ODPORNOŚĆ NA PĘKANIE AUKSETYCZNYCH MATERIAŁÓW KOMÓRKOWYCH O REGULARNEJ MIKROSTRUKTURZE

Wielkość: px
Rozpocząć pokaz od strony:

Download "ODPORNOŚĆ NA PĘKANIE AUKSETYCZNYCH MATERIAŁÓW KOMÓRKOWYCH O REGULARNEJ MIKROSTRUKTURZE"

Transkrypt

1 MAŁGORZATA JANUS-MICHALSKA, DOROTA JASIŃSKA ** ODPORNOŚĆ NA PĘKANIE AUKSETYCZNYCH MATERIAŁÓW KOMÓRKOWYCH O REGULARNEJ MIKROSTRUKTURZE FRACTURE TOUGHNESS OF AUXETIC CELLULAR MATERIALS WITH PERIODIC MICROSTRUCTURE S t r e z c z e n i e A b t r a c t Artykuł ma charakter obliczeniowy i dotyczy wyznaczania tałej materiałowej K I charakteryzującej odporność na pękanie przy rozciąganiu określanej dla wybranej klay materiałów komórkowych. Struktura zkieletu tworząca materiał efektywny o ujemnym wpółczynniku Poiona może mieć wpływ na koncentrację naprężeń w wierzchołkach zczeliny, tąd również na odporność tego materiału na pękanie. Obliczenia wkazują na zależność tałej K I od parametrów geometrycznych mikrotruktury, za pomocą których można modelować efektywny materiał komórkowy o zadanych włanościach. Słowa kluczowe: materiał komórkowy o ujemnym wpółczynniku Poiona, odporność na pękanie kruche The parametric tudy of the fracture toughne for auxetic cellular material with repect to geometric microtructural parameter i performed. For given microtructure with brittle keleton, cellular material toughne i repreented by tructural coefficient W tr. Numerical olution leading to aement of W tr are obtained by utilizing FEM ytem ABAQUS. Fracture toughne i preented a directional property of aniotropic cellular material. Keyword: auxetic cellular material, fracture toughne, brittle fracture Dr inż. Małgorzata Janu-Michalka, Katedra Wytrzymałości Materiałów, Wydział Inżynierii Lądowej, Politechnika Krakowka. ** Dr inż. Dorota Jaińka, Intytut Mechaniki Budowli, Wydział Inżynierii Lądowej, Politechnika Krakowka.

2 56 1. Wtęp Materiały komórkowe toowane ą w nowoczenych praktycznych zagadnieniach inżynierkich ze względu na właności mechaniczne zupełnie inne niż te, które charakteryzują materiał rodzimy, kontruujący zkielet komórkowy. Na właności te mają wpływ: charakterytyka materiału zkieletu oraz truktura wewnętrzna. Materiały można wybierać, natomiat trukturę możemy projektować na potrzeby wybranych właności mechanicznych, jeśli potrafimy przewidzieć pracę zkieletu i tym amym wkazać na klaę truktur tworzących materiał o żądanych włanościach. Jednym z częto toowanych materiałów rodzimych ą prężyto-kruche materiały ceramiczne. Materiały komórkowe lepiej pracują na obciążenia rozciągające niż na ścikanie (dla ścikania zachodzi zjawiko wyboczenia ścian zkieletu) i praktycznie touje ię je do przenozenia obciążeń rozciągających. Ważna taje ię więc odpowiedź na pytanie, jaka jet odporność materiału komórkowego o zadanej trukturze zkieletowej na pękanie przy rozciąganiu. Z oczywitych względów dążymy do oiągnięcia jak najwyżzej odporności. Jak wiadomo, pękanie rozważane jet dla niekończonego pama ze zczeliną, w narożach której zachodzi koncentracja naprężeń [3]. Wśród materałów komórkowych wyróżnia ię pewną klaę materiałów tzw. auketycznych, które charakteryzują ię ujemnym wpółczynnikiem Poiona. Takie materiały mają tę właność, że w trefach podziewanego piętrzenia naprężeń może natąpić zmiana tej koncentracji [19]. Na znaczną redukcję koncentracji naprężeń wkazują np. rozwiązania zagadnień kontaktowych z udziałem takich materiałów [5]. Stąd celowe taje ię przebadanie tych materiałów ze względu na odporność na pękanie i porównanie z odpornością materiałów komórkowych o typowych trukturach zkieletu. Dla rozciągania określa ją tała materiałowa K I nazywana odpornością materiału na pękanie w warunkach płakiego tanu odkztałcenia, która jet wielkością charakteryzującą materiał. Zagadnienia pękania materiałów komórkowych o trukturze periodycznej ą tematem wielu prac, począwzy od prac Gibon i Ahby ego [1], Gibon, Ahby ego, Maiti [2], w których przez zatoowanie najprotzego modelu belkowego truktury wewnętrznej wyjaśniono właności auketyczne materiału komórkowego. Wzelkie rozważania przeprowadzać można w dwóch kalach: mikro-truktury wewnętrznej, makro-efektywnego continuum, jakim jet material komórkowy. Najczęściej rozważanymi w literaturze typami truktur ą: przetrzenne izotropowe piany [6], truktury płakie tworzące kwadraty, trójkąty równoboczne i ześciokąty foremne. Dla takich też znane ą rozwiązania. Rozwiązania analityczne zadań pękania w kali makro prezentuje Chen Ortiz [9] oraz Kabir, Saha [6]. W kali mikro najnowze prace Ryvkina, Fucha [8, 17, 20] rozwiązują problem za pomocą tranformat Fouriera. Dla dowolnych truktur możliwe ą rozwiązania numeryczne MES. W mikrokali ą to zadania o bardzo dużej liczbie topni wobody, lecz pozwalające na zczegółową analizę pracy zkieletu i propagacji zczeliny lub powtawania pęknięć inicjowanych mikrodefektami truktury. Analiza taka ma docelowo prowadzić do formułowania właności efektywnego continuum zatępczego, co prowadzi do rozwiązywania zadań o mniejzej liczbie topni wobody dla zagadnień mechaniki z udziałem takich ośrodków. Dla badanych tu materiałów komórkowych analiza i obliczenia przeprowadzone ą w kali mikro. Celem pracy jet zbadanie zależności odporności na pękanie przy rozciąganiu dla auketycznych materiałów komórkowych w zależności od parametrów mikrotruktury lub

3 cech efektywnego kontinuum i wkazanie, jak projektować tę trukturę w celu uzykania jak najwyżzej odporności. Dla porównania zacytowano wyniki dla mikrotruktur tworzących materiały o dodatnim wpółczynniku Poiona [17] i porównano ich odporność na pękanie ze trukturami tworzącymi materiały auketyczne Materiały komórkowe o ujemnym wpółczynniku Poiona Rozważany jet przetrzenny materiał komórkowy o płakiej periodycznej trukturze zkieletu, jak na ry. 1a. W trukturze tej można wyodrębnić komórkę reprezentatywną (ry. 1b.), którą opiują cztery parametry geometryczne: L, h, t, γ. Ry. 1. a) Mikrotruktura, b) komórka elementarna Fig. 1. Przyjęto prężyto-kruchy materiał zkieletu o natępujących danych: E moduł Younga, ν wpółczynnik Poiona, R m granica wytrzymałości. Właności prężyte tak zaprojektowanego materiału komórkowego, jako efektywnego continuum, w zależności od wkazanych parametrów geometrycznych i materiałowych mikrotruktury ą tematem pracy [4]. Otrzymany materiał charakteryzyje anizotropia właności mechanicznych, w tym również wpółczynnika Poiona, który dla pewnych kierunków może przyjmować wartości ujemne. Powyżzą trukturę przetrzenną złożoną z płyt obciążoną w płazczyźnie xy, pracującą w płakim tanie odkztałcenia można rozważać przez wycięcie platra o jednotkowej grubości H w kierunku oi z. Pozwala to modelować trukturę elementami belkowymi o natępujących ztywnościach: EtH E A na rozciąganie: C = = (1a) ν 1 ν oraz ztywności giętnej: 3 E t H E J D = = ( ν ) ( ν ) gdzie: A pole przekroju belki tworzącej trukturę, J moment bezwładności na zginanie. 1 (Mnożnik pozwala przekalować ztywność płytową na belkową). 2 ν 1 (1b)

