Nauka o Materiałach. Wykład VIII. Odkształcenie materiałów właściwości sprężyste. Jerzy Lis

Wielkość: px
Rozpocząć pokaz od strony:

Download "Nauka o Materiałach. Wykład VIII. Odkształcenie materiałów właściwości sprężyste. Jerzy Lis"

Transkrypt

1 Nauka o Materiałach Wykład VIII Odkształcenie materiałów właściwości sprężyste Jerzy Lis

2 Nauka o Materiałach Treść wykładu: 1. Właściwości materiałów -wprowadzenie 2. Klasyfikacja reologiczna odkształcenia materiałów. 3. Statyczna próba rozciągania. 4. Odkształcenie sprężyste 4.1. Prawo Hooke a - moduły sprężystości 4.2. Właściwości sprężyste układu dwu atomów dkształcenie sprężyste kryształów 4.4. Właściwości sprężyste materiałów wielofazowych 4.5. Właściwości sprężyste materiałów porowatych 4.6. Metody pomiaru modułów sprężystości 4.7 Niesprężystość

3 WŁAŚCIWOŚCI TWORZYW - WPROWADZENIE O możliwości zastosowania danego materiału decydują jego właściwości użytkowe Zachowanie się danego materiału w środowisku pracy to zaplanowana przez użytkownika (założona) odpowiedź na działające na niego czynniki (bodźce) SCHEMAT ODDZIAŁYWANIA CZYNNIKÓW NA MATERIAŁ Czynnik (Czas) MATERIAŁ odzew (właściwości)

4 Stałe w danym modelu charakterystyczne dla danego materiału określane w ściśle zdefiniowanych warunkach noszą nazwę stałych materiałowych Nauka o materiałach WŁAŚCIWOŚCI TWORZYW - WPROWADZENIE PODEJŚCIE INŻYNIERSKIE Materiał traktowany jest jak czarna skrzynka - nie interesuje nas jego charakterystyka jedynie istniejące zależności funkcyjne W wypadku parametrów ilościowych (mierzalnych) odzew = funkcja ( czynników) Sprowadza się tą zależność do możliwie najprostszych funkcji (modeli) matematycznych np.: zależność liniowa prawo Hooke a σ = Eε

5 WŁAŚCIWOŚCI TWORZYW - WPROWADZENIE Podejście charakterystyczne dla nauki o materiałach Czynnik (Czas) MATERIAŁ: - budowa nano mikro makro odzew (właściwości) Materiał nie jest traktowany jako czarna skrzynka lecz w myśl nauki o materiałach posiada swoją budowę wynikającą ze sposobu jego otrzymywania. Stałe w modelach (materiałowe) charakterystyczne dla materiału będą zależeć od jego budowy (sposobu otrzymywania)

6 WŁAŚCIWOŚCI TWORZYW - WPROWADZENIE

7 WŁAŚCIWOŚCI TWORZYW - WPROWADZENIE Podstawowym czynnikiem weryfikującym materiały inżynierskie jest działanie sił (naprężeń). naprężenie MATERIAŁ odkształcenie dekohezja Naprężenia mogą zmienić wymiary (liniowe, kątowe) lub ciągłość materiału (dekohezja)

8 MODELE ODKSZTAŁCENIA Nauką opisującą nieniszczące odkształcanie się ciał pod wpływem działania sił jest reologia. Reologia opiera się na modelach makroskopowych ciał poddawanych działaniu sił ścinania. Modele te w sposób ogólny opisują zachowanie się ciał zarówno odkształcających się postaciowo (ciała sztywne i ciecze) jak i objętościowo (gazy) W klasyfikacji reologicznej (makroskopowej) jako najbardziej typowe można przyjąć trzy podstawowe modele zachowania się ciał: * odkształcenie sprężyste * odkształcenie plastyczne * odkształcenie lepkościowe

9 MODELE ODKSZTAŁCENIA Odkształcenie sprężyste (odwracalne) Ciało liniowo-sprężyste (Hooke a) σ = Eε Ciało o sprężystości opóźnionej (Kelvina) σ = Eε + ηdε/dt ε(t) = σ o /E (1 - exp (- t/τ)) τ - czas relaksacji

10 Ciało doskonale plastyczne τ = τ y τ y - granica plastyczności MODELE ODKSZTAŁCENIA Odkształcenie plastyczne (nieodwracalne)

