Określenie całki oznaczonej na półprostej

Wielkość: px
Rozpocząć pokaz od strony:

Download "Określenie całki oznaczonej na półprostej"

Transkrypt

1 Określenie całki oznaczonej na półprostej Definicja 1 Niech funkcja f : [a, ) R będzie całkowalna na przedziałach [a, T ] dla każdego T > a. Całkę niewłaściwą funkcji f na półprostej [a, ) określamy wzorem o ile ta granica istnieje. Analogicznie a b T f(x)dx = lim f(x)dx T a f(x)dx = b lim f(x)dx S S

2 Określenie całki oznaczonej na prostej Definicja 2 Niech funkcja f : R R będzie całkowalna na przedziałach [S, T ] dla dowolnych S i T takich, że < S < T <. f(x)dx = a gdzie a oznacza dowolną liczbę rzeczywistą. f(x)dx + a f(x)dx, Jeżeli obie całki a f(x)dx i a f(x)dx są zbieżne, to mówimy, że całka niewłaściwa jest zbieżna. f(x)dx

3 Wartość główna całki niewłaściwej Definicja 3 Niech funkcja f : R R będzie całkowalna na przedziałach [ S, S] dla dowolnych S takich, że 0 < S <. Wielkość V P S f(x)dx = lim f(x)dx S S nazywamy wartością główną całki niewłaściwej f(x)dx.

4 Kryteria zbieżności całki niewłaściwej Twierdzenie 1 (Kryterium porównawcze) Jeżeli 0 f(x) g(x) dla każdego x [a, ), to zbieżność a implikuje zbieżność a f(x)dx. Rozbieżność a f(x)dx implikuje rozbieżność a g(x)dx. g(x)dx

5 Twierdzenie 2 (Kryterium ilorazowe) Niech funkcje dodatnie (ujemne) f i g będą całkowalne na przedziałach [a, T ] dla każdego T > a oraz niech gdzie 0 < k <. Wówczas Analogicznie na (, b]. a f(x) lim x g(x) = k, f(x)dx jest zbieżna a g(x)dx jest zbieżna.

6 Zbieżność bezwzględna całki niewłaściwej Definicja 4 Mówimy, że całka a zbieżna. Twierdzenie 3 Jeśli całka a f(x)dx jest zbieżna bezwzględnie gdy a f(x) dx jest f(x)dx jest zbieżna bezwzględnie, to jest zbieżna. Ponadto a f(x)dx f(x) dx. a

7 Całki niewłaściwe drugiego rodzaju Definicja 5 Niech f : (a, b] R będzie nieograniczona na prawostronnym sąsiedztwie punktu a oraz całkowalna na przedziałach [a + ɛ, b] dla każdego 0 < ɛ < b a. o ile ta granica istnieje. b a b f(x)dx = lim f(x)dx ɛ 0 + a+ɛ

8 Szeregi liczbowe Definicja 6 Niech (a n ) będzie ciągiem liczbowym. Szeregiem liczbowym nazywamy ciąg (S n ), gdzie S n = a 1 + a a n. Szereg oznaczamy przez n=1 a n, a n -n-ty wyraz, S n -n-ta suma częściowa szeregu.

9 Definicja 7 Mówimy, że szereg n=1 a n ciągu (S n ). jest zbieżny, jeżeli istnieje skończona granica Oznaczamy: lim n S n = n=1 a n.

10 Jeżeli lim n S n = ( ), to mówimy, że szereg n=1 a n jest rozbieżny do ( ). Jeżeli lim n S n nie istnieje, to mówimy, że szereg jest rozbieżny.

11 Twierdzenie 4 Jeżeli szeregi n=1 a n, n=1 b n są zbieżne i c R, to a) (a n + b n ) = a n + b n, n=1 n=1 n=1 b) ca n = c a n. n=1 n=1

12 Twierdzenie 5 Szereg geometryczny n=0 x n jest zbieżny wtedy i tylko wtedy, gdy x < 1, x n = 1 1 x. n=0

13 Twierdzenie 6 Jeżeli szereg n=1 a n jest zbieżny, to lim n a n = 0. Uwaga 1 Twierdzenie odwrotne nie jest prawdziwe.

14 Kryteria zbieżności szeregów Twierdzenie 7 ( Kryterium całkowe) Niech f : [n 0, ) [0, ), gdzie n 0 N, będzie funkcją nierosnącą. Wówczas szereg f(n) jest zbieżny całka n=1 n 0 f(x)dx jest zbieżna. n+1 f(x)dx R n n f(x)dx, gdzie R n = i=n+1 f(i) jest n tą resztą szeregu i n n 0.

15 Twierdzenie 8 Szereg n=1 1 n p jest zbieżny dla p > 1 i jest rozbieżny dla p 1.

16 Twierdzenie 9 (Kryterium porównacze) Niech 0 a n b n dla każdego n n 0 i niech szereg n=1 b n będzie zbieżny. Wtedy szereg n=1 a n jest zbieżny. Jeśli n=1 a n jest rozbieżny do to szereg n=1 b n jest też rozbieżny do.

17 Twierdzenie 10 (Kryterium ilorazowe) Niech a n, b n > 0 (a n, b n < 0) dla każdego n n 0 oraz niech a n lim = k, n b n gdzie 0 < k <. Wówczas szereg n=1 a n jest zbieżny szereg n=1 b n jest zbieżny.

18 Twierdzenie 11 (Kryterium d Alemberta) 1. Jezeli lim a n+1 < 1, n a n to szereg n=1 a n jest zbieżny. 2. Jeżeli to szereg n=1 a n jest rozbieżny. W przypadku kryterium nie rozstrzyga zbieżności. lim a n+1 > 1, n a n lim a n+1 = 1 n a n

19 Twierdzenie 12 (Kryterium Cauchego) 1. Jezeli n lim a n < 1 n to szereg n=1 a n jest zbieżny. 2. Jeżeli to szereg n=1 a n jest rozbieżny. W przypadku kryterium nie rozstrzyga zbieżności. lim n lim n n a n > 1 n a n = 1

20 Twierdzenie 13 (Leibnitza o zbieżności szeregu naprzemiennego) Jeżeli ciąg (b n ) jest nierosnący od numeru n 0 N i lim n b n = 0 to szereg naprzemienny n=1 ( 1) n+1 b n jest zbieżny. Prawdziwe jest oszacowanie reszty szeregu R n b n+1 dla każdego n n 0.

21 Definicja 8 Mówimy, że szereg n=1 a n jest zbieżny bezwzględnie gdy szereg n=1 a n jest zbieżny. Twierdzenie 14 Jeżeli szereg liczbowy jest zbieżny bezwzględnie to jest zbieżny.

22 Definicja 9 Szereg zbieżny, który nie jest zbieżny bezwzględnie, nazywamy szeregiem zbieżnym warunkowo.

23 Szeregi potęgowe Definicja 10 Szeregiem potęgowym o środku w punkcie x 0 R i współczynnikach c n R, nazywamy szereg postaci c n (x x 0 ) n. n=0

24 Granica górna i dolna ciągu Definicja 11 Niech (k n ) będzie rosnącym ciągiem liczb naturalnych oraz niech (a n ) będzie dowolnym ciągiem. Podciągiem ciągu (a n ) nazywamy ciąg (b n ) określony wzorem b n = a kn, gdzie n N.

25 Twierdzenie 15 Każdy podciąg ciągu zbieżnego (do granicy właściwej lub niewłaściwej) jest zbieżny do tej samej granicy.

26 Definicja 12 Liczba rzeczywista a jest właściwym punktem skupienia ciągu, jeżeli istnieje podciąg tego ciągu zbieżny do granicy a. Symbol ( ) jest niewłaściwym punktem skupienia ciągu, jeżeli istnieje podciąg tego ciągu zbieżny do ( ).

27 Definicja 13 Niech S oznacza zbiór punktów skupienia ciągu (a n ) (właściwych lub niewłaściwych). Wtedy lim n a n = inf S jest granicą dolną ciągu, a jest granicą górną ciągu. lim n a n = sup S

28 Twierdzenie 16 (Kryterium Cauchego) 1. Jezeli n lim n a n < 1 to szereg n=1 a n jest zbieżny. 2. Jeżeli to szereg n=1 a n jest rozbieżny. W przypadku kryterium nie rozstrzyga zbieżności. n lim n a n > 1 n lim n a n = 1

29 Promień zbieżności szeregu potęgowego R = 0 gdy n lim n c n =, gdy n 0 < lim n c n <, gdy n lim n c n = 0. 1 lim n n c n

30 Uwaga 2 R = lim c n, 1 n n - o ile granice w tych wzorach istnieją. R = lim c n n c n+1

31 Twierdzenie 17 (Cauchy ego-hadamarda) Niech 0 < R < będzie promieniem zbieżności szeregu potęgowego n=0 c n (x x 0 ) n. Wtedy szereg ten jest bezwzględnie zbieżny w każdym punkcie przedziału (x 0 R, x 0 + R) i rozbieżny w każdym punkcie zbioru (, x 0 R) (x 0 + R, ).

32 Definicja 14 Przedziałem zbieżności szeregu potęgowego n=0 c n (x x 0 ) n nazywamy zbiór { } x R : szereg c n (x x 0 ) n jest zbieżny. n=0

33 Szereg Taylora funkcji Wzór Taylora Niech f ma w przedziale (x 0 δ, x 0 + δ) pochodne dowolnego rzędu. Wtedy gdzie f(x) = n 1 k=0 f (k) (x 0 ) (x x 0 ) k + R n (x) k! R n (x) = f (n) (c) (x x 0 ) n, n! c-punkt pośredni między x i x o.