4 58 3. Odporność na pękanie Przy badaniu odporności na pękanie rozważamy niekończone pamo o trukturze modelowanej belkami ztywno połączonymi w węzłach, w którym znajduje ię zczelina o długości 2a, wygenerowana przez brakujące elementy belkowe. W praktyce przyjmuje ię pamo o zerokości 2b, ze zczeliną o zerokości 2a, które pełniają relację: b a max ( L, h) (2) gdzie: L, h wymiary geometryczne komórki. Nierówność ta pozwala na potraktowanie pama jako wytarczająco zerokie, aby uważać je za niekończone oraz na pominięcie tzw. efektu kali. Rozważane ą dwa ułożenia mikrotruktury materiału względem kierunku rozciągania (ry. 2). Ry. 2. Dwa utawienia zczeliny względem mikrotruktury Fig. 2. Odporność na pękanie jet podana przez naprężenie rozciągające σ r = σ cr, potrzebne do propagacji zczeliny. Odpowiada to pęknięciu kolejnych belek zkieletu najbliżej wierzchołka zczeliny. Warunek pęknięcia odpowiada oiągnięciu naprężeń dopuzczalnych dla materiału zkieletu we włóknach krajnych belki w przekroju przywęzłowym. max ( x ) gdzie: N iła podłużna w belce zkieletu, M moment zginający w przekroju przywęzłowym. σ = N M t Rm A + J 2 = (3)

5 Warunek bezpiecznej pracy kontrukcji ma potać K < K C. Dla tzw. I poobu pękania (ang. mode) K I < K IC, gdzie dla zczeliny centralnej o długości 2a, w niekończenie zerokim paśmie rozciąganym na kierunku protopadłym pełniona jet zależność: K I cr 59 = σ π a (4) Stała K I nazywana odpornością na pękanie i charakteryzuje właności materiału niezależnie od wielkości zczeliny. Odporność na pękanie materiału komórkowego o dowolnej trukturze zkieletu kłat dającej ię z belek mukłych tzn. pełniających warunek ( Li ) 0,1, można wyrazić max ogólnym przybliżonym wzorem [8, 9]: tr t KI Wtr Rm (5) L gdzie: W wpółczynnik liczbowy zależny od typu mikrotruktury, tr R m naprężenie kruchego pęknięcia materiału zkieletu. Z literatury [8] znane ą wartości wpółczynnika W tr dla truktur o równych długościach belek, pokazanych na ry. 3. Wpółczynniki te wynozą kolejno: a W tr = 0,68, b W tr = 0,1, c W tr = 1,5. Ry. 3. Typowe truktury materiałów komórkowych wraz z zaznaczonymi parametrami geometrycznymi Fig. 3. Jeśli zdecydujemy ię utrzymać potać formuły (5), a zadaną trukturę opiuje więcej parametrów geometrycznych, to wpółczynnik W tr będzie funkcją tych parametrów. Stąd podziewać należy ię, że każdy układ parametrów geometrycznych da materiał o innym wpółczynniku W tr.

6 60 Z porównania wzorów (4) i (5) otrzymujemy: W tr σ cr R πa L gdzie wartość cr otrzymamy z rozwiązań numerycznych. Odporność na pękanie przy rozciąganiu jet wielkością opiującą materiał komórkowy w kali makrokopowej, tąd można zukać zależności między W tr, a włanościami materiału w kali makro. Wkazanie na te zależności może dać przełanki do odpowiedniego dobierania materiału. Jet cel niniejzych obliczeń. m t (6) 4. Modelowanie MES Obliczenia wykonano z wykorzytaniem ytemu ABAQUS do analizy MES. Strukturę wewnętrzną materiału modelowano elementami belkowymi. Zadanie pękania pama przeprowadzone jet iteracyjnie z zatoowaniem włanych kodów Autorki napianych w programie FORTRAN. Po wykonaniu iteracji natępuje generowanie danych dla kolejnej iteracji przez uuwanie elementów, w których oiągnięte jet naprężenie dopuzczalne wyznaczone wzorem (3). Analiza pama o kończonych wymiarach prowadzi do nieco zaniżonych wartości K I (błąd wartości kilku procent) na korzyść bezpieczeńtwa przy ozacowaniu właności materiału. 5. Wyniki obliczeń numerycznych Do obliczeń przyjęto materiał zkieletu o natępujących danych materiałowych: E = 10 GPa, ν = 0,3, R = 10 MPa. Dane te zaczerpnięto z literatury [21]. m Ry. 4. Wybrane truktury materiałów komórkowych Fig. 4. Parametry geometryczne wybranych mikrotruktur jak na ryunku 4 podane ą w tabeli 1. Mikrotruktura 3) poiada parametry podane w pracy [21].

7 61 Parametry geometryczne badanych mikrotruktur T a b e l a 1 Struktura L [mm] h [mm] γ t [mm] 1) 1,5 1,5 80 0,15 2) 1,5 3,0 60 0,15 3) 3,0 4,0 60 0,15 4) 3,15 3, ,15 5) 1,5 3,0 90 0,15 Wyniki analizy MES wkazują, że dla wzytkich wybranych truktur oberwuje ię taki am poób propagacji zczeliny, jak przedtawiono na ryunku 5. Oberwuje ię rozdwajanie zczeliny w kierunkach podyktowanych topologią węzłów. Szczeliny propagują ię ukośnie zarówno dla położenia A), jak i B) truktury względem kierunku rozciągania. W granicznym przypadku dla truktury 5) w położeniu B) zczeliny rozdwajają ię w kierunku protopadłym do kierunku zczeliny początkowej. Typ mikrotruktury ma więc decydujący wpływ na kierunek i układ powtających zczelin i poób ich propagacji. Ry. 5. Spoób propagacji zczeliny A), B) i dla truktury 5 w utawieniu B) Fig. 5. Otrzymane wartości naprężenia σ cr pozwoliły na obliczenie tałej K I oraz wpółczynnika W tr dla kolejno badanych mikrotruktur. T a b e l a 2 Zetawienie makrokopowych właności materiałów auketycznych o zadanych mikrotrukturach Struktura σ cr [kpa] W tr K I [MPa m 0,5 ] E [kpa] 1A A A A B B B B B

8 62 Badanie zależności między włanościami makrokopowymi znanymi z pracy [4] a wartościami K I i wpółczynnika trukturalnego, potwierdziło zależność tylko między modułem Younga na zadanym kierunku rozciągania a wielkościami charakteryzującymi materiał na pękanie. Wyniki te zetawiono w tabeli 2. Nie można ię dozukać wpływu ujemnej wartości wpółczynnika Poiona, poza faktem, że truktury tworzące materiały o takim wpółczynniku ą bardzo podatne na deformację w porównaniu ze trukturami tworzącymi materiały o dodatnim wpółczynniku Poiona. Są one więc projektowane na zapotrzebowanie dużej deformowalności w zakreie prężytym. Jak wykazuje powyżza analiza, materiały te cechuje nika wartość wpółczynnika trukturalnego, która wkazuje na niewielką odporność na pękanie. Wpółczynnik ten zależny jet od proporcji parametrów geometrycznych t/l, t/h i kąta gamma, tąd różne jego wartości. Szczegółowa analiza pracy belek zkieletu wkazuje, że najlepze rezultaty otrzymuje ię w trukturach o mniejzym udziale tanów giętnych, a takie można otrzymać dla truktur krępzych lub o kącie γ blikich kąta protego. W kali makro materiały o tych trukturach charakteryzują ię więkzą wartością modułu Younga i wpółczynnikiem Poiona blikim zero. Porównanie z typowymi trukturami wkazuje na podobieńtwo do truktury honeycomb, która również charakteryzuje ię wyoką podatnością, udziałem tanów giętnych w pracy zkieletu, dużą wartością modułu Younga i wpółczynnika trukturalnego. Spotrzeżenia te potwierdzają lepze właności truktury kwadratowej ry. 3a (korzytniejze w ułożeniu równoległym, nieco gorze w ułożeniu ukośnym pod kątem 45 topni) i najlepze dla truktury trójkątnej ry. 3c. 6. Wnioki Przedtawione w niniejzym artykule wyniki wkazują na dość niką odporność materiałów komórkowych na pękanie przy rozciąganiu, przy czym materiały o ujemnym wpółczynniku Poiona ą pod tym względem jezcze łabze od innych typowych materiałów komórkowych. Wyniki obliczeń wkazują na protą zależność między modułem Younga a wpółczynnikiem trukturalnym, charakteryzującym trukturę wewnętrzną materiału pod względem odporności na pękanie przy rozciąganiu. Wkazano na pracę zkieletu, która wpływa na odporność na pękanie. Materiały auketyczne mają tę wyróżniającą ię właność, że mają dużą ztywność na ścinanie określaną modułem G w porównaniu ze ztywnością na deformację objętościową K. Wkazane zależności między włanościami prężytymi materiału w kali makro a odpornością na pękanie ugerują, że celowe taje ię prawdzenie pod względem zwiękzonej odporności truktur auxetycznych na pękanie przy ścinaniu.