11 MODELE ODKSZTAŁCENIA Odkształcenie lepkościowe Ciecz Newtona σ = ηε η - współczynnik lepkości

12 Zachowanie się materiałów pod wpływem naprężeń - statyczna próba rozciągania (ściskania, zginania,...)

13 Rzeczywiste zachowanie się materiałów łączy ze sobą elementy zachowania modelowego sprężystego, plastycznego i lepkościowego MATERIAŁY KRUCHE, PLASTYCZNE, LEPKOSPRĘŻYSTE

14 Dla materiałów sztywnych w pierwszym etapie przy rosnących naprężeniach materiały zachowują się sprężyście tj. odkształcają się nietrwale. W pewnym zakresie odkształcenie jest proporcjonalne do naprężenia. Prawo Hooke a σ = E ε τ = G γ p = - K E -moduł Younga G -moduł sztywności (ścinania) K -moduł ścisliwości (postaci) ν- liczba Poissona Moduły E, G, K i l. Poissona określają właściwości sprężyste materiałów.

15 Pytania: od czego zależą moduły sprężystości materiałów? * jak je można określić? * jak je można zmieniać?

16 Odkształcenie sprężyste w układzie dwu atomów

17 ε δ δ σ ε δ δ σ ε ε δ δ σ σ ε σ d r F r d r F r d r dr d r r dr r F r d r F r F a F r o r o ro r o o o r o r o o = = = = = = = = = 1 ) ( 1 ) ( 1 ~ W modelu rozważamy zależność naprężenia od odkształcenia dla dwu atomów odchylanych od położenia równowago przez siłę zewnętrzną. Działania sił zewnętrznych wywołuje wewnętrzną przeciwnie skierowaną reakcję układu Zakładamy układ izolowany w którym atomy są odchylany od położenia równowagi (r o ) na niewielką odległość

18 σ = 1 r o δ δ F r r = r o ε σ = C ε C - stała sprężystości ~ modułu sprężystości Im większa siła wiązania i im krótsze wiązanie tym większy moduł sprężystości materiału.

19 Pełna macierz - 36 stałych sprężystości Wyższa symetria - redukcja stałych * Materiał izotropowy - 3 stałe : S 11, S 12, S 44 ε 1 = S 11 σ 1 + S 12 σ 2 + S 12 σ 3 ε 2 = S 12 σ 1 + S 11 σ 2 + S1 2 σ 3 ε 11 = S 11 σ 1 + S 12 σ 2 + S 11 σ 3 ε 4 = S 44 σ 4 Przy czym E = 1/ S 11 G = 1/S 44 ν = - S 12 /S 11 δσ i E =... i δε j δσ i G =... i δε j δε i ν = δε j Zależność między stałymi materiałowymi: σiσ k = = j j = 1,2,3 = 4,5,6 E=2G (1+ν)

20 Porównanie wielkości E dla różnych materiałów

21 Porównanie wielkości E dla różnych materiałów

22 Energia odkształceń sprężystych Energia równa się polu pod krzywą Gęstość energii( ilość na jednostkę objętości) w [J/m 2 ] ε E ε 2 σ 2 W = 0 σ ε i i d ε i = 2 = 2E

23 Właściwości sprężyste materiałów wielofazowych Model równoległy E = V 1 E 1 + V 2 E 2 prawo mieszanin Modele równoległy i szeregowy (uproszczone) E moduł Younga V udział objętościowy fazy Model szeregowy 1/E = V 1 /E 1 + V 2 /E 2

24 Moduł Younga kompozytów

25 Właściwości sprężyste materiałów porowatych Fazę gazową w materiale można traktować jak fazę o E=0 stąd Z prawa mieszanin gdzie: E = E o (1- V p ) V p -udział objętościowy porów E o -moduł Younga materiału gęstego

26 W rzeczywistych materiałach następuje tzw. koncentracja naprężeń czyli naprężenie wewnątrz materiału jest większe niż przyłożone na zewnątrz c σ = σ ρ z 2 σ z c ρ

27 Ogólnie σ ρ = k σ z k współczynnik koncentracji naprężeń stąd E = E o (1- k V p ) Na przykład dla porów eliptycznych wzór Rossi ego k = (5/4)(a/c) + 3/4