34 Twierdzenie 18 Jeżeli dla każdego x (x 0 δ, x 0 + δ) lim n R n (x) = 0, to dla każdego x (x 0 δ, x 0 + δ) f(x) = n=0 f (n) (x 0 ) (x x 0 ) n n!

35 Uwaga 3 Jeżeli istnieje M > 0 takie, że f (n) (x) M dla każdego n N {0} oraz dla każdego x (x 0 δ, x 0 + δ), to lim n R n (x) = 0.

36 Różniczkowanie szeregu potęgowego Twierdzenie 19 Niech 0 < R będzie promieniem zbieżności szeregu potęgowego n=0 c n x n. Wtedy ( c n x n ) = nc n x n 1 dla każdego x ( R, R). n=0 Wniosek 1 Jeżeli f(x) = n=0 c n (x x 0 ) n dla każdego x (x 0 δ, x 0 + δ), gdzie δ > 0, to c n = f (n) (x 0 ) n! dla n = 0, 1,... n=1

37 Całkowanie szeregu potęgowego Twierdzenie 20 Niech 0 < R będzie promieniem zbieżności szeregu n=0 c n x n. Wtedy x ( c n t n c n )dt = 0 n + 1 xn+1 dla każdego x ( R, R). n=0 n=0

38 Twierdzenie 21 (Abela) Jeżeli szereg f(x) = n=0 c n x n jest zbieżny w końcowym przedziale zbieżności (np. w R), to lim f(x) = c n R n. x R n=0

39 Funkcje dwóch i trzech zmiennych Niech R 2 = {(x, y) : x, y R} oznacza płaszczyznę, R 3 = {(x, y, z) : x, y, z R} przestrzeń. Odległość punktów będziemy określali następująco: P 1 P 0 = P 1 P 0 = (x 1 x 0 ) 2 + (y 1 y 0 ) 2, P 0 = (x 0, y 0 ), P 1 = (x 1, y 1 ), (x 1 x 0 ) 2 + (y 1 y 0 ) 2 + (z 1 z 0 ) 2, P 0 = (x 0, y 0, z 0 ), P 1 = (x 1, y 1, z 1 ). Definicja 15 Otoczeniem o promieniu r > 0 punktu P 0 na płaszczyźnie lub w przestrzeni nazywamy zbiór O(P 0, r) = { P R 2 (R 3 ) : P 0 P < r }.

40 Definicja 16 Zbiór jest otwarty, jeżeli każdy punkt tego zbioru jest zawarty w tym zbiorze wraz z pewnym swoim otoczeniem

41 Definicja 17 Funkcją f dwóch (trzech) zmiennych określoną na zbiorze A R 2 (R 3 ) o wartościach w R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej liczby rzeczywistej. z = f(x, y), (x, y) A Zbiór A nazywamy dziedziną funkcji f i oznaczamy przez D f.

42 Definicja 18 Wykresem funkcji dwóch zmiennych nazywamy zbiór {(x, y, f(x, y)) : (x, y) D f }. Definicja 19 Poziomicą wykresu funkcji f, odpowiadającą poziomowi h R, nazywamy zbiór {(x, y) D f : f(x, y) = h}.

43 Niech f będzie określona na zbiorze otwartym D zawierającym punkt (x 0, y 0 ). Definicja 20 f jest ciągła w punkcie (x 0, y 0 ), gdy ɛ>0 δ>0 (x,y) D [( (x x 0 ) 2 + (y y 0 ) 2 < δ) ( f(x, y) f(x 0, y 0 ) < ɛ)]

44 Pochodne cząstkowe Definicja 21 Pochodną cząstkową pierwszego rzędu funkcji f względem x w punkcie (x 0, y 0 ) określamy wzorem o ile ta granica istnieje. f x (x 0, y 0 ) = lim x 0 f(x 0 + x, y 0 ) f(x 0, y 0 ), x Uwaga 4 Niech F (x) = f(x, y 0 ). Wtedy f x (x 0, y 0 ) = F (x 0 ).

45 Analogicznie o ile ta granica istnieje. f y (x 0, y 0 ) = lim y 0 f(x 0, y 0 + y) f(x 0, y 0 ), y Uwaga 5 Niech G(y) = f(x 0, y). Wtedy f y (x 0, y 0 ) = G (y 0 ).

46 Definicja 22 Jeżeli f ma pochodne cząstkowe pierwszego rzędu w każdym punkcie zbioru otwartego D R 2, to funkcje f f (x, y), (x, y), gdzie (x, y) D x y nazywamy pochodnymi cząstkowymi pierwszego rzędu f na zbiorze D.

47 Płaszczyzna styczna Załóżmy, że pochodne cząstkowe f, f są ciągłe w punkcie (x x y 0, y 0 ). Wtedy płaszczyzna o równaniu z = f x (x 0, y 0 )(x x 0 ) + f y (x 0, y 0 )(y y 0 ) + f(x 0, y 0 ) jest styczna do wykresu funkcji z = f(x, y) w punkcie (x 0, y 0, f(x 0, y 0 )).

48 Pochodne cząstkowe wyższych rzędów Niech f ma pochodne f x, f y na zbiorze otwartym D oraz niech (x 0, y 0 ) D. Definicja 23 Pochodne cząstkowe drugiego rzędu f w punkcie (x 0, y 0 ) określamy wzorami: 2 f x (x 0, y 2 0 ) = x ( f x )(x 0, y 0 ) = f xx (x 0, y 0 ) 2 f x y (x 0, y 0 ) = x ( f y )(x 0, y 0 ) = f xy (x 0, y 0 ) 2 f y x (x 0, y 0 ) = y ( f x )(x 0, y 0 ) = f yx (x 0, y 0 ) 2 f y 2 (x 0, y 0 ) = y ( f y )(x 0, y 0 ) = f yy (x 0, y 0 )

49 Twierdzenie 22 (Schwartza o pochodnych mieszanych) Niech pochodne cząstkowe 2 f, 2 f istnieją na otoczeniu punktu (x x y y x 0, y 0 ) oraz będą ciągłe w punkcie (x 0, y 0 ). Wtedy 2 f x y (x 0, y 0 ) = 2 f y x (x 0, y 0 ).

50 Pochodna cząstkowa n-tego rzędu n f y k x l (x 0, y 0 ), gdzie k + l = n -pochodna cząstkowa n-tego rzędu funkcji f w punkcie (x 0, y 0 ) powstała w wyniku l- krotnego różniczkowania względem zmiennej x i następnie k-krotnego różniczkowania względem zmiennej y

51 Pochodne cząstkowe funkcji złożonej Twierdzenie 23 Niech 1. funkcje x = x(u, v), y = y(u, v) mają pochodne cząstkowe pierwszego rzędu w punkcie (u 0, v 0 ), 2. funkcja z = f(x, y) ma ciągłe pochodne cząstkowe pierwszego rzędu w punkcie (x(u 0, v 0 ), y(u 0, v 0 )). Wtedy funkcja złożona F (u, v) = f(x(u, v), y(u, v)) ma w punkcie (u 0, v 0 ) pochodne cząstkowe pierwszego rzędu wyrażone wzorami: F u = f x x u + f y y u, F v = f x x v + f y y v. W szczególności jeśli x = x(t), y = y(t) to df dt = f x dx dt + f y dy dt.

52 Pochodna kierunkowa funkcji Niech v = (v x, v y ) będzie wersorem na płaszczyźnie. Niech f będzie określona na zbiorze otwartym D R 2 oraz niech punkt (x 0, y 0 ) D. Definicja 24 Pochodną kierunkową funkcji f w punkcie (x 0, y 0 ) w kierunku wersora v określamy wzorem: f v (x 0, y 0 ) = lim t 0 + f(x 0 + tv x, y 0 + tv y ) f(x 0, y 0 ). t Uwaga 6 Niech F (t) = f(x 0 + tv x, y 0 + tv y ). Wtedy f v (x 0, y 0 ) = F +(0).

53 Gradient funkcji Definicja 25 Niech istnieją pochodne cząstkowe f x (x 0, y 0 ), f y (x 0, y 0 ). Gradientem funkcji f w punkcie (x 0, y 0 ) nazywamy wektor grad f(x 0, y 0 ) = ( f x (x 0, y 0 ), f y (x 0, y 0 )).

54 Twierdzenie 24 Niech pochodne f, f x y punkcie (x 0, y 0 ) D. Wtedy istnieją na zbiorze otwartym D i będą ciągłe w f v (x 0, y 0 ) = grad f(x 0, y 0 ) v. Interpretacja geometryczna Gradient funkcji w punkcie wskazuje kierunek najszybszego wzrostu funkcji w tym punkcie.

55 Ekstrema lokalne Niech f będzie określona na zbiorze otwartym D zawierającym punkt (x 0, y 0 ). Definicja 26 f ma w punkcie (x 0, y 0 ) minimum lokalne, jeżeli [(x, y) O((x 0, y 0 ), δ) f(x, y) f(x 0, y 0 )]. δ>0 (x,y) D

56 Twierdzenie 25 (Warunek konieczny istnienia ekstremum) Niech f będzie określone na otoczeniu punktu (x 0, y 0 ). Jeśli f ma ekstremum lokalne w (x 0, y 0 ) i istnieją pochodne cząstkowe f (x x 0, y 0 ), f (x y 0, y 0 ) to f x (x 0, y 0 ) = f y (x 0, y 0 ) = 0.