9 L i t e r a t u r a 63 [1] G i b o n L., A h b y M., Cellular Material. Structure and Propertie, Cambridge Univerity Pre, [2] G i b o n L., A h b y M., M a i t i S.K., Fracture toughne of brittle cellular olid, Scr. Metall., 18, 1984, [3] G e r m a n J., B i e l - G o ł a k a M., Podtawy i zatoowania mechaniki pękania w zagadnieniach inżynierkich, Intytut Odlewnictwa, Kraków [4] J a n u - M i c h a l k a M., Micromechanical Model of Auxetic Cellular Material, Journal of Theoretical and Applied Mechanic, Vol. 47, No. 4, [5] J a ińka D., J a n u - M i c h a l k a M., Material Deign of Aniotropic Elatic Cellular Bodie with Repect to Contact Problem, Engineering Tranaction, Vol. 56, No. 3, 2008, [6] K a b i r M.E., S a h a M.C., J e e l a n i S., Tenile and fracture behaviour of polymer foam, Material Science and Engineering A, 429, 2006, [7] C h o i S., S a n k a r B., A micromechanical model to predict the fracture toughne of cellular material, Int. Journal of Solid and Structure, 42, 2005, [8] L i p p e r m a n F., R y v k i n M., F u c h M., Fracture toughne of two-dimenional cellular material with periodic microtructure, Int. Journal of Fracture, 146, 2007, [9] C h e n J.Y., H u a n g Y., O r t i z M., Fracture Analyi of Cellular Material. A Strain Gradient Model, Journal of Mechanic and Phyic of Solid, Vol. 46, 5, 1998, [10] R y v k i n M., F u c h M., L i p p e r m a n F., K u c h e r o v L., Fracture Analyi of Material with Periodic Microtructure by the Repreentative Cell Method, Int. Journal of Fracture, 128, 2004, [11] A n d r e w L.W., G i b o n L., The influence of crack notche and hole on the tenile trength of cellular olid, Acta Materialia, 49, 2001, [12] Q i u X., F l e c k N.A., The damage tolerance of elatic-brittle, 2-D iotropic laticce, Journal of Mechanic and Phyic of Solid, 55, 2007, [13] F a n H.L., J i n F.N., F a n g D.N., Mechanial propertie of hierarchical cellular material, Part I: Analyi, Compoite Science and Technology, 68, 2008, [14] H u a n g J.S., C h i a n g M.S., Effect of Microtructure, Specimen and Loading Geometrie on K IC of Brittle Honeycomb, Engineering Fracture Mechanic, Vol 54, No 6, 1996, [15] A l o n o I.Q., F l e c k N.A, Damage tolerance of an elatic-brittle diamond celled honeycomb, Scripta Materialia, 56, 2007, [16] C h e n C., F l e c k N.A., L u T.J. The mode I crack reitance of metallic foam, Journal of the Mechanic and Phyic of olid, 49, 2001, [17] L i p p e r m a n F., F u c h M., R y v k i n M., Stre localization and trength optimization of frame material with periodic microtructure, Comp. Meth. Appl. Mech. Engrg., 197, 2008, [18] M i n q u e z J.M., Study of the fracture toughne by finite element method, Int J. of Solid and Structure, 37, 2000,

10 64 [19] L a k e R.S., Deign conideration for negative Poion ratio material, ASME Journal of Mechanical Deign, 115, 1993, [20] L i p p e r m a n F., F u c h M., R y v k i n M., Nucleation of crack in two- -dimenional periodic cellular material, Comp. Mech., 39, 2007, [21] O v e r a k e r D.W., C u i t i n o A.M., L a n g r a n a N.A., Elatoplatic Micromechanical Modeling of Two- dimenional Irregular Convex and Nonconvex (Re- -entrant) Hexagonal Foam, Tranaction of ASME, 65, 1998.

ODPORNOŚĆ NA PĘKANIE MATERIAŁÓW KOMÓRKOWYCH O UJEMNYM WSPÓŁCZYNNIKU POISSONA

ODPORNOŚĆ NA PĘKANIE MATERIAŁÓW KOMÓRKOWYCH O UJEMNYM WSPÓŁCZYNNIKU POISSONA XII KRAJOWA KONFERENCJA Naukowo - Szkoleniowa MECHANIKI PĘKANIA Kraków, 6 9.IX.2009 ODPORNOŚĆ NA PĘKANIE MATERIAŁÓW KOMÓRKOWYCH O UJEMNYM WSPÓŁCZYNNIKU POISSONA Małgorzata JANUS-MICHALSKA, Dorota JASIŃSKA

Bardziej szczegółowo

Model efektywny dla materiałów komórkowych w zakresie liniowo-sprężystym Małgorzata Janus-Michalska

Model efektywny dla materiałów komórkowych w zakresie liniowo-sprężystym Małgorzata Janus-Michalska Model efektywny dla materiałów komórkowych w zakreie liniowo-prężytym Małgorzata Janu-Michalka Katedra Wytrzymałości Materiałów Intytut Mechaniki Budowli Politechnika Krakowka PAN PREZENTACJI. Wprowadzenie.

Bardziej szczegółowo

MATEMATYCZNY OPIS NIEGŁADKICH CHARAKTERYSTYK KONSTYTUTYWNYCH CIAŁ ODKSZTAŁCALNYCH

MATEMATYCZNY OPIS NIEGŁADKICH CHARAKTERYSTYK KONSTYTUTYWNYCH CIAŁ ODKSZTAŁCALNYCH XLIII Sympozjon Modelowanie w mechanice 004 Wieław GRZESIKIEWICZ, Intytut Pojazdów, Politechnika Warzawka Artur ZBICIAK, Intytut Mechaniki Kontrukcji Inżynierkich, Politechnika Warzawka MATEMATYCZNY OPIS

Bardziej szczegółowo

ZASADA DE SAINT VENANTA

ZASADA DE SAINT VENANTA Zasięg oddziaływania obciążenia samozrównoważonego w materiałach komórkowych ZASADA DE SAINT VENANTA Małgorzata Janus-Michalska Katedra Wytrzymałości Materiałów dn. 21.05.2007. PLAN PREZENTACJI 1. Wprowadzenie

Bardziej szczegółowo

WYMIAROWANIE PRZEKROJÓW POZIOMYCH KOMINÓW ŻELBETOWYCH W STANIE GRANICZNYM NOŚNOŚCI WG PN-EN - ALGORYTM OBLICZENIOWY

WYMIAROWANIE PRZEKROJÓW POZIOMYCH KOMINÓW ŻELBETOWYCH W STANIE GRANICZNYM NOŚNOŚCI WG PN-EN - ALGORYTM OBLICZENIOWY Budownictwo DOI: 0.75/znb.06..7 Mariuz Pońki WYMIAROWANIE PRZEKROJÓW POZIOMYCH KOMINÓW ŻELBETOWYCH W STANIE GRANICZNYM NOŚNOŚCI WG PN-EN - ALGORYTM OBLICZENIOWY Wprowadzenie Wprowadzenie norm europejkich

Bardziej szczegółowo

Obliczanie naprężeń stycznych wywołanych momentem skręcającym w przekrojach: kołowym, pierścieniowym, prostokątnym 7

Obliczanie naprężeń stycznych wywołanych momentem skręcającym w przekrojach: kołowym, pierścieniowym, prostokątnym 7 Obiczanie naprężeń tycznych wywołanych momentem kręcającym w przekrojach: kołowym, pierścieniowym, protokątnym 7 Wprowadzenie Do obiczenia naprężeń tycznych wywołanych momentem kręcającym w przekrojach

Bardziej szczegółowo

( L,S ) I. Zagadnienia

( L,S ) I. Zagadnienia ( L,S ) I. Zagadnienia. Elementy tatyki, dźwignie. 2. Naprężenia i odkztałcenia ciał tałych.. Prawo Hooke a.. Moduły prężytości (Younga, Kirchhoffa), wpółczynnik Poiona. 5. Wytrzymałość kości na ścikanie,

Bardziej szczegółowo

9. DZIAŁANIE SIŁY NORMALNEJ

9. DZIAŁANIE SIŁY NORMALNEJ Część 2 9. DZIŁIE SIŁY ORMLEJ 1 9. DZIŁIE SIŁY ORMLEJ 9.1. ZLEŻOŚCI PODSTWOWE Przyjmiemy, że materiał pręta jet jednorodny i izotropowy. Jeśli ponadto założymy, że pręt jet pryzmatyczny, to łuzne ą wzory

Bardziej szczegółowo

WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA

WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA aboratorium z Fizyki Materiałów 010 Ćwiczenie WYZNCZNIE MODUŁU YOUNG METODĄ STRZŁKI UGIĘCI Zadanie: 1.Za pomocą przyrządów i elementów znajdujących ię w zetawie zmierzyć moduł E jednego pręta wkazanego