28 METODY POMIARU MODUŁÓW SPRĘŻYSTOŚCI STATYCZNE DYNAMICZNE moduł zrelaksowany moduł niezrelaksowany statyczne próby odkształcenie pomiar szybkości fali mechanicznej próbek materiałów penetrującej przez materiał (rozciąganie) (m. ultradźwiękowe) (ściskanie) (m. rezonansowe) (zginanie)

29 Zjawisko niesprężystości Zjawisko zależności odkształcenia sprężystego od czasu nosi nazwę niesprężystości (sprężystości opóźnionej) σ o =const ε = ε o +(ε U - ε R )exp(-t/θ) gdzie: ε R odkształcenie zrelaksowane ε U odkształcenie niezrelaksowane Θ - czas relaksacji

30 Jeżeli czas pomiaru właściwości sprężystych jest większy niż czas niezbędny dla zajścia danego procesu relaksacyjnego to proces ten nie będzie miał wpływu na pomiar Procesy relaksacyjne odkształcenia sprężystego w materiałach

31 E niezrelaksowany E zrelaksowany R o U o R o U o R o E t b E t a t E E E σ ε θ σ ε θ θ σ σ σ ε + =... ) 0... ) exp

32 Nauka o Materiałach Dziękuję do zobaczenia za tydzień

Nauka o Materiałach. Wykład VI. Odkształcenie materiałów właściwości sprężyste i plastyczne. Jerzy Lis

Nauka o Materiałach. Wykład VI. Odkształcenie materiałów właściwości sprężyste i plastyczne. Jerzy Lis Nauka o Materiałach Wykład VI Odkształcenie materiałów właściwości sprężyste i plastyczne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Właściwości materiałów -wprowadzenie 2. Statyczna próba rozciągania.

Bardziej szczegółowo

Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis

Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis Nauka o Materiałach Wykład XI Właściwości cieplne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Stabilność termiczna materiałów 2. Pełzanie wysokotemperaturowe 3. Przewodnictwo cieplne 4. Rozszerzalność

Bardziej szczegółowo

dr hab. inż. Józef Haponiuk Katedra Technologii Polimerów Wydział Chemiczny PG

dr hab. inż. Józef Haponiuk Katedra Technologii Polimerów Wydział Chemiczny PG 7.WŁAŚCIWOŚCI LEPKOSPRĘŻYSTE POLIMERÓW dr hab. inż. Józef Haponiuk Katedra Technologii Polimerów Wydział Chemiczny PG Politechnika Gdaoska, 2011 r. Publikacja współfinansowana ze środków Unii Europejskiej

Bardziej szczegółowo

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia Wytrzymałość materiałów dział mechaniki obejmujący badania teoretyczne i doświadczalne procesów odkształceń i niszczenia ciał pod wpływem różnego rodzaju oddziaływań (obciążeń) Podstawowe pojęcia wytrzymałości

Bardziej szczegółowo

Projektowanie elementów z tworzyw sztucznych

Projektowanie elementów z tworzyw sztucznych Projektowanie elementów z tworzyw sztucznych Wykorzystanie technik komputerowych w projektowaniu elementów z tworzyw sztucznych Tematyka wykładu Techniki komputerowe, Problemy występujące przy konstruowaniu

Bardziej szczegółowo

11. WŁASNOŚCI SPRĘŻYSTE CIAŁ

11. WŁASNOŚCI SPRĘŻYSTE CIAŁ 11. WŁANOŚCI PRĘŻYTE CIAŁ Efektem działania siły może być przyspieszanie ciała, ae może być także jego deformacja. Przykładami tego ostatniego są np.: rozciąganie gumy a także zginanie ub rozciąganie pręta.

Bardziej szczegółowo

Właściwości reologiczne

Właściwości reologiczne Ćwiczenie nr 4 Właściwości reologiczne 4.1. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z pojęciem reologii oraz właściwości reologicznych a także testami reologicznymi. 4.2. Wstęp teoretyczny:

Bardziej szczegółowo

INSTRUKCJA DO CWICZENIA NR 5

INSTRUKCJA DO CWICZENIA NR 5 INTRUKCJA DO CWICZENIA NR 5 Temat ćwiczenia: tatyczna próba ściskania materiałów kruchych Celem ćwiczenia jest wykonanie próby statycznego ściskania materiałów kruchych, na podstawie której można określić

Bardziej szczegółowo

Ćwiczenie 11. Moduł Younga

Ćwiczenie 11. Moduł Younga Ćwiczenie 11. Moduł Younga Małgorzata Nowina-Konopka, Andrzej Zięba Cel ćwiczenia Wyznaczenie modułu Younga metodą statyczną za pomocą pomiaru wydłużenia drutu z badanego materiału obciążonego stałą siłą.

