9. DZIAŁANIE SIŁY NORMALNEJ

Wielkość: px
Rozpocząć pokaz od strony:

Download "9. DZIAŁANIE SIŁY NORMALNEJ"

Transkrypt

1 Część 2 9. DZIŁIE SIŁY ORMLEJ 1 9. DZIŁIE SIŁY ORMLEJ 9.1. ZLEŻOŚCI PODSTWOWE Przyjmiemy, że materiał pręta jet jednorodny i izotropowy. Jeśli ponadto założymy, że pręt jet pryzmatyczny, to łuzne ą wzory podane przy omawianiu próby rozciągania i ścikania dla zakreu liniowo-prężytego. Przyjęliśmy wówcza hipotezę płakich przekrojów i założenie o pokrywaniu ię głównych oi naprężeń i odkztałceń z układem oi przechodzących przez geometryczną oś pręta. Zanim przejdziemy do wzorów na naprężenia, odkztałcenia i przemiezczenia, wprowadzimy zamiat układu oi x 1, x 2, x 3 układ oi x, y, z. Wpółrzędne wektora przemiezczenia u 1, u 2, u 3 oznaczymy odpowiednio u, v, w. Ry. 9.1 Rozważymy pręt o długości l, poddany czytemu rozciąganiu (ry. 9.1). Oznacza to, że na długości pręta wykre ił normalnych jet tały, a pozotałe iły wewnętrzne ą równe zeru. Zgodnie z zaadą de Saint-enanta nie precyzujemy bliżej poobu przyłożenia iły i pominiemy analizę ewentualnych zaburzeń na końcach pręta. Założymy ponadto, że oś pręta na lewym końcu jet unieruchomiona, a na końcu prawym może ię przeuwać tylko wzdłuż oi x. Geometrię odkztałcenia ilutrują linie przerywane na ry. 9.1a, d. Stoownie do wzorów (8.1) iłę normalną definiujemy natępująco: def = σ x ( y, z ) d, gdzie σ x = σ 11. (9.1) Definicja ta jet łuzna dla dowolnego prawa rozkładu naprężeń normalnych σ x. Jeśli jednak obowiązuje hipoteza płakich przekrojów, a materiał pręta jet jednorodny, to ze związków fizycznych wynika równomierny rozkład naprężeń σ x w obrębie przekroju. Wobec tego σ x można wyłączyć przed znak całki: ndrzej Gawęcki - Mechanika materiałów i kontrukcji prętowych 2003r.

2 Część 2 9. DZIŁIE SIŁY ORMLEJ 2 = σx d= σ x, tąd σ x =. (9.2) Pozotałe wpółrzędne tenora naprężenia ą równe zeru, a tan naprężenia związany z oiami x, y, z obrazuje macierz: σ x 0 0 = Ponieważ oie x, y, z ą głównymi oiami odkztałceń, więc odkztałcenia kątowe ą równe zeru, a odkztałcenia liniowe oblicza ię ze związków fizycznych (wzory (4.3)): σ ε x x = E = E, (9.4) ν εy = εz = ν εx =. (9.5) E Iloczyn E nazywa ię ztywnością rozciągania (ścikania) przekroju. Macierz e ma potać: (9.3) εx 0 0 e = 0 νε x 0. (9.6) 0 0 νεx Przemiezczenia obliczymy ze związków geometrycznych. Z hipotezy płakich przekrojów wniokujemy, że wpółrzędna u 1 = u jet tylko funkcją x. Wobec tego mamy: tąd: ε ux ( ) du v w = =, ε =, ε =, x dx y z x y z u= u( x) = εxdx+ C = E x + 1 C 1, ν v = v( x, y, z) = ε ydy+ C x z = E y + 2(, ) C 2( x, z ), ν w= wxyz (,, ) = εzdz+ C( xy, ) = E z + 3 C 3( x, y ). Stałe całkowania trzeba obliczyć z warunków brzegowych oraz przyjętej kinematyki odkztałcenia. ajbardziej intereują na oczywiście przemiezczenia u(x). Ponieważ u(0) = 0 (lewy koniec pręta jet unieruchomiony), więc C 1 = 0. Okazuje ię, że tałe C 2 i C 3 też ą równe zeru. Otatecznie otrzymujemy: uxyz ux E x (,, ) = ( ) =, vxyz (,, ) vy ( ) E y = = ν, wxyz (,, ) = wz ( ) = E z ν. (9.7) Pełne wyprowadzenie wzorów (9.7) zawiera podręcznik Piechnika [34]. ndrzej Gawęcki - Mechanika materiałów i kontrukcji prętowych 2003r.

3 Część 2 9. DZIŁIE SIŁY ORMLEJ 3 Ry. 9.2 Wzytkie podane wyżej zależności ą ściłe tylko dla pręta pryzmatycznego. W przypadku prętów o zmiennym przekroju nie ą pełnione warunki brzegowe dla naprężeń. Łatwo ię o tym przekonać, układając równania równowagi dla elementu położonego przy krawędzi przekroju (ry. 9.2b). Warunki na powierzchni (p i = σ jin j ) wymagają, by w pobliżu krawędzi pręta wytępowały również naprężenia tyczne τ xz i normalne σ z (ry. 9.2c). Przy łagodnej zmianie przekroju wartości te ą jednak pomijalnie małe, a wykre naprężeń normalnych σ x jet prawie równomierny (por. ry. 9.2c). Przejdziemy obecnie do zagadnień energetycznych. Obliczymy najpierw wartość całki objętościowej z iloczynu tenorów naprężenia i odkztałcenia przy działaniu iły normalnej. Jeśli przyjmiemy, że w każdym punkcie dowolnego przekroju pręta wytępują tylko naprężenia normalne σ 11 = σ x, to całkę tę można zapiać natępująco: σijεij d = σxεx d. Całkę względem objętości zamienimy na całkę iterowaną: σ ε ij ij d = σxεx d d, gdzie jet długością pręta (może to być również pręt łabo zakrzywiony), a d elementem łuku mierzonym na oi pręta. Gdy obowiązuje prawo płakich przekrojów, to odkztałcenie ε x w obrębie danego przekroju jet tałe, co pozwala wyłączyć je przed całkę względem. Zatem: σijεijd = ε x σxd d = λ σxd d, gdzie λ = ε x, i oznacza wydłużenie względne oi pręta. Całka w nawiaie, toownie do definicji (9.1), jet iłą normalną. ależy podkreślić, że definicja ta jet łuzna dla zupełnie dowolnego rozkładu naprężeń normalnych σ x (, y, z). Wobec tego ndrzej Gawęcki - Mechanika materiałów i kontrukcji prętowych 2003r.