Bardziej szczegółowo

1. Wykres momentów zginających M(x) oraz sił poprzecznych Q(x) Rys2.

1. Wykres momentów zginających M(x) oraz sił poprzecznych Q(x) Rys2. Zadanie. Zginanie prote belek. Dla belki zginanej obciążonej jak na Ry. wyznaczyć:. Wykre oentów zginających M(x) oraz ił poprzecznych Q(x).. Położenie oi obojętnej.. Wartość akyalnego naprężenia noralnego

Bardziej szczegółowo

MES1pr 02 Konstrukcje szkieletowe 2. Belki

MES1pr 02 Konstrukcje szkieletowe 2. Belki MES1pr 02 Kontrukcje zkieletowe 2. Belki Kiedy używamy modeli belkowe? Elementy kontrukcyjne, w których jeden z wymiarów jet wielokrotnie (> 4 razy) więkzy od innych i zginanie lub kręcanie ma wpływ na

Bardziej szczegółowo

KO OF Szczecin:

KO OF Szczecin: 55OF D KO OF Szczecin: www.of.zc.pl L OLMPADA FZYZNA (005/006). Stopień, zadanie doświadczalne D Źródło: Komitet Główny Olimpiady Fizycznej A. Wymołek; Fizyka w Szkole nr 3, 006. Autor: Nazwa zadania:

Bardziej szczegółowo

LVI Olimpiada Matematyczna

LVI Olimpiada Matematyczna LVI Olimpiada Matematyczna Rozwiązania zadań konkurowych zawodów topnia trzeciego 13 kwietnia 2005 r (pierwzy dzień zawodów) Zadanie 1 Wyznaczyć wzytkie trójki (x, y, n) liczb całkowitych dodatnich pełniające

Bardziej szczegółowo

Dobór materiałów konstrukcyjnych cz. 10

Dobór materiałów konstrukcyjnych cz. 10 Dobór materiałów konstrukcyjnych cz. 10 dr inż. Hanna Smoleńska Katedra Inżynierii Materiałowej i Spajania Wydział Mechaniczny, Politechnika Gdańska DO UŻYTKU WEWNĘTRZNEGO Zniszczenie materiału w wyniku

Bardziej szczegółowo

Skręcanie prętów naprężenia styczne, kąty obrotu 4

Skręcanie prętów naprężenia styczne, kąty obrotu 4 Skręcanie prętów naprężenia tyczne, kąty obrotu W przypadku kręcania pręta jego obciążenie tanowią momenty kręcające i. Na ry..1a przedtawiono przykład pręta ztywno zamocowanego na ewym końcu (punkt ),

Bardziej szczegółowo

Naprężenia styczne i kąty obrotu

Naprężenia styczne i kąty obrotu Naprężenia tyczne i kąty obrotu Rozpatrzmy pręt pryzmatyczny o przekroju kołowym obciążony momentem kręcającym 0 Σ ix 0 0 A A 0 0 Skręcanie prętów o przekroju kołowym, pierścieniowym, cienkościennym. Naprężenia

Bardziej szczegółowo

ANALIA STATYCZNA UP ZA POMOCĄ MES Przykłady

ANALIA STATYCZNA UP ZA POMOCĄ MES Przykłady ANALIZA STATYCZNA UP ZA POMOCĄ MES Przykłady PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki 2013/2014 Instytut

Bardziej szczegółowo

RUCH FALOWY. Ruch falowy to zaburzenie przemieszczające się w przestrzeni i zmieniające się w

RUCH FALOWY. Ruch falowy to zaburzenie przemieszczające się w przestrzeni i zmieniające się w RUCH FALOWY Ruch alowy to zaburzenie przemiezczające ię w przetrzeni i zmieniające ię w czaie. Podcza rozchodzenia ię al mechanicznych elementy ośrodka ą wytrącane z położeń równowagi i z powodu właności

Bardziej szczegółowo

SYMULACJA TŁOCZENIA ZAKRYWEK KORONKOWYCH SIMULATION OF CROWN CLOSURES FORMING

SYMULACJA TŁOCZENIA ZAKRYWEK KORONKOWYCH SIMULATION OF CROWN CLOSURES FORMING MARIUSZ DOMAGAŁA, STANISŁAW OKOŃSKI ** SYMULACJA TŁOCZENIA ZAKRYWEK KORONKOWYCH SIMULATION OF CROWN CLOSURES FORMING S t r e s z c z e n i e A b s t r a c t W artykule podjęto próbę modelowania procesu

Bardziej szczegółowo

KONSTRUKCJE DREWNIANE I MUROWE

KONSTRUKCJE DREWNIANE I MUROWE POLITECHNIKA BIAŁOSTOCKA WBiIŚ KATEDRA KONSTRUKCJI BUDOWLANYCH ZAJĘCIA 5 KONSTRUKCJE DREWNIANE I MUROWE Mgr inż. Julita Krassowska 1 CHARAKTERYSTYKI MATERIAŁOWE drewno lite sosnowe klasy C35: - f m,k =

Bardziej szczegółowo

Część 1 9. METODA SIŁ 1 9. METODA SIŁ

Część 1 9. METODA SIŁ 1 9. METODA SIŁ Część 1 9. METOD SIŁ 1 9. 9. METOD SIŁ Metoda ił jet poobem rozwiązywania układów tatycznie niewyznaczalnych, czyli układów o nadliczbowych więzach (zewnętrznych i wewnętrznych). Sprowadza ię ona do rozwiązania

Bardziej szczegółowo

11. WŁASNOŚCI SPRĘŻYSTE CIAŁ

11. WŁASNOŚCI SPRĘŻYSTE CIAŁ 11. WŁANOŚCI PRĘŻYTE CIAŁ Efektem działania siły może być przyspieszanie ciała, ae może być także jego deformacja. Przykładami tego ostatniego są np.: rozciąganie gumy a także zginanie ub rozciąganie pręta.

Bardziej szczegółowo

MODELOWANIE WARSTWY POWIERZCHNIOWEJ O ZMIENNEJ TWARDOŚCI

MODELOWANIE WARSTWY POWIERZCHNIOWEJ O ZMIENNEJ TWARDOŚCI Dr inż. Danuta MIEDZIŃSKA, email: dmiedzinska@wat.edu.pl Dr inż. Robert PANOWICZ, email: Panowicz@wat.edu.pl Wojskowa Akademia Techniczna, Katedra Mechaniki i Informatyki Stosowanej MODELOWANIE WARSTWY

Bardziej szczegółowo

Dobór materiałów konstrukcyjnych cz. 4

Dobór materiałów konstrukcyjnych cz. 4 Dobór materiałów konstrukcyjnych cz. 4 dr inż. Hanna Smoleńska Katedra Inżynierii Materiałowej i Spajania Wydział Mechaniczny, Politechnika Gdańska Materiały edukacyjne Wskaźniki materiałowe Przykład Potrzebny

Bardziej szczegółowo

Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995

Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995 Politechnika Gdańska Wydział Inżynierii Lądowej i Środowiska Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995 Jerzy Bobiński Gdańsk, wersja 0.32 (2014)

Bardziej szczegółowo

DOŚWIADCZALNE OKREŚLENIE WPŁYWU KSZTAŁTU ŁBA ŚRUB MOCUJĄCYCH ŁOŻYSKO OBROTNICY ŻURAWIA NA WYSTĘPUJĄCE W NICH NAPRĘŻENIA MONTAŻOWE

DOŚWIADCZALNE OKREŚLENIE WPŁYWU KSZTAŁTU ŁBA ŚRUB MOCUJĄCYCH ŁOŻYSKO OBROTNICY ŻURAWIA NA WYSTĘPUJĄCE W NICH NAPRĘŻENIA MONTAŻOWE Szybkobieżne Pojazdy Gąienicowe (19) nr 1, 2004 Zbigniew RACZYŃSKI Jacek SPAŁEK DOŚWIADCZALNE OKREŚLENIE WPŁYWU KSZTAŁTU ŁBA ŚRUB MOCUJĄCYCH ŁOŻYSKO OBROTNICY ŻURAWIA NA WYSTĘPUJĄCE W NICH NAPRĘŻENIA MONTAŻOWE

Bardziej szczegółowo

WYZNACZANIE MODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G ORAZ NAPRĘŻEŃ SKRĘCAJĄCYCH METODĄ TENSOMETRYCZNĄ

WYZNACZANIE MODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G ORAZ NAPRĘŻEŃ SKRĘCAJĄCYCH METODĄ TENSOMETRYCZNĄ Ćwiczenie 7 WYZNACZANIE ODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G ORAZ NAPRĘŻEŃ SKRĘCAJĄCYCH ETODĄ TENSOETRYCZNĄ A. PRĘT O PRZEKROJU KOŁOWY 7. WPROWADZENIE W pręcie o przekroju kołowym, poddanym obciążeniu momentem