57 Twierdzenie 26 (Warunek wystarczający istnienia ekstremum) Jeżeli f ma ciągłe pochodne cząstkowe rzędu drugiego na otoczeniu punktu (x 0, y 0 ) i f (x x 0, y 0 ) = f (x y 0, y 0 ) = 0 oraz det 2 f (x x 2 0, y 0 ) 2 f (x x y 0, y 0 ) to f ma ekstremum lokalne w (x 0, y 0 ) i jest to : minimum lokalne właściwe, gdy 2 f x 2 (x 0, y 0 ) > 0 albo maksimum lokalne właściwe, gdy 2 f x 2 (x 0, y 0 ) < 0. 2 f (x x y 0, y 0 ) 2 f > 0 (x y 2 0, y 0 ) Uwaga 7 Jeśli det[ ] < 0, to f nie ma w (x 0, y 0 ) ekstremum lokalnego.

58 Ekstrema warunkowe Definicja 27 Funkcja f ma w punkcie (x 0, y 0 ) minimum lokalne właściwe z warunkiem g(x, y) = 0 gdy g(x 0, y 0 ) = 0 i δ>0 (x,y) D [(x, y) S((x 0, y 0 ), δ) g(x, y) = 0] [f(x, y) > f(x 0, y 0 )]

59 Reguła nieoznaczonego czynnika Lagrange a Określamy nową funkcję Φ(x, y) = f(x, y) + λg(x, y) gdzie λ jest stałe. Szukamy punktów, w których Φ może mieć ekstremum lokalne Φ x = f x + λg x = 0, Φ y = f y + λg y = 0. Następnie z układu równań : f x (x, y) + λg x (x, y) = 0, f y (x, y) + λg y (x, y) = 0, g(x, y) = 0 wyznaczamy punkt (x, y), w którym możliwe jest ekstremum funkcji f przy warunku g = 0,

60 Zbiory domknięte Niech A będzie zbiorem na płaszczyźnie lub w przestrzeni: Definicja 28 Punkt P jest punktem brzegowym zbioru A jeżeli O(P, r) A oraz O(P, r) A. r>0 A -dopełnienie zbioru A.

61 Definicja 29 Brzegiem zbioru nazywamy zbiór wszystkich jego punktów brzegowych. Definicja 30 Zbiór jest domknięty jeżeli zawiera swój brzeg.

62 Definicja 31 Zbiór D jest ograniczony jeżeli jest zawarty w otoczeniu pewnego punktu D O(P 0, r). r>0 P 0 Twierdzenie 27 (Weierstrassa o osiąganiu kresów) Jeżeli zbiór D jest domknięty i ograniczony i funkcja f jest ciągła na D, to (x 1,y 1 ) D (x 2,y 2 ) D f(x 1, y 1 ) = sup {f(x, y) : (x, y) D} f(x 2, y 2 ) = inf {f(x, y) : (x, y) D}

63 Znajdowanie wartości największej i najmniejszej funkcji ciągłej na zbiorze domkniętym 1. Na zbiorze otwartym szukamy punktów, w których funkcja może mieć ekstrema lokalne. 2. Na brzegu zbioru szukamy punktów, w których funkcja może mieć ekstrema lokalne (ekstrema warunkowe). Wśród wartości funkcji w tych punktach znajduje się wartość największa i najmniejsza.

64 Całki podwójne Całka podwójna po prostokącie Niech P = {(x, y) : a x b, c y d} = [a, b] [c, d] i P = {P 1, P 2,..., P n } będzie podziałem prostokąta P na prostokąty P k, 1 k n. Oznaczmy -wymiary prostokąta P k, 1 k n, d k = x k, y k -długość przekątnej prostokąta P k, 1 k n, -średnica podziału P, ( x k ) 2 + ( y k ) 2 δ(p) = max {d k : 1 k n} (x k, y k) P k -punkt pośredni k-tego prostokąta podziału P, 1 k n -zbiór punktów pośrednich podziału P. Σ = {(x k, y k) : 1 k n}

65 Niech funkcja f będzie ograniczona na prostokącie P. Definicja 32 Sumę nazywamy sumą całkową. n σ(f, P) = f(x k, yk) x k y k k=1 Ciąg podziałów (P n ) nazywamy ciągiem normalnym podziałów prostokąta P jeżeli lim δ(p n) = 0. n Definicja 33 Całkę podwójną z funkcji f po prostokącie P określamy wzorem P f(x, y)dxdy = lim σ(f, P n) n gdzie (P n ) jest normalnym ciągiem podziałów, o ile granica jest właściwa i taka sama dla dowolnego normalnego ciągu podziałów (P n ) oraz nie zależy od sposobów wyboru punktów pośrednich Σ n

66 Twierdzenie 28 (Warunek wystarczający całkowania funkcji) Funkcja ograniczona w prostokącie P jest całkowalna, jeżeli wszystkie jej punkty nieciągłości leżą na skończonej ilości krzywych postaci y = y(x) lub x = x(y).

67 Twierdzenie 29 Jeżeli f i g są całkowalne na prostokącie P oraz c R, to (f(x, y) + g(x, y))dxdy = f(x, y)dxdy + g(x, y)dxdy, P P P cf(x, y)dxdy = c f(x, y)dxdy, P P f(x, y)dxdy = P P 1 f(x, y)dxdy + P 2 f(x, y)dxdy gdzie {P 1, P 2 } jest podziałem prostokąta P na prostokąty P 1, P 2.

68 Twierdzenie 30 Jeżeli istnieje f(x, y)dxdy oraz istnieje całka d P c x, to P b f(x, y)dxdy = a d dx c f(x, y)dy = d c b dy a f(x, y)dx. f(x, y)dy dla każdego Wniosek 2 Niech funkcja f będzie ciągła na prostokącie P = [a, b] [c, d]. Wtedy P b f(x, y)dxdy = a d dx c f(x, y)dy = d c b dy a f(x, y)dx.

69 Interpretacja geometryczna Niech V = {(x, y, z) : (x, y) P, 0 z f(x, y)}. Wtedy V = P f(x, y)dxdy.

70 Obszary Definicja 34 Zbiór D R 2 (R 3 ) nazywamy obszarem, jeżeli jest otwarty i każde dwa punkty zbioru można połączyć łamaną całkowicie w nim zawartą. Obszar łącznie ze swoim brzegiem nazywamy obszarem domkniętym.

71 Całka podwójna po obszarze Niech f będzie funkcją ograniczoną na obszarze ograniczonym D R 2. Niech P będzie dowolnym prostokątem takim, że D P. Określamy funkcję f (x, y) = { f(x, y) dla (x, y) D 0 dla (x, y) R 2 D. Definicja 35 Całkę podwójną z funkcji f po obszarze D określamy wzorem f(x, y)dxdy = D P f (x, y)dxdy.

72 Definicja 36 a) Obszarem normalnym względem osi Ox nazywamy zbiór {(x, y) : a x b, g(x) y h(x)} gdzie funkcje g i h są ciągłe na [a, b] oraz g(x) < h(x) dla każdego x (a, b). b) Obszarem normalnym względem osi Oy nazywamy zbiór {(x, y) : c y d, p(y) x q(y)} gdzie funkcje p i q są ciągłe na [c, d] oraz p(y) < q(y) dla każdego y (c, d).

73 Twierdzenie 31 Jeżeli funkcja f jest ciągła na obszarze normalnym a) D = {(x, y) : a x b, g(x) y h(x)}, to b f(x, y)dxdy = ( D b)d = {(x, y) : c y d, p(y) x q(y)}, to d f(x, y)dxdy = ( D a c h(x) g(x) q(y) p(y) f(x, y)dy)dx, f(x, y)dx)dy.

74 Całka podwójna po obszarze regularnym Definicja 37 Obszar D, który jest sumą skończonej liczby obszarów normalnych ( względem osi Ox lub Oy ) D 1,..., D n o parami rozłącznych wnętrzach nazywamy obszarem regularnym na płaszczyźnie. Twierdzenie 32 Jeżeli funkcja f jest całkowalna na obszarze regularnym D, to f(x, y)dxdy = D D 1 f(x, y)dxdy D n f(x, y)dxdy.

75 Zamiana zmiennych w całkach podwójnych Niech będą dane dwie płaszczyzny uov i xoy. Na obszarze płaszczyzny uov określona jest para funkcji x = ξ(u, v), y = η(u, v). Zbiór D = {(x, y) : x = ξ(u, v), y = η(u, v), (u, v) } nazywamy obrazem zbioru przez przekształcenie T (u, v) = (ξ(u, v), η(u, v)). Załóżmy, że ξ(u, v) i η(u, v) mają ciągłe pochodne cząstkowe w obszarze. Definicja 38 Jakobianem przekształcenia T (u, v) = (ξ(u, v), η(u, v)) nazywamy funkcję Inne oznaczenie (ξ,η) (u,v) J T (u, v) = det lub D(ξ,η) D(u,v). [ ξ u η u ξ (u, v) η (u, v) ] (u, v) v. (u, v) v

76 Twierdzenie 33 ( o zamianie zmiennych w całce podwójnej ) Niech 1. przekształcenie T (u, v) = (ξ(u, v), η(u, v)) odwzorowuje różnowartościowo wnętrze obszaru regularnego na wnętrze obszaru regularnego D, 2. funkcje ξ, η mają ciągłe pochodne cząstkowe rzędu pierwszego na pewnym zbiorze otwartym zawierającym obszar, 3. funkcja f jest ciągła na obszarze D, 4. jakobian J T 0 wewnątrz obszaru. Wtedy D f(x, y)dxdy = f(ξ(u, v), η(u, v)) J T (u, v) dudv.