4 Część 2 9. DZIŁIE SIŁY ORMLEJ 4 σijεij d = ( ) λ( ) d. (9.8) by powyżze równanie było prawdziwe, wytarcza tylko, że jet pełniona hipoteza płakich przekrojów. Materiał pręta może być nieliniowo-prężyty lub nieprężyty i w obrębie przekroju niejednorodny. Wielkości i λ ą w ogólności zmienne na długości pręta. Obliczymy teraz energię prężytą U, zmagazynowaną wewnątrz pręta. Stoownie do wzoru (6.8) oraz na podtawie wzoru (9.8) otrzymujemy: U = ij ij d d 1 1 σ ε = 2 2 λ. (9.9) Przy działaniu iły normalnej na jednorodny, izotropowy pręt prężyty odkztałcenie ε x = λ możemy wyrazić przez iłę oraz ztywność E według wzoru (9.4). Wówcza U = d lub U = E d 2 λ λ. (9.10) E 2 Zależność (9.8) łuży również do obliczenia pracy rzeczywitej iły na wirtualnym wydłużeniu λ (por. prawa trona wzoru (3.2)): σijεij d = λd. (9.11) Podobnie uzykujemy wyrażenie na pracę wirtualnej iły na rzeczywitym odkztałceniu ε x = λ: σijεij d = λd. (9.12) 9.2. GŁE ZMIY PRZEKROJU. KOCETRCJ PRĘŻEŃ W przypadku nagłych zmian przekroju pręta przyjęcie równomiernego rozkładu naprężeń normalnych σ x jet już niewłaściwe. W miejcach zmian przekroju kładowe naprężeń tycznych i normalnych w pozotałych kierunkach ą znaczne. a krawędziach otworów i wcięć powtają bardzo duże naprężenia normalne σ x (ry. 9.3), wielokrotnie więkze od naprężeń średnich, obliczonych dla równomiernego rozkładu. Obliczenia dla takich prętów należy przeprowadzać na gruncie teorii prężytości i platyczności. Wpływ promienia krzywizny zaokrąglenia krawędzi w miejcu zmiany przekroju ilutruje ry. 9.3b c. Ry. 9.3 ndrzej Gawęcki - Mechanika materiałów i kontrukcji prętowych 2003r.

5 Część 2 9. DZIŁIE SIŁY ORMLEJ 5 Gdy R = 0 (krawędź otra), to naprężenia σ x dążą do niekończoności. Warto o tym pamiętać podcza projektowania kontrukcji. Zmniejzenie naprężeń uzykujemy nawet wówcza, gdy ołabimy przekrój przez nawiercenie otworów na krawędzi zmiany przekroju (por. ry. 9.3d). Ry. 9.4 Jeżeli materiał pręta jet kruchy, to po oiągnięciu przez naprężenia normalne wytrzymałości na rozciąganie natępuje pęknięcie rozdzielcze i nagłe znizczenie kontrukcji. Jeżeli materiał jet ciągliwy, to obzar koncentracji naprężeń topniowo uplatycznia ię w miarę wzrotu iły (por. ry. 9.4). Widzimy więc, że dla materiału ciągliwego oiągnięcie przez naprężenia granicy platyczności nie oznacza jezcze znizczenia. Jako znizczenie przyjmuje ię oiągnięcie tzw. nośności granicznej ( = P ), kiedy natąpi uplatycznienie całego przekroju ołabionego otworem lub wcięciem. Trzeba jednak pamiętać, że pod wpływem obciążeń dynamicznych materiał ciągliwy zwiękza wą kruchość. W tych przypadkach nieuwzględnienie koncentracji naprężeń może prowadzić do niepodziewanego znizczenia. a zakończenie możemy formułować natępujące uwagi: w miejcach nagłych zmian przekroju wytępuje piętrzenie naprężeń, które jet groźne dla materiałów kruchych lub obciążonych dynamicznie materiałów ciągliwych, gdy materiał jet ciągliwy, to przy tatycznym obciążeniu natępuje wyrównywanie naprężeń, a znizczeniu towarzyzą widoczne deformacje, przekroje ołabione wcięciami (otworami) mają mniejzą zdolność do przenozenia obciążeń, a o nośności pręta decyduje najmniejzy przekrój, duże złagodzenie efektu koncentracji uzykuje ię wówcza, gdy zmiana przekroju przebiega w poób płynny, a zaokrąglenia mają możliwie duży promień krzywizny. Wnioki dotyczące gwałtownych zmian przekroju mają charakter ogólny i obowiązują również podcza działania innych ił wewnętrznych. ndrzej Gawęcki - Mechanika materiałów i kontrukcji prętowych 2003r.

6 Część 2 9. DZIŁIE SIŁY ORMLEJ 6 Ry. 9.5 Problem piętrzenia naprężeń wiąże ię z pojęciem wypukłości zbioru. Cechą zbioru wypukłego jet to, że odcinek łączący dwa dowolne punkty zbioru leży wewnątrz zbioru. Jeżeli można znaleźć takie odcinki, które nie mają tej właności, to dany zbiór jet niewypukły. Przykłady zbiorów wypukłych i niewypukłych podano na ryunku 9.5. Ogólnie biorąc, koncentracji naprężeń można ię podziewać tam, gdzie zbiór punktów tworzących ciało jet niewypukły. Do takich przypadków oprócz otworów lub wcięć zaliczamy również miejca przyłożenia obciążeń kupionych. Wynika to tąd, że obciążenia kupione przekazywane ą na niewielkich obzarach przez inne części kontrukcji (lub narzędzia), tworzące łącznie z daną kontrukcją zbiory niewypukłe. ndrzej Gawęcki - Mechanika materiałów i kontrukcji prętowych 2003r.

