej; itd. Ogólnie, -ta

Bardziej szczegółowo

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym

Bardziej szczegółowo

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie

Bardziej szczegółowo

SPRAWDZIAN PO KLASIE 1. ROZSZERZENIE

SPRAWDZIAN PO KLASIE 1. ROZSZERZENIE SPRWZIN PO KLSIE. ROZSZERZENIE ZNIE ( PKT) Liczbę 5 7 zaokr aglamy do liczby,6. ład względny tego przybliżenia jest równy ) 0,8% ) 0,008% ) 8% ) 00 5 % ZNIE ( PKT) Wyrażenie x + x dla x > ma wartość )

Bardziej szczegółowo

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO Lp. Temat lekcji Umiejętności Podstawowe Ponadpodstawowe I Granica i pochodna funkcji. Uczeń: Uczeń: 1 Powtórzenie wiadomości o granicy ciągu,

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie rozszerzonym. Klasa 4 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

1. Pochodna funkcji. Twierdzenie Rolle a i twierdzenie Lagrange a.

1. Pochodna funkcji. Twierdzenie Rolle a i twierdzenie Lagrange a. Ćwiczenia 3032010 - omówienie zadań 1-4 z egzaminu poprawkowego Konwersatorium 3032010 - omówienie zadań 5-8 z egzaminu poprawkowego Ćwiczenia 4032010 (zad 445-473) Kolokwium nr 1, 10032010 (do zad 473)

Bardziej szczegółowo

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki nieoznaczone

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki nieoznaczone Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Całki nieoznaczone 1. Definicja całki nieoznaczonej Definicja 1. Funkcja F jest funkcją pierwotną funkcji f na przedziale I, jeżeli F (x) =

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 (1) Nazwa Rachunek różniczkowy i całkowy II (2) Nazwa jednostki prowadzącej Instytut Matematyki przedmiot (3) Kod (4) Studia

Bardziej szczegółowo

Obliczenia naukowe Wykład nr 6

Obliczenia naukowe Wykład nr 6 Obliczenia naukowe Wykład nr 6 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [1] D. Kincaid, W. Cheney, Analiza

Bardziej szczegółowo

Analiza Matematyczna. Zastosowania Całek

Analiza Matematyczna. Zastosowania Całek Analiza Matematyczna. Zastosowania Całek Aleksander Denisiuk denisiuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 8-45 Gdańsk 9 maja 217

Bardziej szczegółowo

Wymagania edukacyjne z matematyki klasa IV technikum

Wymagania edukacyjne z matematyki klasa IV technikum Wymagania edukacyjne z matematyki klasa IV technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: FUNKCJE TRYGONOMETRYCZNE zaznacza kąt w układzie współrzędnych, wskazuje

Bardziej szczegółowo

Równania różniczkowe zwyczajne pierwszego rzędu, cd

Równania różniczkowe zwyczajne pierwszego rzędu, cd Równania różniczkowe zwyczajne pierwszego rzędu, cd Marcin Orchel Spis treści 1 Wstęp 1 1.1 Równania różniczkowe zwyczajne w postaci uwikłanej........... 1 1.1.1 Rozwiązanie w postaci parametrycznej................

Bardziej szczegółowo