77 Współrzędne biegunowe P = (x, y) (ϕ, ρ), gdzie ϕ-miara kąta między dodatnią częścią osi Ox a promieniem wodzącym punktu P 0 ϕ < 2π (albo π < ϕ π), ρ-odległość punktu P od początku układu współrzędnych. { x = ρcosϕ B := y = ρsinϕ. B- przekształcenie, które parze (ϕ, ρ) przyporządkowuje parę (x, y) i J B = ρ.

78 Twierdzenie 34 Niech obszar U we współrzędnych biegunowych będzie obszarem normalnym i ma postać U = {(ϕ, ρ) : α ϕ β, g(ϕ) ρ h(ϕ)}, gdzie funkcje nieujemne g i h są ciągłe na przedziale [α, β] [0, 2π]. Niech f będzie ciągła na obszarze D = B(U). Wtedy f(x, y)dxdy = D U β α [ h(ϕ) g(ϕ) f(ρcosϕ, ρsinϕ)ρdρdϕ = f(ρcosϕ, ρsinϕ)ρdρ]dϕ.

79 Całki potrójne Całka potrójna po prostopadłościanie Niech P = {(x, y, z) : a x b, c y d, p z q} = [a, b] [c, d] [p, q] i P = {P 1, P 2,..., P n } będzie podziałem prostopadłościanu P na prostopadłościany P k, 1 k n. Oznaczmy -wymiary prostopadłościanu P k, 1 k n, d k = x k, y k, z k ( x k ) 2 + ( y k ) 2 + ( z k ) 2 -długość przekątnej prostopadłościanu P k, 1 k n, -średnica podziału P, δ(p) = max {d k : 1 k n} (x k, y k, z k) P k -punkt pośredni k-tego prostopadłościanu podziału P, 1 k n -zbiór punktów pośrednich podziału P. Σ = {(x k, y k, z k) : 1 k n}

80 Niech funkcja f będzie ograniczona na prostopadłościanie P. Definicja 39 Sumę nazywamy sumą całkową. n σ(f, P) = f(x k, yk, zk) x k y k z k k=1 Ciąg podziałów (P n ) nazywamy ciągiem normalnym podziałów prostopadłościanu P jeżeli lim δ(p n) = 0. n Definicja 40 Całkę potrójną z funkcji f po prostopadłościanie P określamy wzorem P f(x, y, z)dxdydz = lim σ(f, P n) n gdzie (P n ) jest normalnym ciągiem podziałów, o ile granica jest właściwa i taka sama dla dowolnego normalnego ciągu podziałów (P n ) oraz nie zależy od sposobów wyboru punktów pośrednich Σ n

81 Interpretacja fizyczna całki potrójnej Niech f oznacza gęstość objętościową masy. Wtedy prostopadłościan P ma masę M = P f(x, y, z)dxdydz.

82 Twierdzenie 35 Jeżeli f i g są całkowalne na prostopadłościanie P oraz α R, β R, to (αf(x, y, z) + βg(x, y, z))dxdydz = α f(x, y, z)dxdydz + β g(x, y, z)dxdydz, P P P f(x, y, z)dxdydz = P P 1 f(x, y, z)dxdydz + f(x, y, z)dxdydz gdzie {P 1, P 2 } jest podziałem prostopadłościanu P na prostopadłościany P 1, P 2. P 2

83 Twierdzenie 36 (O zamianie całki potrójnej na iterowaną) Niech funkcja f będzie ciągła na prostopadłościanie P = [a, b] [c, d] [p, q]. Wtedy P b f(x, y, z)dxdydz = a d dx c q dy p f(x, y, z)dz

84 Całka potrójna po obszarze Niech f będzie funkcją ograniczoną na obszarze ograniczonym V R 3. Niech P będzie dowolnym prostopadłościanem zawierającym obszar V. Określamy funkcję f (x, y, z) = { f(x, y, z) dla (x, y, z) V 0 dla (x, y, z) R 3 V. Definicja 41 Całkę potrójną z funkcji f po obszarze V określamy wzorem V f(x, y, z)dxdydz = f (x, y, z)dxdydz. P

85 Definicja 42 a) Obszarem normalnym względem płaszczyzny xoy nazywamy zbiór {(x, y, z) : (x, y) U, D(x, y) z G(x, y)} gdzie U jest obszarem regularnym na xoy, funkcje D i G są ciągłe na U, przy czym D(x, y) < G(x, y) dla (x, y) należących do wnętrza obszaru U. Analogicznie: b) względem xoz {(x, y, z) : (x, z) U, D(x, z) y G(x, z)} c) względem yoz {(x, y, z) : (y, z) U, D(y, z) x G(y, z)}.

86 Twierdzenie 37 Jeżeli funkcja f jest ciągła na obszarze V = {(x, y, z) : (x, y) U, D(x, y) z G(x, y)} normalnym względem płaszczyzny xoy, gdzie funkcje D i G są ciągłe na obszarze regularnym U, to G(x,y) f(x, y, z)dxdydz = ( f(x, y, z)dz)dxdy. V U Jeżeli gdzie d i g są ciągłe na [a, b], to D(x,y) U = {(x, y) : a x b, d(x) y g(x)}, V f(x, y, z)dxdydz = b a dx g(x) d(x) dy G(x,y) D(x,y) f(x, y, z)dz.

87 Całka potrójna po obszarze regularnym Definicja 43 Obszar V, który jest sumą skończonej liczby obszarów normalnych ( względem płaszczyzn układu ) V 1,..., V n o parami rozłącznych wnętrzach nazywamy obszarem regularnym w przestrzeni. Twierdzenie 38 Jeżeli funkcja f jest całkowalna na obszarze regularnym V, to V f(x, y, z)dxdydz = V 1 f(x, y, z)dxdydz f(x, y, z)dxdydz. V n

88 Zamiana zmiennych w całkach potrójnych Współrzędne walcowe P = (x, y, z) (ϕ, ρ, h), gdzie (ϕ, ρ)- współrzędne biegunowe (x, y), 0 ϕ < 2π, ( π < ϕ π), 0 ρ <, < h < x = ρcosϕ W := y = ρsinϕ z = h. W - przekształcenie, które trójce (ϕ, ρ, h) przyporządkowuje trójkę (x, y, z).

89 Twierdzenie 39 Niech obszar U we współrzędnych walcowych będzie obszarem normalnym i ma postać U = {(ϕ, ρ, h) : α ϕ β, d(ϕ) ρ g(ϕ), D(ϕ, ρ) h G(ϕ, ρ)}, gdzie funkcje nieujemne d i g są ciągłe na przedziale [α, β], a D i G są ciągłe na obszarze {(ϕ, ρ) : α ϕ β, d(ϕ) ρ g(ϕ)}. Jeżeli f jest ciągła na obszarze V = W (U), to β α dϕ g(ϕ) d(ϕ) V f(x, y, z)dxdydz = dρ G(ϕ,ρ) D(ϕ,ρ) f(ρcosϕ, ρsinϕ, h)ρdh.

90 Współrzędne sferyczne P = (x, y, z) (ϕ, ψ, ρ), 0 ϕ < 2π, ( π < ϕ π), π ψ π, 0 ρ <. 2 2 x = S := y = z = ρcosϕcosψ ρsinϕcosψ ρsinψ. S- przekształcenie, które trójce (ϕ, ψ, ρ) przyporządkowuje trójkę (x, y, z).

91 Twierdzenie 40 Niech obszar U we współrzędnych sferycznych będzie obszarem normalnym i ma postać U = {(ϕ, ψ, ρ) : α ϕ β, d(ϕ) ψ g(ϕ), D(ϕ, ψ) ρ G(ϕ, ψ)}, gdzie funkcje d i g są ciągłe na przedziale [α, β], a D i G są ciągłe na obszarze {(ϕ, ψ) : α ϕ β, d(ϕ) ψ g(ϕ)}. Jeżeli f jest ciągła na obszarze V = S(U), to β α dϕ g(ϕ) d(ϕ) dψ G(ϕ,ψ) D(ϕ,ψ) V f(x, y, z)dxdydz = f(ρcosϕcosψ, ρsinϕcosψ, ρsinψ)ρ 2 cosψdρ.

92 Zastosowania całek wielokrotnych Pole płata Σ, który jest wykresem funkcji z = f(x, y), gdzie (x, y) D, wyraża się wzorem Zakładamy, że f x, f y Σ = 1 + ( f D x )2 + ( f y )2 dxdy. są ciągłe na obszarze D.

93 Momenty statyczne względem płaszczyzn układu współrzędnych obszaru U R 3 o gęstości objętościowej masy γ. MS xy = U zγ(x, y, z)dxdydz, MS xz = MS yz = Współrzędne środka masy obszaru U x c = MS yz M U U xγ(x, y, z)dxdydz., y c = MS xz M, z c = MS xy M yγ(x, y, z)dxdydz,

94 Przekształcenie Laplace a Niech funkcja f będzie określona na przedziale [0, ). Definicja 44 Przekształceniem Laplace a funkcji f nazywamy funkcję F (s) = L {f(t)} = gdzie s jest zmienną rzeczywistą. 0 f(t)e st dt,

95 Warunki wystarczające istnienia przekształcenia Laplace a. Twierdzenie 41 Jeżeli f spełnia następujące warunki: 1. ma na każdym przedziale [0, T ], gdzie T > 0, skończoną liczbę punktów nieciągłości pierwszego rodzaju, 2. istnieją C R, M > 0 takie, że to L {f(t)} istnieje dla s > C. f(t) Me Ct dla każdego t 0, Funkcję f spełniającą założenia powyższego twierdzenia będziemy nazywali oryginałem.