WYZNACZANIE MODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G ORAZ NAPRĘŻEŃ SKRĘCAJĄCYCH METODĄ TENSOMETRYCZNĄ

WYZNACZANIE MODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G ORAZ NAPRĘŻEŃ SKRĘCAJĄCYCH METODĄ TENSOMETRYCZNĄ Ćwiczenie 7 WYZNACZANIE ODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G ORAZ NAPRĘŻEŃ SKRĘCAJĄCYCH ETODĄ TENSOETRYCZNĄ A. PRĘT O PRZEKROJU KOŁOWY 7. WPROWADZENIE W pręcie o przekroju kołowym, poddanym obciążeniu momentem

Bardziej szczegółowo

PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH

PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH 1 Przedmowa Okładka CZĘŚĆ PIERWSZA. SPIS PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH 1. STAN NAPRĘŻENIA 1.1. SIŁY POWIERZCHNIOWE I OBJĘTOŚCIOWE 1.2. WEKTOR NAPRĘŻENIA 1.3. STAN NAPRĘŻENIA W PUNKCIE 1.4. RÓWNANIA

Bardziej szczegółowo

MES1pr 02 Konstrukcje szkieletowe 2. Belki

MES1pr 02 Konstrukcje szkieletowe 2. Belki MES1pr 02 Kontrukcje zkieletowe 2. Belki Kiedy używamy modeli belkowe? Elementy kontrukcyjne, w których jeden z wymiarów jet wielokrotnie (> 4 razy) więkzy od innych i zginanie lub kręcanie ma wpływ na

Bardziej szczegółowo

SKRĘCANIE WAŁÓW OKRĄGŁYCH

SKRĘCANIE WAŁÓW OKRĄGŁYCH KRĘCANIE AŁÓ OKRĄGŁYCH kręcanie występuje wówczas gdy para sił tworząca moment leży w płaszczyźnie prostopadłej do osi elementu konstrukcyjnego zwanego wałem Rysunek pokazuje wał obciążony dwiema parami

Bardziej szczegółowo

Zasada ruchu środka masy i zasada d Alemberta 6

Zasada ruchu środka masy i zasada d Alemberta 6 Zaada ruchu środka ay i zaada d Aleerta 6 Wprowadzenie Zaada ruchu środka ay Środek ay układu punktów aterialnych poruza ię tak, jaky w ty punkcie yła kupiona cała aa układu i jaky do teo punktu przyłożone

Bardziej szczegółowo

SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74

SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74 Pracownia Dydaktyki Fizyki i Atronoii, Uniwerytet Szczecińki SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74 Sprężyna jet przeznaczona do badania ruchu drgającego protego (haronicznego) na lekcji fizyki w liceu

Bardziej szczegółowo

Zad. 4 Oblicz czas obiegu satelity poruszającego się na wysokości h=500 km nad powierzchnią Ziemi.

Zad. 4 Oblicz czas obiegu satelity poruszającego się na wysokości h=500 km nad powierzchnią Ziemi. Grawitacja Zad. 1 Ile muiałby wynoić okre obrotu kuli ziemkiej wokół włanej oi, aby iła odśrodkowa bezwładności zrównoważyła na równiku iłę grawitacyjną? Dane ą promień Ziemi i przypiezenie grawitacyjne.

Bardziej szczegółowo

4. Czyste zginanie. 4.1 Podstawowe definicje M P. Rys. 4.1. Moment statyczny siły względem punktu.

4. Czyste zginanie. 4.1 Podstawowe definicje M P. Rys. 4.1. Moment statyczny siły względem punktu. 4. CZYSTE ZGINNIE 1 4. 4. Czyste zginanie 4.1 odstawowe definicje Momentem M siły względem punktu O nazywamy iloczyn wektorowy wektora wodzącego r oraz wektora siły. M= r. (4.1) Wektor r jest promieniem

Bardziej szczegółowo

Prognozowanie naprężeń w przewodach linii elektroenergetycznych napowietrznych na terenach objętych szkodami górniczymi

Prognozowanie naprężeń w przewodach linii elektroenergetycznych napowietrznych na terenach objętych szkodami górniczymi dr hab. inż. PIOTR GAWOR, prof. Pol. Śl. dr inż. SERGIUSZ BORON Katedra Elektryfikacji i Automatyzacji Górnictwa Wydział Górnictwa i Geologii Politechniki Śląkiej Prognozowanie naprężeń w przewodach linii

Bardziej szczegółowo

Analiza częstościowa sprzęgła o regulowanej podatności skrętnej

Analiza częstościowa sprzęgła o regulowanej podatności skrętnej Dr inż. Paweł Kołodziej Dr inż. Marek Boryga Katedra Inżynierii Mechanicznej i Autoatyki, Wydział Inżynierii Produkcji, Uniwerytet Przyrodniczy w Lublinie, ul. Doświadczalna 5A, -8 Lublin, Polka e-ail:

Bardziej szczegółowo

Twierdzenia o wzajemności

Twierdzenia o wzajemności Twierdzenia o wzajemności Praca - definicja Praca iloczyn skalarny wektora siły i wektora drogi jaką pokonuje punkt materialny pod wpływem działania tej siły. L S r r F( s) o ds r F( s) cos ( α ) ds F

Bardziej szczegółowo

BADANIE ZALEŻNOŚCI PRĘDKOŚCI DŹWIĘKU OD TEMPERATURY

BADANIE ZALEŻNOŚCI PRĘDKOŚCI DŹWIĘKU OD TEMPERATURY Ć w i c z e n i e 30 BADANIE ZALEŻNOŚCI PRĘDKOŚCI DŹWIĘKU OD EMPERAURY 30.1 Wtęp teoretyczny 30.1.1. Prędkość dźwięku. Do bardzo rozpowzechnionych proceów makrokopowych należą ruchy określone wpólną nazwą