Bardziej szczegółowo

MATEMATYKA Przed próbną maturą. Sprawdzian 3. (poziom podstawowy) Rozwiązania zadań

MATEMATYKA Przed próbną maturą. Sprawdzian 3. (poziom podstawowy) Rozwiązania zadań MTEMTYK Przed próbną maturą. Sprawdzian 3. (poziom podtawowy) Rozwiązania zadań Zadanie 1. (1 pkt) III.1.5. Uczeń oblicza wartości niekomplikowanych wyrażeń arytmetycznych zawierających ułamki zwykłe i

Bardziej szczegółowo

ENERGETYCZNE KRYTERIUM STANÓW GRANICZNYCH DLA MATERIAŁÓW KOMÓRKOWYCH

ENERGETYCZNE KRYTERIUM STANÓW GRANICZNYCH DLA MATERIAŁÓW KOMÓRKOWYCH Strona z 9 ENERGETYCZNE KRYTERUM STANÓW GRANCZNYC DA MATERAŁÓW KOMÓRKOWYC Piotr Kordzikowki Małgorzata Janu-Michalka Ryzard B. Pęchrki Katdra Wytrzymałości Matriałów ntytut Mchaniki Budowli Wydział nżynirii

Bardziej szczegółowo

Określenie maksymalnych składowych stycznych naprężenia na pobocznicy pala podczas badania statycznego

Określenie maksymalnych składowych stycznych naprężenia na pobocznicy pala podczas badania statycznego Określenie makymalnych kładowych tycznych naprężenia na pobocznicy pala podcza badania tatycznego Pro. dr hab. inż. Zygmunt Meyer, m inż. Krzyzto Żarkiewicz Zachodniopomorki Uniwerytet Technologiczny w

Bardziej szczegółowo

SPRAWDZENIE SG UŻYTKOWALNOŚCI (ZARYSOWANIA I UGIĘCIA) METODAMI DOKŁADNYMI, OMÓWIENIE PROCEDURY OBLICZANIA SZEROKOŚCI RYS ORAZ STRZAŁKI UGIĘCIA

SPRAWDZENIE SG UŻYTKOWALNOŚCI (ZARYSOWANIA I UGIĘCIA) METODAMI DOKŁADNYMI, OMÓWIENIE PROCEDURY OBLICZANIA SZEROKOŚCI RYS ORAZ STRZAŁKI UGIĘCIA SPRAWDZENIE SG UŻYTKOWALNOŚCI (ZARYSOWANIA I UGIĘCIA) METODAMI DOKŁADNYMI, OMÓWIENIE PROCEDURY OBLICZANIA SZEROKOŚCI RYS ORAZ STRZAŁKI UGIĘCIA ZAJĘCIA 11 PODSTAWY PROJEKTOWANIA SEM. V KONSTRUKCJI BETONOWYCH

Bardziej szczegółowo

Wytrzymałość Konstrukcji I - MEiL część II egzaminu. 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów.

Wytrzymałość Konstrukcji I - MEiL część II egzaminu. 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów. Wytrzymałość Konstrukcji I - MEiL część II egzaminu 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów. 2. Omówić pojęcia sił wewnętrznych i zewnętrznych konstrukcji.

Bardziej szczegółowo

Analiza stateczności zbocza

Analiza stateczności zbocza Przewodnik Inżyniera Nr 8 Aktualizacja: 02/2016 Analiza tateczności zbocza Program powiązany: Stateczność zbocza Plik powiązany: Demo_manual_08.gt Niniejzy rozdział przedtawia problematykę prawdzania tateczności

Bardziej szczegółowo

Analiza osiadania pojedynczego pala

Analiza osiadania pojedynczego pala Poradnik Inżyniera Nr 14 Aktualizacja: 09/2016 Analiza oiadania pojedynczego pala Program: Pal Plik powiązany: Demo_manual_14.gpi Celem niniejzego przewodnika jet przedtawienie wykorzytania programu GO5

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU ĆWICZENIE 76 WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU Cel ćwiczenia: pomiar kąta łamiącego i kąta minimalnego odchylenia pryzmatu, wyznaczenie wpółczynnika załamania zkła w funkcji

Bardziej szczegółowo

WRAŻLIWOŚĆ NA IMERFEKCJE PRĘTÓW CIENKOŚCIENNYCH Z POŁĄCZENIAMI PODATNYMI

WRAŻLIWOŚĆ NA IMERFEKCJE PRĘTÓW CIENKOŚCIENNYCH Z POŁĄCZENIAMI PODATNYMI Dr inż. Lezek CHODOR Dr inż. Roman BIJA Politechnika Świętokrzyka, atedra Budownictwa etalowego i eorii ontrukcji WRAŻLIWOŚĆ NA IRFCJ PRĘÓW CINOŚCINNCH Z POŁĄCZNIAI PODANI. Wprowadzenie Dominującą technologią

Bardziej szczegółowo

TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania

TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika

Bardziej szczegółowo

Dobór materiałów konstrukcyjnych cz. 15

Dobór materiałów konstrukcyjnych cz. 15 Dobór materiałów konstrukcyjnych cz. 15 dr inż. Hanna Smoleńska Katedra Inżynierii Materiałowej i Spajania Wydział Mechaniczny, Politechnika Gdańska Materiały edukacyjne Współczynnik kształtu przekroju

Bardziej szczegółowo

Analiza płyt i powłok MES

Analiza płyt i powłok MES Analiza płyt i powłok MES Jerzy Pamin e-mails: JPamin@L5.pk.edu.pl Podziękowania: M. Radwańska, A. Wosatko ANSYS, Inc. http://www.ansys.com Tematyka zajęć Klasyfikacja modeli i elementów skończonych Elementy

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statytyka. v.0.9 egz mgr inf nietacj Statytyczna analiza danych Statytyka opiowa Szereg zczegółowy proty monotoniczny ciąg danych i ) n uzykanych np. w trakcie pomiaru lub za pomocą ankiety. Przykłady

Bardziej szczegółowo

ĆWICZENIE 15 WYZNACZANIE (K IC )

ĆWICZENIE 15 WYZNACZANIE (K IC ) POLITECHNIKA WROCŁAWSKA Imię i Nazwisko... WYDZIAŁ MECHANICZNY Wydzia ł... Wydziałowy Zakład Wytrzymałości Materiałów Rok... Grupa... Laboratorium Wytrzymałości Materiałów Data ćwiczenia... ĆWICZENIE 15

Bardziej szczegółowo

s Dla prętów o stałej lub przedziałami stałej sztywności zginania mianownik wyrażenia podcałkowego przeniesiemy przed całkę 1 EI s

s Dla prętów o stałej lub przedziałami stałej sztywności zginania mianownik wyrażenia podcałkowego przeniesiemy przed całkę 1 EI s Wprowadzenie Kontrukcja pod wpływem obciążenia odkztałca ię, a jej punkty doznają przemiezczeń iniowych i kątowych. Umiejętność wyznaczania tych przemiezczeń jet konieczna przy prawdzaniu warunku ztywności

Bardziej szczegółowo

Porównanie zasad projektowania żelbetowych kominów przemysłowych

Porównanie zasad projektowania żelbetowych kominów przemysłowych Budownictwo i Architektura 16(2) (2017) 119-129 DO: 10.24358/Bud-Arch_17_162_09 Porównanie zaad projektowania żelbetowych kominów przemyłowych arta Słowik 1, Amanda Akram 2 1 Katedra Kontrukcji Budowlanych,

Bardziej szczegółowo

Zmęczenie Materiałów pod Kontrolą

Zmęczenie Materiałów pod Kontrolą 1 Zmęczenie Materiałów pod Kontrolą Wykład Nr 9 Wzrost pęknięć przy obciążeniach zmęczeniowych Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji http://zwmik.imir.agh.edu.pl

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA WYDZIAŁ SAMOCHODÓW I MASZYN ROBOCZYCH Instytut Podstaw Budowy Maszyn Zakład Mechaniki

POLITECHNIKA WARSZAWSKA WYDZIAŁ SAMOCHODÓW I MASZYN ROBOCZYCH Instytut Podstaw Budowy Maszyn Zakład Mechaniki POLITECHNIKA WARSZAWSKA WYDZIAŁ SAMOCHODÓW I MASZYN ROBOCZYCH Intytut Podtaw Budowy Mazyn Zakład Mechaniki Laboratorium podtaw automatyki i teorii mazyn Intrukcja do ćwiczenia A-5 Badanie układu terowania

Bardziej szczegółowo

BADANIA NUMERYCZNE I DOŚWIADCZALNE NOŚNOŚCI GRANICZNEJ BELEK TRÓJWARSTWOWYCH

BADANIA NUMERYCZNE I DOŚWIADCZALNE NOŚNOŚCI GRANICZNEJ BELEK TRÓJWARSTWOWYCH MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 41, s. 463-468, Gliwice 2011 BADANIA NUMERYCZNE I DOŚWIADCZALNE NOŚNOŚCI GRANICZNEJ BELEK TRÓJWARSTWOWYCH JERZY ZIELNICA, PIOTR PACZOS Instytut Mechaniki Stosowanej,