96 Linowość przekształcenia Laplace a Twierdzenie 42 Jeżeli istnieją L {f(t)} i L {g(t)} oraz c R, to L {f(t) + g(t)} = L {f(t)} + L {g(t)}, L {cf(t)} = cl {f(t)}.

97 Twierdzenie 43 Jeżeli funkcje f, g są ciągłe i L {f(t)} = L {g(t)}, to f(t) = g(t) dla każdego t [0, ).

98 Własności przekształcenia Laplace a Twierdzenie 44 Niech f będzie oryginałem, i F (s) = L {f(t)}, wtedy 1.L {f(at)} = 1F ( s ), gdzie a > 0, a a 2. L {t n f(t)} = ( 1) n F (n) (s), 3. L {e at f(t)} = F (s a), 4. L {1(t τ)f(t τ)} = e sτ F (s), gdzie τ > 0, 5. L { t 0 f(τ)dτ } = F (s) s. 6. f(0 + ) = lim s sf (s). 7. Jeżeli istnieje granica f(t) w nieskończoności, to lim t f(t) = lim s 0 sf (s).

99 Oznaczmy przez L(R) zbiór funkcji f : R R takich, że całka niewłaściwa jest zbieżna. f(x) dx Definicja 45 Niech f, g L(R). Wtedy funkcję h(x) = nazywamy splotem funkcji f, g i oznaczamy f g. f(y)g(x y)dy Uwaga 8 Niech funkcje f(t) i g(t) będą określone na przedziale [0, ) oraz całkowalne w każdym przedziale [0, T ], gdzie T > 0 wtedy f(t) g(t) = t 0 f(τ)g(t τ)dτ.

100 Twierdzenie 45 (Wzór Borela) Jeżeli funkcje f(t) i g(t) są oryginałami, to L {f(t) g(t)} = L {f(t)} L {g(t)}.

101 Transformata n-tej pochodnej Twierdzenie 46 Jeżeli f oraz jej pochodne f, f,..., f (n 1) są oryginałami, a ponadto funkcja ta ma na przedziale (0, ) ciągłą n-tą pochodną, to istnieje L { f (n) (t) } oraz L { f (n) (t) } = s n L {f(t)} s n 1 f(0 + ) s n 2 f (0 + ) +... sf (n 2) (0 + ) f (n 1) (0 + ).

102 Równania różniczkowe zwyczajne liniowe n-tego rzędu o stałych współczynnikach Definicja 46 Są to równania postaci 1) a n y (n) + a n 1 y (n 1) a 1 y + a 0 y = f, gdzie a n 0, a 0,..., a n -liczby rzeczywiste i f jest funkcją ciągłą w przedziale (a, b). Definicja 47 Rozwiązaniem równania różniczkowego (1) jest każda funkcja y = y(t) n-krotnie różniczkowalna w przedziale określoności (c, d), która spełnia równość dla każdego t (c, d). a n y (n) (t) + a n 1 y (n 1) (t) a 1 y (t) + a 0 y(t) = f(t)

103 Zagadnienie początkowe Znaleźć rozwiązanie y = y(t) równania (1) takie, że gdzie t 0 (a, b) i (y 0, y 1,..., y n 1 ) R n. y(t 0 ) = y 0, y (t 0 ) = y 1,..., y (n 1) (t 0 ) = y n 1 Twierdzenie 47 Każde zagadnienie początkowe ma dokładnie jedno rozwiązanie. Rozwiązanie to jest określone i n-krotnie różniczkowalne w całym przedziale (a, b).

104 Transformata Fouriera Definicja 48 Transformatą Fouriera funkcji f L(R) nazywamy funkcję f(y) = 1 2π f(x)e ixy dx.

105 Twierdzenie 48 Jeżeli f L(R), to transformata f istnieje i jest funkcją ciągłą. Uwaga 9 Jeżeli f L(R) oraz f jest funkcją 1. parzystą, to 2 f(y) = f(x)cosxydx, π 0 2. nieparzystą, to 2 f(y) = i f(x)sinxydx. π 0

106 Transformata odwrotna do transformaty Fouriera Oznaczmy przez L(R) zbiór funkcji F : R C takich, że całka niewłaściwa jest zbieżna. F (x) dx Definicja 49 Transformatą odwrotną do transformaty Fouriera funkcji F L(R) nazywamy funkcję F (x) = 1 F (y)e ixy dy. 2π Zauważmy, że F (x) = F ( x).

107 Twierdzenie 49 Jeśli f L(R), to w każdym punkcie x, w którym funkcja f jest różniczkowalna, f(x) = 1 V P f(y)e ixy dy, 2π gdzie V P T = lim. T T Uwaga 10 Różniczkowalność można zastąpić słabszym warunkiem: Jeżeli istnieje δ > 0 taka, że f jest monotoniczna w S (x, δ) i S + (x, δ) oraz jest ograniczona w O(x, δ) to f(x + ) + f(x ) 2 = 1 V P 2π f(y)e ixy dy.

108 Własności transformaty Fouriera Twierdzenie 50 Niech f L(R) i a R. Wtedy 1. jeżeli g(x) = f(x a), to ĝ(y) = f(y)e iay, 2. jeżeli a 0, g(x) = f( x ), to ĝ(y) = a f(ay), a 3. jeżeli założymy dodatkowo, że f jest funkcją różniczkowalną i f L(R), to f (y) = iy f(y).

109 Twierdzenie 51 Jeżeli f, g L(R), to f g L(R) i f g = 2π f ĝ.

110 Twierdzenie 52 Jeżeli x n f(x) L(R) gdzie n N, to x k f(x)(y) = i k f (k) (y) dla k = 1, 2,..., n.

111 Niezależne zmienne losowe Funkcje f : [0, 1] R, które mają skończoną liczbę punktów nieciągłości, będziemy nazywali zmiennymi losowymi. Oznaczmy przez {f < x} = {t : f(t) < x}. Definicja 50 Dystrybuantą zmiennej losowej f nazywamy funkcję F f (x) = {f<x} (t)dt.

112 Definicja 51 Dystrybuantą typu absolutnie ciągłego nazywamy funkcję postaci F (x) = gdzie p(t) 0, p(t)dt = 1. Funkcję p(x) nazywamy gęstością rozkładu. x p(t)dt,

113 Definicja 52 Zmienne losowe f i g nazywamy niezależnymi, jeśli dla dowolnych x, y R {f<x} {g<y} (t)dt = F f (x)f g (y)

114 Twierdzenie 53 Jeżeli f i g są zmiennymi losowymi niezależnymi o rozkładach typu absolutnie ciągłego z gęstościami p i q to f + g ma rozkład o gęstości p q.

115 Definicja 53 Funkcją charakterystyczną zmiennej losowej f o gęstości rozkładu p nazywamy funkcję ϕ f (t) = 2π p(t). Twierdzenie 54 Jeżeli zmienne losowe f i g o gęstościach rozkładu p i q są niezależne, to ϕ f+g (t) = ϕ f (t) ϕ g (t).

Funkcje dwóch i trzech zmiennych

Funkcje dwóch i trzech zmiennych Funkcje dwóch i trzech zmiennych Niech R 2 = {(x, y) : x, y R} oznacza płaszczyznę, R 3 = {(x, y, z) : x, y, z R} przestrzeń. Odległość punktów będziemy określali następująco: P 1 P 0 = P 1 P 0 = (x 1

Bardziej szczegółowo

Rachunek całkowy funkcji wielu zmiennych

Rachunek całkowy funkcji wielu zmiennych Rachunek całkowy funkcji wielu zmiennych Całki potrójne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki olitechnika Białostocka 1

Bardziej szczegółowo

Analiza matematyczna 2 zadania z odpowiedziami

Analiza matematyczna 2 zadania z odpowiedziami Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści I Całki niewłaściwe pierwszego rodzaju II Całki niewłaściwe drugiego rodzaju 5 III Szeregi liczbowe 6 IV Szeregi potęgowe

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami

ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami ANALIZA MATEMATYCZNA zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Całki niewłaściwe pierwszego rodzaju Całki niewłaściwe drugiego rodzaju Szeregi liczbowe 4 4 Szeregi potęgowe 5 5

Bardziej szczegółowo

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja) Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),

Bardziej szczegółowo

Całka podwójna po prostokącie

Całka podwójna po prostokącie Całka podwójna po prostokącie Rozważmy prostokąt = {(x, y) R : a x b, c y d}, gdzie a, b, c, d R, oraz funkcję dwóch zmiennych f : R ograniczoną w tym prostokącie. rostokąt dzielimy na n prostokątów i

Bardziej szczegółowo

II. FUNKCJE WIELU ZMIENNYCH

II. FUNKCJE WIELU ZMIENNYCH II. FUNKCJE WIELU ZMIENNYCH 1. Zbiory w przestrzeni R n Ustalmy dowolne n N. Definicja 1.1. Zbiór wszystkich uporzadkowanych układów (x 1,..., x n ) n liczb rzeczywistych, nazywamy przestrzenią n-wymiarową