Bardziej szczegółowo

OKREŚLENIE NOŚNOŚCI PODŁOŻA GRUNTOWEGO

OKREŚLENIE NOŚNOŚCI PODŁOŻA GRUNTOWEGO OKREŚLENIE NOŚNOŚCI PODŁOŻA GRUNTOWEGO OBIEKT BUDOWLANY: Budynek Markoniówka LOKALIZACJA: Muzeum Pałacu Króla Jana III w Wilanowie ul. Staniława Kotki Potockiego 10/16 02-958 Warzawa WYKONAWCA: INVESTHOME

Bardziej szczegółowo

Projekt nr 1. Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej

Projekt nr 1. Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI Projekt nr 1 Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej

Bardziej szczegółowo

17. 17. Modele materiałów

17. 17. Modele materiałów 7. MODELE MATERIAŁÓW 7. 7. Modele materiałów 7.. Wprowadzenie Podstawowym modelem w mechanice jest model ośrodka ciągłego. Przyjmuje się, że materia wypełnia przestrzeń w sposób ciągły. Możliwe jest wyznaczenie

Bardziej szczegółowo

Rys. 1. Elementy zginane. KONSTRUKCJE BUDOWLANE PROJEKTOWANIE BELEK DREWNIANYCH 2013 2BA-DI s.1 WIADOMOŚCI OGÓLNE

Rys. 1. Elementy zginane. KONSTRUKCJE BUDOWLANE PROJEKTOWANIE BELEK DREWNIANYCH 2013 2BA-DI s.1 WIADOMOŚCI OGÓLNE WIADOMOŚCI OGÓLNE O zginaniu mówimy wówczas, gdy prosta początkowo oś pręta ulega pod wpływem obciążenia zakrzywieniu, przy czym włókna pręta od strony wypukłej ulegają wydłużeniu, a od strony wklęsłej

Bardziej szczegółowo

Algorytmy ewolucyjne (2)

Algorytmy ewolucyjne (2) Algorytmy ewolucyjne (2) zajecia.jakubw.pl/nai/ ALGORYTM GEETYCZY Cel: znaleźć makimum unkcji. Założenie: unkcja ta jet dodatnia. 1. Tworzymy oobników loowych. 2. Stoujemy operacje mutacji i krzyżowania

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 1 DZIAŁ PROGRAMOWY V. PODSTAWY STATYKI I WYTRZYMAŁOŚCI MATERIAŁÓW

Bardziej szczegółowo

Metoda elementów skończonych

Metoda elementów skończonych Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody ytemowe i decyzyjne w informatyce Ćwiczenia lita zadań nr 1 Prote zatoowania równań różniczkowych Zad. 1 Liczba potencjalnych użytkowników portalu połecznościowego wynoi 4 miliony oób. Tempo, w

Bardziej szczegółowo

EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII

EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII Miejce na naklejkę z kodem zkoły dylekja MFA-PAP-06 EGZAMIN MAURALNY Z FIZYKI I ASRONOMII POZIOM PODSAWOWY Cza pracy 0 minut Intrukcja dla zdającego. Sprawdź, czy arkuz egzaminacyjny zawiera 3 tron (zadania

Bardziej szczegółowo

Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa

Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa Spis treści Rozdział I. Membrany izotropowe 1. Wyprowadzenie równania na ugięcie membrany... 13 2. Sformułowanie zagadnień brzegowych we współrzędnych kartezjańskich i biegunowych... 15 3. Wybrane zagadnienia

Bardziej szczegółowo

Elektrotechnika i elektronika

Elektrotechnika i elektronika Elektrotechnika i elektronika Metalurgia, Inżynieria Materiałowa II rok Silnik indukcyjny (aynchroniczny) Materiały do wykładów Katedra Automatyki Napędu i Urządzeń Przemyłowych AGH Kraków 2004 1. Wtęp

Bardziej szczegółowo

3. Rozciąganie osiowe

3. Rozciąganie osiowe 3. 3. Rozciąganie osiowe 3. Podstawowe definicje Przyjmijmy, że materiał z którego wykonany został pręt jest jednorodny oraz izotropowy. Izotropowy oznacza, że próbka wycięta z większej bryły materiału

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

INSTRUKCJA. Ćwiczenie A2. Wyznaczanie współczynnika sprężystości sprężyny metodą dynamiczną.

INSTRUKCJA. Ćwiczenie A2. Wyznaczanie współczynnika sprężystości sprężyny metodą dynamiczną. INSRUKCJA Ćwiczenie A Wyznaczanie wpółczynnia prężytości prężyny metodą dynamiczną. Przed zapoznaniem ię z intrucją i przytąpieniem do wyonania ćwiczenia należy zapoznać ię z natępującymi zagadnieniami:

Bardziej szczegółowo

24. CAŁKA POWIERZCHNIOWA ZORIENTOWANA

24. CAŁKA POWIERZCHNIOWA ZORIENTOWANA 4. CAŁA POWIERZCHNIOWA ZORIENTOWANA Płat powierzchniowy gładki o równaniach parametrycznych: x = x( u, v ), y = y( u, v ), z = z( u, v ),, (u,v) w którym rozróżniamy dwie jego stron dodatnią i ujemną.

Bardziej szczegółowo

KONSTRUKCJE STALOWE W EUROPIE. Wielokondygnacyjne konstrukcje stalowe Część 3: Oddziaływania

KONSTRUKCJE STALOWE W EUROPIE. Wielokondygnacyjne konstrukcje stalowe Część 3: Oddziaływania KONSTRUKCJE STALOWE W EUROPIE Wielokondygnacyjne kontrukcje talowe Część 3: Oddziaływania Wielokondygnacyjne kontrukcje talowe Część 3: Oddziaływania 3 - ii PRZEDMOWA Niniejza publikacja tanowi trzecią

Bardziej szczegółowo

9. Mimośrodowe działanie siły

9. Mimośrodowe działanie siły 9. MIMOŚRODOWE DZIŁIE SIŁY 1 9. 9. Mimośrodowe działanie siły 9.1 Podstawowe wiadomości Mimośrodowe działanie siły polega na jednoczesnym działaniu w przekroju pręta siły normalnej oraz dwóc momentów zginającyc.