Bardziej szczegółowo

Ćwiczenie nr 4 Badanie zjawiska Halla i przykłady zastosowań tego zjawiska do pomiarów kąta i indukcji magnetycznej

Ćwiczenie nr 4 Badanie zjawiska Halla i przykłady zastosowań tego zjawiska do pomiarów kąta i indukcji magnetycznej Ćwiczenie nr 4 Badanie zjawika alla i przykłady zatoowań tego zjawika do pomiarów kąta i indukcji magnetycznej Opracowanie: Ryzard Poprawki, Katedra Fizyki Doświadczalnej, Politechnika Wrocławka Cel ćwiczenia:

Bardziej szczegółowo

Rys. 1. Elementy zginane. KONSTRUKCJE BUDOWLANE PROJEKTOWANIE BELEK DREWNIANYCH 2013 2BA-DI s.1 WIADOMOŚCI OGÓLNE

Rys. 1. Elementy zginane. KONSTRUKCJE BUDOWLANE PROJEKTOWANIE BELEK DREWNIANYCH 2013 2BA-DI s.1 WIADOMOŚCI OGÓLNE WIADOMOŚCI OGÓLNE O zginaniu mówimy wówczas, gdy prosta początkowo oś pręta ulega pod wpływem obciążenia zakrzywieniu, przy czym włókna pręta od strony wypukłej ulegają wydłużeniu, a od strony wklęsłej

Bardziej szczegółowo

1. Funkcje zespolone zmiennej rzeczywistej. 2. Funkcje zespolone zmiennej zespolonej

1. Funkcje zespolone zmiennej rzeczywistej. 2. Funkcje zespolone zmiennej zespolonej . Funkcje zepolone zmiennej rzeczywitej Jeżeli każdej liczbie rzeczywitej t, t α, β] przyporządkujemy liczbę zepoloną z = z(t) = x(t) + iy(t) to otrzymujemy funkcję zepoloną zmiennej rzeczywitej. Ciągłość

Bardziej szczegółowo

i odwrotnie: ; D) 20 km h

i odwrotnie: ; D) 20 km h 3A KIN Kinematyka Zadania tr 1/5 kin1 Jaś opowiada na kółku fizycznym o wojej wycieczce używając zwrotów: A) zybkość średnia w ciągu całej wycieczki wynoiła 0,5 m/ B) prędkość średnia w ciągu całej wycieczki

Bardziej szczegółowo

Lokalne wyboczenie. 1. Wprowadzenie. Andrzej Szychowski. wspornikowych, których nie znaleziono w literaturze.

Lokalne wyboczenie. 1. Wprowadzenie. Andrzej Szychowski. wspornikowych, których nie znaleziono w literaturze. Budownictwo i Architektura 14(2) (2015) 113-121 Lokalne wyboczenie ścianki wpornikowej elementu cienkościennego przy wzdłużnej i poprzecznej zmienności naprężeń Katedra Mechaniki, Kontrukcji Metalowych

Bardziej szczegółowo

STRENGTHENING OF THE STEEL AFTER HEAT TREATING WITH THE MATRIX OF DIFFERENT STRUCTURE

STRENGTHENING OF THE STEEL AFTER HEAT TREATING WITH THE MATRIX OF DIFFERENT STRUCTURE Leopold BERKOWSKI, Jacek BOROWSKI, Zbigniew RYBAK Politechnika Poznańka, Intytut Mazyn Roboczych i Pojazdów Samochodowych ul. Piotrowo 3, 6-965 Poznań (Poland) e-mail: office_wmmv@put.poznan.pl STRENGTHENING

Bardziej szczegółowo

Politechnika Śląska w Gliwicach Instytut Maszyn i Urządzeń Energetycznych Zakład Podstaw Konstrukcji i Eksploatacji Maszyn Energetycznych

Politechnika Śląska w Gliwicach Instytut Maszyn i Urządzeń Energetycznych Zakład Podstaw Konstrukcji i Eksploatacji Maszyn Energetycznych Politechnika Śląka w Gliwicach Intytut Mazyn i Urządzeń Energetycznych Zakład Podtaw Kontrukcji i Ekploatacji Mazyn Energetycznych Ćwiczenie laboratoryjne z wytrzymałości materiałów Temat ćwiczenia: Wyboczenie

Bardziej szczegółowo

BADANIA PORÓWNAWCZE METOD OBLICZANIA OBCIĄŻEŃ OBUDOWY WYROBISK KORYTARZOWYCH NIEPODDANYCH DZIAŁANIU WPŁYWÓW EKSPLOATACJI GÓRNICZEJ**

BADANIA PORÓWNAWCZE METOD OBLICZANIA OBCIĄŻEŃ OBUDOWY WYROBISK KORYTARZOWYCH NIEPODDANYCH DZIAŁANIU WPŁYWÓW EKSPLOATACJI GÓRNICZEJ** Górnictwo i Geoinżynieria Rok 31 Zezyt 3 2007 Andrzej Wichur*, Kornel Frydrych*, Agniezka Zięba* BADANIA PORÓWNAWCZE METOD OBLICZANIA OBCIĄŻEŃ OBUDOWY WYROBISK KORYTARZOWYCH NIEPODDANYCH DZIAŁANIU WPŁYWÓW

Bardziej szczegółowo

MODELOWANIE MATERIAŁÓW - WSTĘP

MODELOWANIE MATERIAŁÓW - WSTĘP Budownictwo, studia I stopnia, semestr VII przedmiot fakultatywny rok akademicki 2014/2015 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Jerzy Pamin Adam Wosatko Zakres wykładu 1 O modelowaniu

Bardziej szczegółowo

IDENTYFIKACJA MODELU MATEMATYCZNEGO ROBOTA INSPEKCYJNEGO

IDENTYFIKACJA MODELU MATEMATYCZNEGO ROBOTA INSPEKCYJNEGO MODELOWANIE INśYNIERSKIE ISSN 896-77X 36,. 87-9, liwice 008 IDENTYFIKACJA MODELU MATEMATYCZNEO ROBOTA INSPEKCYJNEO JÓZEF IERIEL, KRZYSZTOF KURC Katedra Mechaniki Stoowanej i Robotyki, Politechnika Rzezowka

Bardziej szczegółowo

P. Litewka Efektywny element skończony o dużej krzywiźnie

P. Litewka Efektywny element skończony o dużej krzywiźnie 4.5. Macierz mas Macierz mas elementu wyprowadzić można według (.4) wykorzystując wielomianowe funkcje kształtu (4. 4.). W tym przypadku wzór ten przyjmie postać: [ m~ ] 6 6 ~ ~ ~ ~ ~ ~ gdzie: m = [ N

Bardziej szczegółowo

Pręt nr 0 - Element drewniany wg PN-EN 1995:2010

Pręt nr 0 - Element drewniany wg PN-EN 1995:2010 Pręt nr 0 - Element drewniany wg PN-EN 1995:010 Informacje o elemencie Nazwa/Opis: element nr 0 (belka) - Brak opisu elementu. Węzły: 0 (x0.000m, y-0.000m); 1 (x4.000m, y-0.000m) Profil: Pr 150x50 (C 0)

Bardziej szczegółowo

SPRAWOZDANIE. a) Podaj rodzaj i oznaczenie zastosowanej głowicy.. Zakres obserwacji

SPRAWOZDANIE. a) Podaj rodzaj i oznaczenie zastosowanej głowicy.. Zakres obserwacji Akademia Górniczo-Hutnicza Kraków Katedra Wytrzymałości, Zmęczenia Materiałów i Kontrukcji KWZMiK Ćwiczenia laboratoryjne Badanie jednorodności truktury i właności mechanicznych materiałów kontrukcyjnych

Bardziej szczegółowo

700 [kg/m 3 ] * 0,012 [m] = 8,4. Suma (g): 0,138 Ze względu na ciężar wykończenia obciążenie stałe powiększono o 1%:

700 [kg/m 3 ] * 0,012 [m] = 8,4. Suma (g): 0,138 Ze względu na ciężar wykończenia obciążenie stałe powiększono o 1%: Producent: Ryterna modul Typ: Moduł kontenerowy PB1 (długość: 6058 mm, szerokość: 2438 mm, wysokość: 2800 mm) Autor opracowania: inż. Radosław Noga (na podstawie opracowań producenta) 1. Stan graniczny