Bardziej szczegółowo

Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 3. CAŁKA POTRÓJNA

Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 3. CAŁKA POTRÓJNA Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem 1 Całka potrójna po prostopadłościanie CAŁKA POTRÓJNA 2 Całka potrójna po obszarach normalnych Współrzędne walcowe 4 Współrzędne sferyczne

Bardziej szczegółowo

Rachunek różniczkowy i całkowy w przestrzeniach R n

Rachunek różniczkowy i całkowy w przestrzeniach R n Rachunek różniczkowy i całkowy w przestrzeniach R n Na dzisiejszym wykładzie rozważać będziemy funkcje f : R m R n Każda taka funkcję f można przedstawić jako wektor funkcji (f 1, f 2,, f n ), gdzie każda

Bardziej szczegółowo

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ FUNKCJE WÓCH ZMIENNYCH RZECZYWISTYCH efinicja 1. Niech A będzie dowolnym niepustym zbiorem. Metryką w zbiorze A nazywamy funkcję rzeczywistą d

Bardziej szczegółowo

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ FUNKCJE DWÓCH ZMIENNYCH RZECZYWISTYCH Definicja 1. Niech A będzie dowolnym niepustym zbiorem. Metryką w zbiorze A nazywamy funkcję rzeczywistą

Bardziej szczegółowo

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki WYKŁA Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2005 Spis treści 1. Przestrzenie metryczne. 4 2. Granica i ciągłość funkcji

Bardziej szczegółowo

Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 2. CAŁKA PODWÓJNA Całka podwójna po prostokącie

Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 2. CAŁKA PODWÓJNA Całka podwójna po prostokącie Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem..1. Całka podwójna po prostokącie.. CAŁKA POWÓJNA.. Całka podwójna po obszarach normalnych..3. Całka podwójna po obszarach regularnych..4.

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3

Bardziej szczegółowo

Definicja punktu wewnętrznego zbioru Punkt p jest punktem wewnętrznym zbioru, gdy należy do niego wraz z pewnym swoim otoczeniem

Definicja punktu wewnętrznego zbioru Punkt p jest punktem wewnętrznym zbioru, gdy należy do niego wraz z pewnym swoim otoczeniem Definicja kuli w R n ulą o promieniu r>0 r R i o środku w punkcie p R n nazywamy zbiór {x R n : ρ(xp)

Bardziej szczegółowo

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki WYKŁAD Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2006 Spis treści 1. CIĄGI LICZBOWE 2 1.1. Własności ciągów liczbowych o wyrazach

Bardziej szczegółowo

Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej

Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej Definicja całki podwójnej Katedra Matematyki i Ekonomii Matematycznej 25 maja 2016 Definicja całki podwójnej Załóżmy, że f : K R, gdzie K = a, b c, d R 2, jest funkcją ograniczoną. Niech x 0, x 1,...,

Bardziej szczegółowo

Lista zadań nr 2 z Matematyki II

Lista zadań nr 2 z Matematyki II Lista zadań nr 2 z Matematyki II dla studentów wydziału Architektury, kierunku Gospodarka Przestrzenna. Wyznaczyć dziedzinę funkcji f(x, y) = ln(4 x 2 y 2 ), f(x, y) = x 2 + y 2, f(x, y) = ln(4 x 2 y 2

Bardziej szczegółowo

Wykład 7: Szeregi liczbowe i potęgowe. S 1 = a 1 S 2 = a 1 + a 2 S 3 = a 1 + a 2 + a 3. a k

Wykład 7: Szeregi liczbowe i potęgowe. S 1 = a 1 S 2 = a 1 + a 2 S 3 = a 1 + a 2 + a 3. a k Wykład 7: Szeregi liczbowe i potęgowe. Definicja 1. Niech (a n ) - ustalony ciąg liczbowy. Określamy nowy ciąg: S 1 = a 1 S 2 = a 1 + a 2 S 3 = a 1 + a 2 + a 3. S n =. Ciąg sum częściowych (S n ) nazywamy

Bardziej szczegółowo

1 Funkcje dwóch zmiennych podstawowe pojęcia

1 Funkcje dwóch zmiennych podstawowe pojęcia 1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych Wykresy i warstwice funkcji wielu zmiennych. Granice i ciagłość funkcji wielu zmiennych. Pochodne czastkowe funkcji wielu zmiennych. Gradient. Pochodna kierunkowa. Różniczka zupełna.

Bardziej szczegółowo

ANALIZA MATEMATYCZNA

ANALIZA MATEMATYCZNA ANALIZA MATEMATYCZNA TABLICE Spis treści: 1.) Pochodne wzory 2 2.) Całki wzory 3 3.) Kryteria zbieżności szeregów 4 4.) Przybliżona wartość wyrażenia 5 5.) Równanie płaszczyzny stycznej i prostej normalnej

Bardziej szczegółowo

Całki podwójne. Małgorzata Wyrwas. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Całki podwójne. Małgorzata Wyrwas. Katedra Matematyki Wydział Informatyki Politechnika Białostocka Całki podwójne Całki podwójne po prostokacie. Całki podwójne po obszarach normalnych. Zamiana zmiennych w całkach podwójnych. Zastosowania całek podwójnych. Małgorzata Wyrwas Katedra Matematyki Wydział

Bardziej szczegółowo

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji.

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. Twierdzenie 1.1. (Rolle a) Jeżeli funkcja f jest ciągła w przedziale domkniętym

Bardziej szczegółowo

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1 SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,

Bardziej szczegółowo

SZEREGI LICZBOWE I FUNKCYJNE

SZEREGI LICZBOWE I FUNKCYJNE Mając dowolny ciąg można z niego utworzyć nowy ciąg sum częściowych: Ten nowy rodzaj ciągu nazywamy szeregiem liczbowym, a jeśli to mamy do czynienia z nieskończonym szeregiem liczbowym, który oznaczany

Bardziej szczegółowo

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Leszek Skrzypczak 1. Niech E = {x [0, 1] : x = k 2 n k = 1, 2,... 2 n, n = 1, 2, 3,...} Wówczas: (a) Dla dowolnych liczb wymiernych p, q [0,

Bardziej szczegółowo

Analiza Matematyczna MAEW101

Analiza Matematyczna MAEW101 Analiza Matematyczna MAEW Wydział Elektroniki Listy zadań nr 8-4 (część II) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 5 M.Gewert, Z Skoczylas,

Bardziej szczegółowo

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ

Bardziej szczegółowo

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne Szeregi potęgowe i trygonometryczne Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne str. 1/36 Szereg potęgowy Szeregiem potęgowym o

Bardziej szczegółowo

Rachunek różniczkowy funkcji dwóch zmiennych

Rachunek różniczkowy funkcji dwóch zmiennych Rachunek różniczkowy funkcji dwóch zmiennych Definicja Spis treści: Wykres Ciągłość, granica iterowana i podwójna Pochodne cząstkowe Różniczka zupełna Gradient Pochodna kierunkowa Twierdzenie Schwarza

Bardziej szczegółowo

1 Relacje i odwzorowania

1 Relacje i odwzorowania Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 2

ANALIZA MATEMATYCZNA 2 ANALIZA MATEMATYCZNA Lista zadań 3/4 Opracowanie: dr Marian Gewert, dr Zbigniew Skoczylas Lista pierwsza Zadanie. Korzystając z definicji zbadać zbieżność podanych całek niewłaściwych pierwszego rodzaju:

Bardziej szczegółowo

Niektóre zastosowania całki krzywoliniowej niezorientowanej 1.Długość l łuku zwykłego gładkiego Γ

Niektóre zastosowania całki krzywoliniowej niezorientowanej 1.Długość l łuku zwykłego gładkiego Γ Niektóre zastosowania całki krzywoliniowej niezorientowanej 1.ługość l łuku zwykłego gładkiego l = 1dl = b a (x (t)) 2 + (y (t) 2 ) + (z (t)) 2 dt 2.Pole powierzchni walcowej = {(x, y, z) : (x, y), 0 z

Bardziej szczegółowo

ZAKRESY NATERIAŁU Z-1:

ZAKRESY NATERIAŁU Z-1: Załącznik nr 2 do SIWZ Nr postępowania: ZP/47/055/U/13 ZAKRESY NATERIAŁU Z-1: 1) Funkcja rzeczywista jednej zmiennej: ciąg dalszy a) Definicja granicy funkcji, b) Twierdzenie o trzech funkcjach, o granicy

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji

Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji Zadania z analizy matematycznej - sem. I Pochodne funkcji przebieg zmienności funkcji Definicja 1. Niech f : (a b) R gdzie a < b oraz 0 (a b). Dla dowolnego (a b) wyrażenie f() f( 0 ) = f( 0 + ) f( 0 )

Bardziej szczegółowo

Opis przedmiotu. Karta przedmiotu - Matematyka II Katalog ECTS Politechniki Warszawskiej

Opis przedmiotu. Karta przedmiotu - Matematyka II Katalog ECTS Politechniki Warszawskiej Kod przedmiotu TR.NIK203 Nazwa przedmiotu Matematyka II Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Niestacjonarne

Bardziej szczegółowo

Funkcje dwóch zmiennych

Funkcje dwóch zmiennych Funkcje dwóch zmiennych Andrzej Musielak Str Funkcje dwóch zmiennych Wstęp Funkcja rzeczywista dwóch zmiennych to funkcja, której argumentem jest para liczb rzeczywistych, a wartością liczba rzeczywista.