Bardziej szczegółowo

Całkowanie przez podstawianie i dwa zadania

Całkowanie przez podstawianie i dwa zadania Całkowanie przez podstawianie i dwa zadania Antoni Kościelski Funkcje dwóch zmiennch i podstawianie Dla funkcji dwóch zmiennch zachodzi następując wzór na całkowanie przez podstawianie: f(x(a, b), (a,

Bardziej szczegółowo

Programy CAD w praktyce inŝynierskiej

Programy CAD w praktyce inŝynierskiej Katedra Mikroelektroniki i Technik Informatycznych Politechniki Łódzkiej Programy CAD w praktyce inŝynierkiej Wykład IV Filtry aktywne dr inż. Piotr Pietrzak pietrzak@dmc dmc.p..p.lodz.pl pok. 54, tel.

Bardziej szczegółowo

ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA

ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA DYNAMICZNYCH LOKAT KAPITAŁOWYCH Krzysztof Gąsior Uniwersytet Rzeszowski Streszczenie Celem referatu jest zaprezentowanie praktycznego zastosowania

Bardziej szczegółowo

Zasady dynamiki. 1. Jakie mogą być oddziaływania ciał? 2. Co dzieje się z ciałem, na które nie działają żadne siły?

Zasady dynamiki. 1. Jakie mogą być oddziaływania ciał? 2. Co dzieje się z ciałem, na które nie działają żadne siły? Zaady dynaiki. 1. Jakie ogą być oddziaływania ciał? Świat jet pełen rozaitych ciał. Ciała te nie ą od iebie niezależne, nieutannie na iebie działają. Objawy tego działania, czy też, jak ówią fizycy, oddziaływania

Bardziej szczegółowo

ĆWICZENIE 1 CHARAKTERYSTYKI STATYCZNE DIOD P-N

ĆWICZENIE 1 CHARAKTERYSTYKI STATYCZNE DIOD P-N LBORTORM PRZYRZĄDÓW PÓŁPRZEWODNKOWYCH ĆWCZENE 1 CHRKTERYSTYK STTYCZNE DOD P-N K T E D R S Y S T E M Ó W M K R O E L E K T R O N C Z N Y C H 1 CEL ĆWCZEN Celem ćwiczenia jet zapoznanie ię z: przebiegami

Bardziej szczegółowo

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki.

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. 1. Równanie soczewki i zwierciadła kulistego. Z podobieństwa trójkątów ABF i LFD (patrz rysunek powyżej) wynika,

Bardziej szczegółowo

Laboratorium Wytrzymałości Materiałów

Laboratorium Wytrzymałości Materiałów Katedra Wytrzymałości Materiałów Instytut Mechaniki Budowli Wydział Inżynierii Lądowej Politechnika Krakowska Laboratorium Wytrzymałości Materiałów Praca zbiorowa pod redakcją S. Piechnika Skrypt dla studentów

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW PRÓBA UDARNOŚCI METALI Opracował: Dr inż. Grzegorz Nowak Gliwice

Bardziej szczegółowo

Metodyka szacowania niepewności w programie EMISJA

Metodyka szacowania niepewności w programie EMISJA mgr inż. Ryzard Samoć rzeczoznawca Minitra Ochrony Środowika Zaobów Naturalnych i Leśnictwa nr. 556 6-800 Kaliz, ul. Biernackiego 8 tel. (0-6) 7573-987, 766-39 Metodyka zacowania niepewności w programie

Bardziej szczegółowo

WPŁYW OSZCZĘDNOŚCI W STRATACH ENERGII NA DOBÓR TRANSFORMATORÓW ROZDZIELCZYCH SN/nn

WPŁYW OSZCZĘDNOŚCI W STRATACH ENERGII NA DOBÓR TRANSFORMATORÓW ROZDZIELCZYCH SN/nn Elżbieta Niewiedział, Ryzard Niewiedział Wyżza Szkoła Kadr Menedżerkich w Koninie WPŁYW OSZCZĘDNOŚCI W STRATACH ENERGII NA DOBÓR TRANSFORMATORÓW ROZDZIELCZYCH SN/nn Strezczenie: W referacie przedtawiono

Bardziej szczegółowo

2. Charakterystyki geometryczne przekroju

2. Charakterystyki geometryczne przekroju . CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU 1.. Charakterystyki geometryczne przekroju.1 Podstawowe definicje Z przekrojem pręta związane są trzy wielkości fizyczne nazywane charakterystykami geometrycznymi

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej. LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.. Wprowadzenie Soczewką nazywamy ciało przezroczyste ograniczone

Bardziej szczegółowo

STRENGTHENING OF THE STEEL AFTER HEAT TREATING WITH THE MATRIX OF DIFFERENT STRUCTURE

STRENGTHENING OF THE STEEL AFTER HEAT TREATING WITH THE MATRIX OF DIFFERENT STRUCTURE Leopold BERKOWSKI, Jacek BOROWSKI, Zbigniew RYBAK Politechnika Poznańka, Intytut Mazyn Roboczych i Pojazdów Samochodowych ul. Piotrowo 3, 6-965 Poznań (Poland) e-mail: office_wmmv@put.poznan.pl STRENGTHENING

Bardziej szczegółowo

(x j x)(y j ȳ) r xy =

(x j x)(y j ȳ) r xy = KORELACJA. WSPÓŁCZYNNIKI KORELACJI Gdy w badaniu mamy kilka cech, często interesujemy się stopniem powiązania tych cech między sobą. Pod słowem korelacja rozumiemy współzależność. Mówimy np. o korelacji

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw 1 1. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y 1+x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

LABORATORIUM OPTYKI GEOMETRYCZNEJ

LABORATORIUM OPTYKI GEOMETRYCZNEJ LABORATORIUM OPTYKI GEOMETRYCZNEJ POMIAR OGNISKOWYCH SOCZEWEK CIENKICH 1. Cel dwiczenia Zapoznanie z niektórymi metodami badania ogniskowych soczewek cienkich. 2. Zakres wymaganych zagadnieo: Prawa odbicia