Bardziej szczegółowo

Testy statystyczne teoria

Testy statystyczne teoria Tety tatytyczne teoria przygotowanie: dr A Goroncy, dr J Karłowka-Pik Niech X,, X n będzie próbą loową protą z rozkładu P θ, θ Θ oraz niech α (0, ) będzie poziomem itotności (najczęściej 0,, 0,05, czy

Bardziej szczegółowo

Filtry aktywne czasu ciągłego i dyskretnego

Filtry aktywne czasu ciągłego i dyskretnego Politechnika Wrocławka Intytut Telekomunikacji, Teleinformatyki i Akutyki czau ciągłego i dykretnego Wrocław 9 Politechnika Wrocławka Intytut Telekomunikacji, Teleinformatyki i Akutyki odzaje Ze względu

Bardziej szczegółowo

Analiza częstościowa sprzęgła o regulowanej podatności skrętnej

Analiza częstościowa sprzęgła o regulowanej podatności skrętnej Dr inż. Paweł Kołodziej Dr inż. Marek Boryga Katedra Inżynierii Mechanicznej i Autoatyki, Wydział Inżynierii Produkcji, Uniwerytet Przyrodniczy w Lublinie, ul. Doświadczalna 5A, -8 Lublin, Polka e-ail:

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Zwykła próba rozciągania stali Numer ćwiczenia: 1 Laboratorium z przedmiotu:

Bardziej szczegółowo

Wprowadzenie do WK1 Stan naprężenia

Wprowadzenie do WK1 Stan naprężenia Wytrzymałość materiałów i konstrukcji 1 Wykład 1 Wprowadzenie do WK1 Stan naprężenia Płaski stan naprężenia Dr inż. Piotr Marek Wytrzymałość Konstrukcji (Wytrzymałość materiałów, Mechanika konstrukcji)

Bardziej szczegółowo

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach

Bardziej szczegółowo

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki

Bardziej szczegółowo

ANALIZA NUMERYCZNA KONSTRUKCJI DREWNIANEJ JAKO STRUKTURY ORTOTROPOWEJ

ANALIZA NUMERYCZNA KONSTRUKCJI DREWNIANEJ JAKO STRUKTURY ORTOTROPOWEJ udownictwo 9 Piotr Lacki, Anna Derlatka ANALIZA NUMERYZNA KONSTRUKJI DREWNIANEJ JAKO STRUKTURY ORTOTROPOWEJ Wprowadzenie Jednym z najstarszych materiałów używanych w konstrukcjach inżynierskich jest drewno.

Bardziej szczegółowo

Stabilność liniowych układów dyskretnych

Stabilność liniowych układów dyskretnych Akademia Morka w Gdyni atedra Automatyki Okrętowej Teoria terowania Miroław Tomera. WPROWADZENIE Definicja tabilności BIBO (Boundary Input Boundary Output) i tabilność zerowo-wejściowa może zotać łatwo

Bardziej szczegółowo

ĆWICZENIE 1 CHARAKTERYSTYKI STATYCZNE DIOD P-N

ĆWICZENIE 1 CHARAKTERYSTYKI STATYCZNE DIOD P-N LBORTORM PRZYRZĄDÓW PÓŁPRZEWODNKOWYCH ĆWCZENE 1 CHRKTERYSTYK STTYCZNE DOD P-N K T E D R S Y S T E M Ó W M K R O E L E K T R O N C Z N Y C H 1 CEL ĆWCZEN Celem ćwiczenia jet zapoznanie ię z: przebiegami

Bardziej szczegółowo

ZMĘCZENIE MATERIAŁU POD KONTROLĄ

ZMĘCZENIE MATERIAŁU POD KONTROLĄ ZMĘCZENIE MATERIAŁU POD KONTROLĄ Mechanika pękania 1. Dla nieograniczonej płyty stalowej ze szczeliną centralną o długości l = 2 [cm] i obciążonej naprężeniem S = 120 [MPa], wykonać wykres naprężeń y w

Bardziej szczegółowo

Zmęczenie Materiałów pod Kontrolą

Zmęczenie Materiałów pod Kontrolą 1 Zmęczenie Materiałów pod Kontrolą Wykład Nr 8 PODTAWY MECHANIKI PĘKANIA Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji http://zwmik.imir.agh.edu.pl

Bardziej szczegółowo

ANALIZA DYNAMICZNA MODELU OBIEKTU SPECJALNEGO Z MAGNETOREOLOGICZNYM TŁUMIKIEM

ANALIZA DYNAMICZNA MODELU OBIEKTU SPECJALNEGO Z MAGNETOREOLOGICZNYM TŁUMIKIEM ANALIZA DYNAMICZNA MODELU OBIEKTU SPECJALNEGO Z MAGNETOREOLOGICZNYM TŁUMIKIEM Marcin BAJKOWSKI*, Robert ZALEWSKI* * Intytut Podtaw Budowy Mazyn, Wydział Samochodów i Mazyn Roboczych, Politechnika Warzawka,

Bardziej szczegółowo

WYZNACZANIE EFEKTYWNEGO PRZEKROJU ZGINANEJ BLACHY TRAPEZOWEJ W UJĘCIU NORMY PN-EN

WYZNACZANIE EFEKTYWNEGO PRZEKROJU ZGINANEJ BLACHY TRAPEZOWEJ W UJĘCIU NORMY PN-EN EDYTA PIĘCIORAK* MAREK PIEKARCZYK** WYZNACZANIE EFEKTYWNEGO PRZEKROJU ZGINANEJ BLACHY TRAPEZOWEJ W UJĘCIU NORMY PN-EN 1993-1-3 DETERMINATION OF EFFECTIVE CROSS-SECTION FOR TRAPEZOIDAL SHEET IN BENDING

Bardziej szczegółowo

Wytrzymałość Materiałów

Wytrzymałość Materiałów Wytrzymałość Materiałów Zginanie Wyznaczanie sił wewnętrznych w belkach i ramach, analiza stanu naprężeń i odkształceń, warunek bezpieczeństwa Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości,

Bardziej szczegółowo

PANELE OGNIOODPORNE TRIMOTERM GAMA PRODUKTÓW

PANELE OGNIOODPORNE TRIMOTERM GAMA PRODUKTÓW PANELE OGNIOODPORNE TRIMOTERM GAMA PRODUKTÓW OGNIOODPORNE PANELE ELEWACYJNE TRIMOTERM Trimoterm FTV EN 149 Panele ognioodporne Trimoterm FTV toowane ą w zerokim zakreie, jako zewnętrzne okładziny elewacji,

Bardziej szczegółowo

OBLICZENIE PRZEMIESZCZEŃ W KRATOWNICY PŁASKIEJ

OBLICZENIE PRZEMIESZCZEŃ W KRATOWNICY PŁASKIEJ WYZNACZANIE PRZEMIESZCZEŃ - kratownica obciążenie iłami 070 OBLICZENIE PRZEMIESZCZEŃ W KRATOWNICY PŁASKIEJ DANE WYJŚCIOWE DO OBLICZEŃ Dana jet kratownica jak na runku Zaprojektować wtępnie przekroje prętów

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych. Sterowanie dławieniowe-szeregowe prędkością ruchu odbiornika hydraulicznego

Instrukcja do ćwiczeń laboratoryjnych. Sterowanie dławieniowe-szeregowe prędkością ruchu odbiornika hydraulicznego Intrukcja do ćwiczeń laboratoryjnych Sterowanie dławieniowe-zeregowe prędkością ruchu odbiornika hydraulicznego Wtęp teoretyczny Prędkość ilnika hydrotatycznego lub iłownika zależy od kierowanego do niego

Bardziej szczegółowo

Wytrzymałość Materiałów

Wytrzymałość Materiałów Wytrzymałość Materiałów Rozciąganie/ ściskanie prętów prostych Naprężenia i odkształcenia, statyczna próba rozciągania i ściskania, właściwości mechaniczne, projektowanie elementów obciążonych osiowo.

Bardziej szczegółowo

Przykłady obliczeń jednolitych elementów drewnianych wg PN-B-03150

Przykłady obliczeń jednolitych elementów drewnianych wg PN-B-03150 Politechnika Gdańska Wydział Inżynierii Lądowej i Środowiska Przykłady obliczeń jednolitych elementów drewnianych wg PN-B-0350 Jerzy Bobiński Gdańsk, wersja 0.32 (204) Drewno parametry (wspólne) Dane wejściowe

Bardziej szczegółowo

Ćwiczenie nr 10 Zatężanie z wody lotnych związków organicznych techniką SPME (solid phase micro-extraction)

Ćwiczenie nr 10 Zatężanie z wody lotnych związków organicznych techniką SPME (solid phase micro-extraction) Ćwiczenie nr 10 Zatężanie z wody lotnych związków organicznych techniką SPME (olid phae micro-extraction) 1.Wtęp Na przełomie lat 80-tych i 90-tych Pawlizyn [1] zaproponował technikę mikroektrakcji do

Bardziej szczegółowo

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko

Bardziej szczegółowo

ĆWICZENIE 6,7 MATERIAŁY KAMIENNE

ĆWICZENIE 6,7 MATERIAŁY KAMIENNE ĆWICZENIE 6,7 MATERIAŁY KAMIENNE 6.1. WPROWADZENIE Oznaczanie gętości objętościowej wykonuje ię jedną z natępujących metod: metodą bezpośrednią na próbkach regularnych - gdy uwartwienie, pękanie itp. cechy

Bardziej szczegółowo

Testy dotyczące wartości oczekiwanej (1 próbka).