Bardziej szczegółowo

Rachunek całkowy - całka oznaczona

Rachunek całkowy - całka oznaczona SPIS TREŚCI. 2. CAŁKA OZNACZONA: a. Związek między całką oznaczoną a nieoznaczoną. b. Definicja całki oznaczonej. c. Własności całek oznaczonych. d. Zastosowanie całek oznaczonych. e. Zamiana zmiennej

Bardziej szczegółowo

Opis przedmiotu: Matematyka II

Opis przedmiotu: Matematyka II 24.09.2013 Karta - Matematyka II Opis : Matematyka II Kod Nazwa Wersja TR.NIK203 Matematyka II 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów

Bardziej szczegółowo

W. Krysicki, L. Włodarski Analiza matematyczna w zadaniach, część I i II

W. Krysicki, L. Włodarski Analiza matematyczna w zadaniach, część I i II Zalecane podręczniki W. Krysicki, L. Włodarski naliza matematyczna w zadaniach, część I i II c Ł. Pawelec G. M. Fichtenholz Rachunek różniczkowy i całkowy, tom I i II S. Dorosiewicz, J. Kłopotowski, D.

Bardziej szczegółowo

RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ. Wykorzystano: M A T E M A T Y K A Wykład dla studentów Część 1 Krzysztof KOŁOWROCKI

RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ. Wykorzystano: M A T E M A T Y K A Wykład dla studentów Część 1 Krzysztof KOŁOWROCKI RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ Wykorzystano: M A T E M A T Y K A Wykład dla studentów Część 1 Krzyszto KOŁOWROCKI Przyjmijmy, że y (, D, jest unkcją określoną w zbiorze D R oraz niec D Deinicja

Bardziej szczegółowo

22 Pochodna funkcji definicja

22 Pochodna funkcji definicja 22 Pochodna funkcji definicja Rozważmy funkcję f : (a, b) R, punkt x 0 b = +. (a, b), dopuszczamy również a = lub Definicja 33 Mówimy, że funkcja f jest różniczkowalna w punkcie x 0, gdy istnieje granica

Bardziej szczegółowo

Matematyki i Nauk Informacyjnych, Zakład Procesów Stochastycznych i Matematyki Finansowej B. Ogólna charakterystyka przedmiotu

Matematyki i Nauk Informacyjnych, Zakład Procesów Stochastycznych i Matematyki Finansowej B. Ogólna charakterystyka przedmiotu Kod przedmiotu TR.SIK205 Nazwa przedmiotu Matematyka II Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Stacjonarne

Bardziej szczegółowo

Notatki z Analizy Matematycznej 3. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 3. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 3 Jacek M. Jędrzejewski ROZDZIAŁ 6 Różniczkowanie funkcji rzeczywistej 1. Pocodna funkcji W tym rozdziale rozważać będziemy funkcje rzeczywiste określone w pewnym przedziale

Bardziej szczegółowo

1 Szeregi potęgowe. 1.1 Promień zbieżności szeregu potęgowego. Wydział Informatyki, KONWERSATORIUM Z MATEMATYKI, 2008/2009.

1 Szeregi potęgowe. 1.1 Promień zbieżności szeregu potęgowego. Wydział Informatyki, KONWERSATORIUM Z MATEMATYKI, 2008/2009. Szeregi potęgowe Definicja.. Szeregiem potęgowym o środku w punkcie R nazywamy szereg postaci: gdzie x R oraz c n R dla n = 0,, 2,... c n (x ) n, Przyjmujemy, że 0 0 def =. Liczby c n nazywamy współczynnikami

Bardziej szczegółowo

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji.

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Pochodna funkcji Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika

Bardziej szczegółowo

WYDZIAŁ ***** KARTA PRZEDMIOTU

WYDZIAŁ ***** KARTA PRZEDMIOTU 9815Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA.1 A Nazwa w języku angielskim Mathematical Analysis.1 A Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

KARTA PRZEDMIOTU CELE PRZEDMIOTU

KARTA PRZEDMIOTU CELE PRZEDMIOTU WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr do ZW KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA.1 A Nazwa w języku angielskim Mathematical Analysis.1 A Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU

WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Zał. nr 4 do ZW 33/01 Nazwa w języku polskim: Analiza matematyczna.1 Nazwa w języku angielskim: Mathematical analysis.1 Kierunek

Bardziej szczegółowo

y(t) = y 0 + R sin t, t R. z(t) = h 2π t

y(t) = y 0 + R sin t, t R. z(t) = h 2π t SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 2.2B (2017/18)

ANALIZA MATEMATYCZNA 2.2B (2017/18) ANALIZA MATEMATYCZNA.B (7/8) ANALIZA MATEMATYCZNA.A,.A LISTA. (na ćwiczenia) Całki niewłaściwe Część A. Zadania do samodzielnego rozwiązania, czyli to, co należy umieć z poprzedniego semestru... Podać

Bardziej szczegółowo

Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44

Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44 Księgarnia PWN: Ryszard Rudnicki, Wykłady z analizy matematycznej Spis treści Rozdział I. Wstęp do matematyki... 13 1.1. Elementy logiki i teorii zbiorów... 13 1.1.1. Rachunek zdań... 13 1.1.2. Reguły

Bardziej szczegółowo

Całki krzywoliniowe skierowane

Całki krzywoliniowe skierowane Całki krzywoliniowe skierowane Zamiana całki krzywoliniowej skierowanej na całkę pojedyńcza. Twierdzenie Greena. Zastosowania całki krzywoliniowej skierowanej. Małgorzata Wyrwas Katedra Matematyki Wydział

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26 Spis treści Zamiast wstępu... 11 1. Elementy teorii mnogości... 13 1.1. Algebra zbiorów... 13 1.2. Iloczyny kartezjańskie... 15 1.2.1. Potęgi kartezjańskie... 16 1.2.2. Relacje.... 17 1.2.3. Dwa szczególne

Bardziej szczegółowo

TO SĄ ZAGADNIENIA O CHARAKTERZE RACZEJ TEORETYCZNYM PRZYKŁADOWE ZADANIA MACIE PAŃSTWO W MATERIAŁACH ĆWICZENIOWYCH. CIĄGI

TO SĄ ZAGADNIENIA O CHARAKTERZE RACZEJ TEORETYCZNYM PRZYKŁADOWE ZADANIA MACIE PAŃSTWO W MATERIAŁACH ĆWICZENIOWYCH. CIĄGI TO SĄ ZAGADNIENIA O CHARAKTERZE RACZEJ TEORETYCZNYM PRZYKŁADOWE ZADANIA MACIE PAŃSTWO W MATERIAŁACH ĆWICZENIOWYCH. CIĄGI Definicja granicy ciągu Arytmetyczne własności granic przypomnienie Tw. o 3 ciągach

Bardziej szczegółowo

Spis treści. Przedmowa do wydania piątego

Spis treści. Przedmowa do wydania piątego Zadania z matematyki wyższej. Cz. 1, [Logika, równania liniowe, wektory, proste i płaszczyzny, ciągi, szeregi, rachunek różniczkowy, funkcje uwikłane, krzywe i powierzchnie] / Roman Leitner, Wojciech Matuszewski,

Bardziej szczegółowo

WYKŁAD 2: CAŁKI POTRÓJNE

WYKŁAD 2: CAŁKI POTRÓJNE WYKŁAD : CAŁKI OTRÓJNE 1 CAŁKI OTRÓJNE O ROSTOADŁOŚCIANIE Oznaczenia w definicji całi po prostopadłościanie: = {(: a x, c y d, p z q} prostopadłościan w przestrzeni; = { 1,,, n } podział prostopadłościanu

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y +x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Analiza matematyczna 2 Rok akademicki: 2014/2015 Kod: EME-1-202-s Punkty ECTS: 5 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Mikroelektronika w technice

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium 45 30

Wykład Ćwiczenia Laboratorium Projekt Seminarium 45 30 Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA. A Nazwa w języku angielskim Mathematical Analysis. A Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy):

Bardziej szczegółowo

AB = x a + yb y a + zb z a 1

AB = x a + yb y a + zb z a 1 1. Wektory w przestrzeni trójwymiarowej EFINICJA. Uporzadkowana pare punktów (A, B) nazywamy wektorem i oznaczamy AB. Punkt A to poczatek wektora, punkt B to koniec wektora. EFINICJA. Je±li B = A, to wektor

Bardziej szczegółowo

Całki krzywoliniowe wiadomości wstępne

Całki krzywoliniowe wiadomości wstępne Całki krzywoliniowe wiadomości wstępne Łuk na płaszczyźnie to zbiór punktów (x, y o współrzędnych x = x(t, y = y(t, gdzie (x(t, y(t są funkcjami ciągłymi określonymi na przedziale bez punktów wielokrotnych.