Bardziej szczegółowo

Wewnętrzny stan bryły

Wewnętrzny stan bryły Stany graniczne Wewnętrzny stan bryły Bryła (konstrukcja) jest w równowadze, jeżeli oddziaływania zewnętrzne i reakcje się równoważą. P α q P P Jednak drugim warunkiem równowagi jest przeniesienie przez

Bardziej szczegółowo

Generacja liczb pseudolosowych

Generacja liczb pseudolosowych Generacja liczb pseudolosowych Zapis liczb w komputerze Generatory liczb pseudolosowych Liniowe kongruentne Liniowe mutiplikatywne kongruentne Jakość generatorów Test widmowy Generowanie liczb losowych

Bardziej szczegółowo

WIADOMOŚCI OGÓLNE O NAPRĘŻENIACH. Stan naprężenia w punkcie ciała

WIADOMOŚCI OGÓLNE O NAPRĘŻENIACH. Stan naprężenia w punkcie ciała WIADOMOŚCI OGÓLN O NAPRĘŻNIACH Stan naprężenia w punkcie ciała Załóżmy, że pewne ciało (rys. 1.1), obciążone układem sił zewnętrznych czynnych i biernych, znajduje się w równowadze. Poprowadzimy myślowo

Bardziej szczegółowo

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów

Bardziej szczegółowo

motocykl poruszał się ruchem

motocykl poruszał się ruchem Tet powtórzeniowy nr 1 W zadaniach 1 19 wtaw krzyżyk w kwadracik obok wybranej odpowiedzi Inforacja do zadań 1 5 Wykre przedtawia zależność prędkości otocykla od czau Grupa B 1 Dokończ zdanie, określając,

Bardziej szczegółowo

Podstawy Automatyki. Karol Cupiał

Podstawy Automatyki. Karol Cupiał Poawy Automatyki Karol Cupiał Czętochowa tyczeń Kierunek Energetyka tudia tacjonarne em. 3 we 3 l3 c Kierunek Mechanika i BM tudia tacjonarne em 4 5 w 3 l Kierunek Mechatronika tudia tacjonarne em. 5 w

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

Współczesne metody badań i przetwórstwa materiałów polimerowych

Współczesne metody badań i przetwórstwa materiałów polimerowych Wpółczene metody badań i przetwórtwa materiałów polimerowych Określanie parametrów wytłaczania ze tatytycznym opracowaniem wyników Nr ćwiczenia: 1 Zapoznać ię z kontrolą podtawowych parametrów fizycznych

Bardziej szczegółowo

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL We wstępnej analizie przyjęto następujące założenia: Dwuwymiarowość

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statytyka. v.0.9 egz mgr inf nietacj Statytyczna analiza danych Statytyka opiowa Szereg zczegółowy proty monotoniczny ciąg danych i ) n uzykanych np. w trakcie pomiaru lub za pomocą ankiety. Przykłady

Bardziej szczegółowo

Podstawy Konstrukcji Maszyn

Podstawy Konstrukcji Maszyn Podtawy Kontrukcji azyn Wykład 4 Połączenia śrubowe Dr inŝ. Jacek Czarnigowki Połączenia w kontrukcji mazyn Połączenia Pośrednie Połączenie z elementem dodatkowym pomiędzy elementami łączonymi Bezpośrednie

Bardziej szczegółowo

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel

Bardziej szczegółowo

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl Ładunki elektryczne i siły ich wzajemnego oddziaływania Pole elektryczne Copyright by pleciuga@ o2.pl Ładunek punktowy Ładunek punktowy (q) jest to wyidealizowany model, który zastępuje rzeczywiste naelektryzowane

Bardziej szczegółowo

2. Metody wyznaczania współczynnika k oparte na próbach pompowania.

2. Metody wyznaczania współczynnika k oparte na próbach pompowania. 260 czynnik, mogący być określony pecjalnym przyrządem Zunker'a przyczem jet on zależny od średnicy ziarn, mianowicie: gdzie O jet umą powierzchni w gramie gruntu wyrażoną w cm 2.. Wartość u dla pewnych

Bardziej szczegółowo

Notacja Denavita-Hartenberga

Notacja Denavita-Hartenberga Notacja DenavitaHartenberga Materiały do ćwiczeń z Podstaw Robotyki Artur Gmerek Umiejętność rozwiązywania prostego zagadnienia kinematycznego jest najbardziej bazową umiejętność zakresu Robotyki. Wyznaczyć

Bardziej szczegółowo

Temat 1 (2 godziny): Próba statyczna rozciągania metali

Temat 1 (2 godziny): Próba statyczna rozciągania metali Temat 1 (2 godziny): Próba statyczna rozciągania metali 1.1. Wstęp Próba statyczna rozciągania jest podstawowym rodzajem badania metali, mających zastosowanie w technice i pozwala na określenie własności

Bardziej szczegółowo

Wyznaczanie modułu sprężystości za pomocą wahadła torsyjnego

Wyznaczanie modułu sprężystości za pomocą wahadła torsyjnego Wyznaczanie modułu sprężystości za pomocą wahadła torsyjnego Obowiązkowa znajomość zagadnień Charakterystyka odkształceń sprężystych, pojęcie naprężenia. Prawo Hooke a, moduł Kirchhoffa i jego wpływ na

Bardziej szczegółowo

Geometria. Rodzaje i własności figur geometrycznych:

Geometria. Rodzaje i własności figur geometrycznych: Geometria Jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych i zależności między nimi. Figury geometryczne na płaszczyźnie noszą nazwę figur płaskich, w przestrzeni

Bardziej szczegółowo

Instytut Matematyczny Uniwersytet Wrocławski. Zakres egzaminu magisterskiego. Wybrane rozdziały anazlizy i topologii 1 i 2

Instytut Matematyczny Uniwersytet Wrocławski. Zakres egzaminu magisterskiego. Wybrane rozdziały anazlizy i topologii 1 i 2 Instytut Matematyczny Uniwersytet Wrocławski Zakres egzaminu magisterskiego Wybrane rozdziały anazlizy i topologii 1 i 2 Pojęcia, fakty: Definicje i pojęcia: metryka, iloczyn skalarny, norma supremum,