Testy dotyczące wartości oczekiwanej (1 próbka). ZASADY TESTOWANIA HIPOTEZ STATYSTYCZNYCH. TESTY DOTYCZĄCE WARTOŚCI OCZEKIWANEJ Przez hipotezę tatytyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu intereującej na cechy. Hipotezy

Bardziej szczegółowo

17. 17. Modele materiałów

17. 17. Modele materiałów 7. MODELE MATERIAŁÓW 7. 7. Modele materiałów 7.. Wprowadzenie Podstawowym modelem w mechanice jest model ośrodka ciągłego. Przyjmuje się, że materia wypełnia przestrzeń w sposób ciągły. Możliwe jest wyznaczenie

Bardziej szczegółowo

Filtry aktywne czasu ciągłego i dyskretnego

Filtry aktywne czasu ciągłego i dyskretnego Politechnika Wrocławka czau ciągłego i dykretnego Wrocław 5 Politechnika Wrocławka, w porównaniu z filtrami paywnymi L, różniają ię wieloma zaletami, np. dużą tabilnością pracy, dokładnością, łatwością

Bardziej szczegółowo

Fizyka, technologia oraz modelowanie wzrostu kryształów

Fizyka, technologia oraz modelowanie wzrostu kryształów Fizyka, technologia oraz modelowanie wzrotu kryztałów Staniław Krukowki i Michał Lezczyńki Intytut Wyokich Ciśnień PAN 01-14 Warzawa, ul Sokołowka 9/37 tel: 88 80 44 e-mail: tach@unipre.waw.pl, mike@unipre.waw.pl

Bardziej szczegółowo

Maksymalny błąd oszacowania prędkości pojazdów uczestniczących w wypadkach drogowych wyznaczonej różnymi metodami

Maksymalny błąd oszacowania prędkości pojazdów uczestniczących w wypadkach drogowych wyznaczonej różnymi metodami BIULETYN WAT VOL LV, NR 3, 2006 Makymalny błąd ozacowania prędkości pojazdów uczetniczących w wypadkach drogowych wyznaczonej różnymi metodami BOLESŁAW PANKIEWICZ, STANISŁAW WAŚKO* Wojkowa Akademia Techniczna,

Bardziej szczegółowo

Programy CAD w praktyce inŝynierskiej

Programy CAD w praktyce inŝynierskiej Katedra Mikroelektroniki i Technik Informatycznych Politechniki Łódzkiej Programy CAD w praktyce inŝynierkiej Wykład IV Filtry aktywne dr inż. Piotr Pietrzak pietrzak@dmc dmc.p..p.lodz.pl pok. 54, tel.

Bardziej szczegółowo

Temat: Mimośrodowe ściskanie i rozciąganie

Temat: Mimośrodowe ściskanie i rozciąganie Wytrzymałość Materiałów II 2016 1 Przykładowe tematy egzaminacyjne kursu Wytrzymałość Materiałów II Temat: Mimośrodowe ściskanie i rozciąganie 1. Dany jest pręt obciążony mimośrodowo siłą P. Oblicz naprężenia

Bardziej szczegółowo

Pomiar rezystancji. Rys.1. Schemat układu do pomiaru rezystancji metodą techniczną: a) poprawnie mierzonego napięcia; b) poprawnie mierzonego prądu.

Pomiar rezystancji. Rys.1. Schemat układu do pomiaru rezystancji metodą techniczną: a) poprawnie mierzonego napięcia; b) poprawnie mierzonego prądu. Pomiar rezytancji. 1. Cel ćwiczenia: Celem ćwiczenia jet zapoznanie ię z najważniejzymi metodami pomiaru rezytancji, ich wadami i zaletami, wynikającymi z nich błędami pomiarowymi, oraz umiejętnością ich

Bardziej szczegółowo

Nauka o Materiałach. Wykład VIII. Odkształcenie materiałów właściwości sprężyste. Jerzy Lis

Nauka o Materiałach. Wykład VIII. Odkształcenie materiałów właściwości sprężyste. Jerzy Lis Nauka o Materiałach Wykład VIII Odkształcenie materiałów właściwości sprężyste Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Właściwości materiałów -wprowadzenie 2. Klasyfikacja reologiczna odkształcenia

Bardziej szczegółowo

Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym

Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym Przykład 4.1. Ściag stalowy Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym rysunku jeśli naprężenie dopuszczalne wynosi 15 MPa. Szukana siła P przyłożona jest

Bardziej szczegółowo

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany

Bardziej szczegółowo

Elementy teorii powierzchni metali

Elementy teorii powierzchni metali prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład 3 v.16 Termodynamika powierzchni kryztałów 1 Termodynamiczny opi układu Ogólne wiadomości o wielkościach charakteryzujących układ I i

Bardziej szczegółowo

Zadanie: Zaprojektować w budynku jednorodzinnym (wg wykonanego projektu) filar murowany w ścianie zewnętrznej na parterze.

Zadanie: Zaprojektować w budynku jednorodzinnym (wg wykonanego projektu) filar murowany w ścianie zewnętrznej na parterze. Zadanie: Zaprojektować w budynku jednorodzinnym (wg wykonanego projektu) filar murowany w ścianie zewnętrznej na parterze. Zawartość ćwiczenia: 1. Obliczenia; 2. Rzut i przekrój z zaznaczonymi polami obciążeń;

Bardziej szczegółowo

SYMULACJA NUMERYCZNA KRZEPNIĘCIA Z UWZGLĘDNIENIEM RUCHÓW KONWEKCYJNYCH W STREFIE CIEKŁEJ I STAŁO-CIEKŁEJ

SYMULACJA NUMERYCZNA KRZEPNIĘCIA Z UWZGLĘDNIENIEM RUCHÓW KONWEKCYJNYCH W STREFIE CIEKŁEJ I STAŁO-CIEKŁEJ 73/14 Archive of Foundry, Year 2004, Voume 4, 14 Archiwum O dewnictwa, Rok 2004, Rocznik 4, Nr 14 PAN Katowice PL ISSN 1642-5308 SYMULACJA NUMERYCZNA KRZEPNIĘCIA Z UWZGLĘDNIENIEM RUCHÓW KONWEKCYJNYCH W

Bardziej szczegółowo

Materiały Reaktorowe. Właściwości mechaniczne

Materiały Reaktorowe. Właściwości mechaniczne Materiały Reaktorowe Właściwości mechaniczne Naprężenie i odkształcenie F A 0 l i l 0 l 0 l l 0 a. naprężenie rozciągające b. naprężenie ściskające c. naprężenie ścinające d. Naprężenie torsyjne Naprężenie

Bardziej szczegółowo

1. Wprowadzenie. Andrzej Szychowski. lub równomiernie zginanych elementach o przekrojach otwartych, w których wspornikowa

1. Wprowadzenie. Andrzej Szychowski. lub równomiernie zginanych elementach o przekrojach otwartych, w których wspornikowa Budownictwo i Architektura 13(3) (014) 91-98 Wyboczenie prężyście zamocowanej ścianki wpornikowej z uztywnieniem krawędzi wobodnej Andrzej Szychowki 1 Katedra Mechaniki, Kontrukcji Metalowych i Metod Komputerowych,

Bardziej szczegółowo

INSTYTUT ENERGOELEKTRYKI POLITECHNIKI WROCŁAWSKIEJ Raport serii SPRAWOZDANIA Nr LABORATORIUM TEORII I TEHCNIKI STEROWANIA INSTRUKCJA LABORATORYJNA

INSTYTUT ENERGOELEKTRYKI POLITECHNIKI WROCŁAWSKIEJ Raport serii SPRAWOZDANIA Nr LABORATORIUM TEORII I TEHCNIKI STEROWANIA INSTRUKCJA LABORATORYJNA Na prawach rękopiu do użytku łużbowego INSTYTUT ENEROELEKTRYKI POLITECHNIKI WROCŁAWSKIEJ Raport erii SPRAWOZDANIA Nr LABORATORIUM TEORII I TEHCNIKI STEROWANIA INSTRUKCJA LABORATORYJNA ĆWICZENIE Nr SPOSOBY

Bardziej szczegółowo