Bardziej szczegółowo

FUNKCJE ZESPOLONE Lista zadań 2005/2006

FUNKCJE ZESPOLONE Lista zadań 2005/2006 FUNKJE ZESPOLONE Lista zadań 25/26 Opracowanie: dr Jolanta Długosz Liczby zespolone. Obliczyć wartości podanych wyrażeń: (2 + ) ( ) 2 4 i (5 + i); b) (3 i)( 4 + 2i); c) 4 + i ; d) ( + i) 4 ; e) ( 2 + 3i)

Bardziej szczegółowo

3. Funkcje wielu zmiennych

3. Funkcje wielu zmiennych 3 Funkcje wielu zmiennych 31 Ciagłość Zanim podamy definicję ciagłości dla funkcji wielu zmiennych wprowadzimy bardzo ogólne i abstrakcyjne pojęcie przestrzeni metrycznej Przestrzeń metryczna Metryka w

Bardziej szczegółowo

Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1

Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1 Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1 Zadania rozwiązywane na wykładzie Zadania rozwiązywane na ćwiczeniach Przy rozwiązywaniu zadań najistotniejsze jest wykazanie się rozumieniem

Bardziej szczegółowo

Ekstrema globalne funkcji

Ekstrema globalne funkcji SIMR 2013/14, Analiza 1, wykład 9, 2013-12-13 Ekstrema globalne funkcji Definicja: Funkcja f : D R ma w punkcie x 0 D minimum globalne wtedy i tylko (x D) f(x) f(x 0 ). Wartość f(x 0 ) nazywamy wartością

Bardziej szczegółowo

Wykład 5. Zagadnienia omawiane na wykładzie w dniu r

Wykład 5. Zagadnienia omawiane na wykładzie w dniu r Wykład 5. Zagadnienia omawiane na wykładzie w dniu 14.11.2018r Definicja (iloraz różnicowy) Niech x 0 R oraz niech funkcja f będzie określona przynajmnniej na otoczeniu O(x 0 ). Ilorazem różnicowym funkcji

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 Sylabus do programu kształcenia obowiązującego od roku akademickiego 201/15 (1) Nazwa Rachunek różniczkowy i całkowy I (2) Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot (3)

Bardziej szczegółowo

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych wyliczamy według wzoru (x, x 2,..., x n ) f(x, x 2,..., x n )

Bardziej szczegółowo

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5 Dystrybucje Marcin Orchel Spis treści 1 Wstęp 1 1.1 Dystrybucje................................... 1 1.2 Pochodna dystrybucyjna............................ 3 1.3 Przestrzenie...................................

Bardziej szczegółowo

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i

Bardziej szczegółowo

Funkcje dwóch zmiennych, pochodne cząstkowe

Funkcje dwóch zmiennych, pochodne cząstkowe Wykłady z matematyki inżynierskiej Funkcje dwóch zmiennych, pochodne cząstkowe JJ, IMiF UTP 17 f (x, y) DEFINICJA. Funkcja dwóch zmiennych określona w zbiorze D R 2, to przyporządkowanie każdemu punktowi

Bardziej szczegółowo

Rachunek różniczkowy i całkowy 2016/17

Rachunek różniczkowy i całkowy 2016/17 Rachunek różniczkowy i całkowy 26/7 Zadania domowe w pakietach tygodniowych Tydzień 3-7..26 Zadanie O. Czy dla wszelkich zbiorów A, B i C zachodzą następujące równości: (A B)\C = (A\C) (B\C), A\(B\C) =

Bardziej szczegółowo

13. Funkcje wielu zmiennych pochodne, gradient, Jacobian, ekstrema lokalne.

13. Funkcje wielu zmiennych pochodne, gradient, Jacobian, ekstrema lokalne. 13. Funkcje wielu zmiennych pochodne, gradient, Jacobian, ekstrema lokalne. 1. Wprowadzenie. Dotąd rozważaliśmy funkcje działające z podzbioru liczb rzeczywistych w zbiór liczb rzeczywistych, zatem funkcje

Bardziej szczegółowo

Funkcje dwóch zmiennych

Funkcje dwóch zmiennych Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Funkcje dwóch zmiennych 1. Funkcje dwóch zmiennych: pojęcia podstawowe Definicja 1. Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach

Bardziej szczegółowo

(8) Oblicz wyznacznik dowolnie wybranej macierzy stopnia czwartego. (9) Rozwi aż podany układ równań stosuj ac wzory Cramera:

(8) Oblicz wyznacznik dowolnie wybranej macierzy stopnia czwartego. (9) Rozwi aż podany układ równań stosuj ac wzory Cramera: Zadania przygotowuj ace do kolokwium (budownictwo, studia niestacjonarne, drugi semestr, 209) [7III] () Podaj przykład dowolnej macierzy A drugiego stopnia Oblicz A A T + A T A (2) Podaj przykład dowolnej

Bardziej szczegółowo

Zadania do samodzielnego rozwiązania zestaw 11

Zadania do samodzielnego rozwiązania zestaw 11 Zadania do samodzielnego rozwiązania zestaw 11 1 Podać definicję pochodnej funkcji w punkcie, a następnie korzystając z tej definicji obliczyć ( ) π (a) f, jeśli f(x) = cos x, (e) f (0), jeśli f(x) = 4

Bardziej szczegółowo

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w

Bardziej szczegółowo

Analiza Matematyczna MAEW101 MAP1067

Analiza Matematyczna MAEW101 MAP1067 1 Analiza Matematyczna MAEW101 MAP1067 Wydział Elektroniki Przykłady do Listy Zadań nr 14 Funkcje wielu zmiennych. Płaszczyzna styczna. Ekstrema Opracowanie: dr hab. Agnieszka Jurlewicz Przykłady do zadania

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza

Bardziej szczegółowo

III. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE

III. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE III. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE 1. Pojęcia wstępne Przykład 1.1. (Rozpad substancji promieniotwórczej ) Z doświadczeń wiadomo, że prędkość rozpa pierwiastka promieniotwórczego jest ujemna i proporcjonalna

Bardziej szczegółowo

Rachunek różniczkowy funkcji wielu zmiennych

Rachunek różniczkowy funkcji wielu zmiennych Wydział Matematyki Stosowanej Zestaw zadań nr 7 Akademia Górniczo-Hutnicza w Krakowie WFiIS, informatyka stosowana, I rok Elżbieta Adamus 13 grudnia 2018r. Rachunek różniczkowy funkcji wielu zmiennych

Bardziej szczegółowo

Rozdział XV CAŁKI KRZYWOLINIOWE. CAŁKA STIELTJESA

Rozdział XV CAŁKI KRZYWOLINIOWE. CAŁKA STIELTJESA Księgarnia PWN: Grigorij M. Fichtenholz Rachunek różniczkowy i całkowy. T. 3 Rozdział XV CAŁKI KRZYWOLINIOWE. CAŁKA STIELTJESA 1. Całki krzywoliniowe pierwszego rodzaju 543. Definicja całki krzywoliniowej

Bardziej szczegółowo

Matematyka 2. Elementy analizy wektorowej cz IV Całka powierzchniowa niezorientowana

Matematyka 2. Elementy analizy wektorowej cz IV Całka powierzchniowa niezorientowana Matematyka 2 Elementy analizy wektorowej cz IV Całka powierzchniowa niezorientowana Literatura M.Gewert, Z.Skoczylas; Elementy analizy wektorowej; Oficyna Wydawnicza GiS, Wrocław, 2000 W.Żakowski, W.Kołodziej;

Bardziej szczegółowo

Wykłady... b i a i. i=1. m(d k ) inf

Wykłady... b i a i. i=1. m(d k ) inf Wykłady... CŁKOWNIE FUNKCJI WIELU ZMIENNYCH Zaczniemy od konstrukcji całki na przedziale domkniętym. Konstrukcja ta jest, w gruncie rzeczy, powtórzeniem definicji całki na odcinku domkniętym w R 1. Przedziałem

Bardziej szczegółowo

Matematyka i Statystyka w Finansach. Rachunek Różniczkowy

Matematyka i Statystyka w Finansach. Rachunek Różniczkowy Rachunek Różniczkowy Ciąg liczbowy Link Ciągiem liczbowym nieskończonym nazywamy każdą funkcję a która odwzorowuje zbiór liczb naturalnych N w zbiór liczb rzeczywistych R a : N R. Tradycyjnie wartość a(n)

Bardziej szczegółowo

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU Agata Boratyńska Zadania z matematyki Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU. Korzystając z definicji granicy ciągu udowodnić: a) n + n+ = 0 b) n + n n+ = c) n + n a =, gdzie a

Bardziej szczegółowo

22. CAŁKA KRZYWOLINIOWA SKIEROWANA

22. CAŁKA KRZYWOLINIOWA SKIEROWANA CAŁA RZYWOLINIOWA SIEROWANA Niech łuk o równaniach parametrycznych: x x(t), y y(t), a < t < b, będzie łukiem regularnym skierowanym, tzn łukiem w którym przyjęto punkt A(x(a), y(a)) za początek łuku, zaś

Bardziej szczegółowo

Definicje i przykłady

Definicje i przykłady Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest

Bardziej szczegółowo

Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/

Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/ Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a, bud. Agro

Bardziej szczegółowo

Krzysztof Rykaczewski. Szeregi

Krzysztof Rykaczewski. Szeregi Krzysztof Rykaczewski Spis treści 1 Definicja szeregu 2 Zbieżność szeregu 3 Kryteria zbieżności szeregów 4 Iloczyn Cauchy ego szeregów 5 Bibliografia 1 / 13 Definicja szeregu Niech dany będzie ciąg (a

Bardziej szczegółowo

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe. Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie

Bardziej szczegółowo

Pochodne funkcji wraz z zastosowaniami - teoria

Pochodne funkcji wraz z zastosowaniami - teoria Pochodne funkcji wraz z zastosowaniami - teoria Pochodne Definicja 2.38. Niech f : O(x 0 ) R. Jeżeli istnieje skończona granica f(x 0 + h) f(x 0 ) h 0 h to granicę tę nazywamy pochodną funkcji w punkcie

Bardziej szczegółowo

Dystrybucje, wiadomości wstępne (I)

Dystrybucje, wiadomości wstępne (I) Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów

Bardziej szczegółowo