Bardziej szczegółowo

Kryteria oceniania z matematyki dla klasy III LO poziom podstawowy, na podstawie programu nauczania DKOS- 5002-05/08

Kryteria oceniania z matematyki dla klasy III LO poziom podstawowy, na podstawie programu nauczania DKOS- 5002-05/08 Kryteria oceniania z matematyki dla klasy III LO poziom podstawowy, na podstawie programu nauczania DKOS- 5002-05/08 1. Oprocentowanie lokat i kredytów - zna pojęcie procentu prostego i składanego; - oblicza

Bardziej szczegółowo

Zbiór zadań z geometrii przestrzennej. Michał Kieza

Zbiór zadań z geometrii przestrzennej. Michał Kieza Zbiór zadań z geometrii przestrzennej Michał Kieza Zbiór zadań z geometrii przestrzennej Michał Kieza Wydawca: Netina Sp. z o.o. ISN 978-83-7521-522-9 c 2015, Wszelkie Prawa Zastrzeżone Zabrania się modyfikowania

Bardziej szczegółowo

POLE MAGNETYCZNE. Magnetyczna siła Lorentza Prawo Ampere a

POLE MAGNETYCZNE. Magnetyczna siła Lorentza Prawo Ampere a POLE MAGNETYCZNE Magnetyczna siła Lorentza Prawo Ampere a 1 Doświadczenie Oersteda W 18 r. Hans C. Oersted odkrywa niezwykle interesujące zjawisko. Przepuszczając prąd elektryczny nad igiełką magnetyczną,

Bardziej szczegółowo

1.Funkcja logarytmiczna

1.Funkcja logarytmiczna Kryteria oceniania z matematyki dla klasy IV TI poziom podstawowy, na podstawie programu nauczania DKOS- 5002-05/08 1.Funkcja logarytmiczna -potrafi obliczyć logarytm liczby dodatniej; -zna i potrafi stosować

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, czerwiec 2014 Matematyka w ekonomii i ubezpieczeniach

EGZAMIN MAGISTERSKI, czerwiec 2014 Matematyka w ekonomii i ubezpieczeniach Matematyka w ekonomii i ubezpieczeniach Sprawdź, czy wektor x 0 = (0,5,,0,0) jest rozwiązaniem dopuszczalnym zagadnienia programowania liniowego: Zminimalizować 3x 1 +x +x 3 +4x 4 +6x 5, przy ograniczeniach

Bardziej szczegółowo

4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze. ϕ : K(x 0, δ) (y 0 η, y 0 + η), taka że

4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze. ϕ : K(x 0, δ) (y 0 η, y 0 + η), taka że 4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze taka że K(x 0, δ) (y 0 η, y 0 + η) R n R, f(x 0, y 0 ) = 0, y f(x 0, y 0 ) 0. Wówczas dla odpowiednio

Bardziej szczegółowo

Zeszyty Problemowe Maszyny Elektryczne Nr 75/2006 47

Zeszyty Problemowe Maszyny Elektryczne Nr 75/2006 47 ezyty Problemowe Mazyny Elektryczne Nr 75006 47 Maria J. ielińka Wojciech G. ielińki Politechnika Lubelka Lublin POŚLIGOWA HARAKTERYSTYKA ADMITANJI STOJANA SILNIKA INDUKYJNEGO UYSKANA PRY ASTOSOWANIU SYMULAJI

Bardziej szczegółowo

CZĘŚĆ II PARAMETRYCZNE PROJEKTOWANIE 2D

CZĘŚĆ II PARAMETRYCZNE PROJEKTOWANIE 2D CZĘŚĆ II PARAMETRYCZNE PROJEKTOWANIE 2D Projektowanie parametryczne jest możliwe wyłącznie za pomocą pełnej wersji programu AutoCAD. AutoCAD LT ma bardzo ograniczone możliwości w tym zakresie. Pozwala

Bardziej szczegółowo

3. RUCHY CIAŁ (KINEMATYKA) Pojęcie ruchu, układ odniesienia, tor, droga, przemieszczenie

3. RUCHY CIAŁ (KINEMATYKA) Pojęcie ruchu, układ odniesienia, tor, droga, przemieszczenie 3. RUCHY CIAŁ (KINEMATYKA) Zakre wiadomości Pojęcie ruchu, układ odnieienia, tor, droga, przemiezczenie Względność ruchu Klayfikacja ruchów Prędkość średnia i chwilowa Ruch jednotajny protoliniowy (równanie

Bardziej szczegółowo

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne. Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować

Bardziej szczegółowo

Studenckie Koło Geoinformatyków. Instytut Geodezji Wydział Nauk Technicznych Dolnośląska Szkoła Wyższa we Wrocławiu. Sprawozdanie

Studenckie Koło Geoinformatyków. Instytut Geodezji Wydział Nauk Technicznych Dolnośląska Szkoła Wyższa we Wrocławiu. Sprawozdanie tudenckie Koło Geoinformatyków Intytut Geodezji Wydział Nauk Technicznych Dolnośląka zkoła Wyżza we Wrocławiu prawozdanie z obozu naukoweo w Międzyórzu w dniach -6 kwietnia 3 r Międzyórze 3 Plan obozu

Bardziej szczegółowo

1. Pojazdy i maszyny robocze 2. Metody komputerowe w projektowaniu maszyn 3. Inżynieria produkcji Jednostka prowadząca

1. Pojazdy i maszyny robocze 2. Metody komputerowe w projektowaniu maszyn 3. Inżynieria produkcji Jednostka prowadząca Kod przedmiotu: PLPILA02-IPMIBM-I-2p7-2012-S Pozycja planu: B7 1. INFORMACJE O PRZEDMIOCIE A. Podstawowe dane 1 Nazwa przedmiotu Wytrzymałość materiałów I 2 Rodzaj przedmiotu Podstawowy/obowiązkowy 3 Kierunek

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

Maksymalny błąd oszacowania prędkości pojazdów uczestniczących w wypadkach drogowych wyznaczonej różnymi metodami

Maksymalny błąd oszacowania prędkości pojazdów uczestniczących w wypadkach drogowych wyznaczonej różnymi metodami BIULETYN WAT VOL LV, NR 3, 2006 Makymalny błąd ozacowania prędkości pojazdów uczetniczących w wypadkach drogowych wyznaczonej różnymi metodami BOLESŁAW PANKIEWICZ, STANISŁAW WAŚKO* Wojkowa Akademia Techniczna,

Bardziej szczegółowo

SPRAWDZIAN WIADOMOŚCI I UMIEJĘTNOŚCI Z DYNAMIKI KLASA I GIMNAZJUM GRUPA I

SPRAWDZIAN WIADOMOŚCI I UMIEJĘTNOŚCI Z DYNAMIKI KLASA I GIMNAZJUM GRUPA I SPRAWDZIAN WIADOMOŚCI I UMIEJĘTNOŚCI Z DYNAMIKI KLASA I GIMNAZJUM GRUPA I 1. (3p) Jaki rodzaj oddziaływań zachodzi w podanych ytuacjach? a) Spadanie jabłka z drzewa -... b) Uderzenie łotkie w gwóźdź...

Bardziej szczegółowo

PROJEKTOWANIE KONSTRUKCJI STALOWYCH WEDŁUG EUROKODÓW.

PROJEKTOWANIE KONSTRUKCJI STALOWYCH WEDŁUG EUROKODÓW. PROJEKTOWANIE KONSTRUKCJI STALOWYCH WEDŁUG EUROKODÓW. 1 Wiadomości wstępne 1.1 Zakres zastosowania stali do konstrukcji 1.2 Korzyści z zastosowania stali do konstrukcji 1.3 Podstawowe części i elementy

Bardziej szczegółowo

PF11- Dynamika bryły sztywnej.

PF11- Dynamika bryły sztywnej. Instytut Fizyki im. Mariana Smoluchowskiego Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego Zajęcia laboratoryjne w I Pracowni Fizycznej dla uczniów szkół ponadgimnazjalych

Bardziej szczegółowo

Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)

Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy) Program nauczania: Matematyka z plusem, Liczba godzin nauki w tygodniu: 3 Planowana liczba godzin w ciągu roku: 72 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)

Bardziej szczegółowo

Ekonomia matematyczna - 1.2

Ekonomia matematyczna - 1.2 Ekonomia matematyczna - 1.2 6. Popyt Marshalla, a popyt Hicksa. Poruszać się będziemy w tzw. standardowym polu preferencji X,, gdzie X R n i jest relacją preferencji, która jest: a) rosnąca (tzn. x y x

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI poziom rozszerzony

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI poziom rozszerzony Próbny egzamin maturalny z matematyki. Poziom rozszerzony 1 PRÓNY EGZMIN MTURLNY Z MTEMTYKI poziom rozszerzony ZNI ZMKNIĘTE W każdym z zadań 1.. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0

Bardziej szczegółowo

Potencjał pola elektrycznego

Potencjał pola elektrycznego Potencjał pola elektrycznego Pole elektryczne jest polem zachowawczym, czyli praca wykonana przy przesunięciu ładunku pomiędzy dwoma punktami nie zależy od tego po jakiej drodze przesuwamy ładunek. Spróbujemy

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: PODSTAWY MODELOWANIA PROCESÓW WYTWARZANIA Fundamentals of manufacturing processes modeling Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności APWiR Rodzaj

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje

Bardziej szczegółowo

Modelowanie w MES. Kolejność postępowania w prostej analizie MES w SWS

Modelowanie w MES. Kolejność postępowania w prostej analizie MES w SWS MES 5 Modelowanie w MES Część I Kolejność postępowania w prostej analizie MES w SWS Kroki analizy Zakładamy, że model już jest uproszczony, zdefiniowany został materiał, obciążenie i umocowanie (krok 0).

Bardziej szczegółowo

Grafika komputerowa Wykład 7 Modelowanie obiektów graficznych cz. I

Grafika komputerowa Wykład 7 Modelowanie obiektów graficznych cz. I Grafika komputerowa Wykład 7 Modelowanie obiektów graficznych cz. I Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH METODA ROZDZIELENIA ZMIENNYCH (2) (3) (10) (11) Modelowanie i symulacje obiektów w polu elektromagnetycznym 1 Rozwiązania równań (10-11) mają ogólną postać: (12) (13) Modelowanie i symulacje obiektów w

Bardziej szczegółowo

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną

Bardziej szczegółowo

STAN ODKSZTAŁCENIA 2.1. WEKTOR PRZEMIESZCZENIA

STAN ODKSZTAŁCENIA 2.1. WEKTOR PRZEMIESZCZENIA Część. STAN ODKSZTAŁCENIA. STAN ODKSZTAŁCENIA.. WEKTOR PRZEMIESZCZENIA Rozważymy ciało odkształcalne wypełnione szczelnie materią (rys..). Pod wpływem czynników zewnętrznych (sił powierzchniowych, sił

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość

Bardziej szczegółowo

MODEL WYRZUTNI ELEKTROMAGNETYCZNEJ

MODEL WYRZUTNI ELEKTROMAGNETYCZNEJ Szybkobieżne Pojazdy Gąienicowe (22) nr 1, 2007 Zbigniew RACZYŃSKI MODEL WYRZUTNI ELEKTROMAGNETYCZNEJ Strezczenie: W artykule przedtawiono zaadę działania wyrzutni cewkowej i zynowej. Przedtawiono wyniki

Bardziej szczegółowo

POMOCNIK GIMNAZJALISTY

POMOCNIK GIMNAZJALISTY POMOCNIK GIMNAZJALISTY ważne wzory i definicje z fizyki opracowała gr Irena Keka KLASA I... 3 I. WIADOMOŚCI WSTĘPNE... 3 II. HYDROSTATYKA I AEROSTATYKA... 4 Klaa II... 5 I. KINEMATYKA... 5 II. DYNAMIKA...

Bardziej szczegółowo