Bardziej szczegółowo

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki

Bardziej szczegółowo

Wykład 8: Lepko-sprężyste odkształcenia ciał

Wykład 8: Lepko-sprężyste odkształcenia ciał Wykład 8: Lepko-sprężyste odkształcenia ciał Leszek CHODOR dr inż. bud, inż.arch. leszek@chodor.pl Literatura: [1] Piechnik St., Wytrzymałość materiałów dla wydziałów budowlanych,, PWN, Warszaw-Kraków,

Bardziej szczegółowo

Materiały Reaktorowe. Właściwości mechaniczne

Materiały Reaktorowe. Właściwości mechaniczne Materiały Reaktorowe Właściwości mechaniczne Naprężenie i odkształcenie F A 0 l i l 0 l 0 l l 0 a. naprężenie rozciągające b. naprężenie ściskające c. naprężenie ścinające d. Naprężenie torsyjne Naprężenie

Bardziej szczegółowo

Podstawy fizyki wykład 4

Podstawy fizyki wykład 4 Podstawy fizyki wykład 4 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada

Bardziej szczegółowo

Dekohezja materiałów. Przedmiot: Degradacja i metody badań materiałów Wykład na podstawie materiałów prof. dr hab. inż. Jerzego Lisa, prof. zw.

Dekohezja materiałów. Przedmiot: Degradacja i metody badań materiałów Wykład na podstawie materiałów prof. dr hab. inż. Jerzego Lisa, prof. zw. Dekohezja materiałów Przedmiot: Degradacja i metody badań materiałów Wykład na podstawie materiałów prof. dr hab. inż. Jerzego Lisa, prof. zw. AGH Nauka o Materiałach Treść wykładu: 1. Dekohezja materiałów

Bardziej szczegółowo

Wykład IX: Odkształcenie materiałów - właściwości plastyczne

Wykład IX: Odkształcenie materiałów - właściwości plastyczne Wykład IX: Odkształcenie materiałów - właściwości plastyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Treść wykładu: 1. Odkształcenie

Bardziej szczegółowo

Nauka o Materiałach. Wykład IX. Odkształcenie materiałów właściwości plastyczne. Jerzy Lis

Nauka o Materiałach. Wykład IX. Odkształcenie materiałów właściwości plastyczne. Jerzy Lis Nauka o Materiałach Wykład IX Odkształcenie materiałów właściwości plastyczne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Odkształcenie plastyczne 2. Parametry makroskopowe 3. Granica plastyczności

Bardziej szczegółowo

Wykład X: Dekohezja. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych

Wykład X: Dekohezja. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Wykład X: Dekohezja JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Treść wykładu: 1. Dekohezja materiałów - wprowadzenie. 2. Wytrzymałość materiałów -

Bardziej szczegółowo

Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów

Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów Fizyka dla Informatyków Wykład 8 Katedra Informatyki Stosowanej PJWSTK 2008 Spis treści Spis treści 1 Podstawowe równania hydrodynamiki 2 3 Równanie Bernoulliego 4 Spis treści Spis treści 1 Podstawowe

Bardziej szczegółowo

WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA

WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA Ćwiczenie 58 WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA 58.1. Wiadomości ogólne Pod działaniem sił zewnętrznych ciała stałe ulegają odkształceniom, czyli zmieniają kształt. Zmianę odległości między

Bardziej szczegółowo

ENERGIA DYSYPACJI W SPRĘŻYSTOLEPKIM PRĘ CIE PRZY HARMONICZNYCH OBCIĄŻENIACH

ENERGIA DYSYPACJI W SPRĘŻYSTOLEPKIM PRĘ CIE PRZY HARMONICZNYCH OBCIĄŻENIACH ZESZYTY NAUKOWE AKADEMII MARYNARKI WOJENNEJ ROK XLVIII NR 1 (168) 007 Janusz Kolenda Akademia Marynarki Wojennej ENERGIA DYSYPACJI W SPRĘŻYSTOLEPKIM PRĘ CIE PRZY HARMONICZNYCH OBCIĄŻENIACH STRESZCZENIE

Bardziej szczegółowo

17. 17. Modele materiałów

17. 17. Modele materiałów 7. MODELE MATERIAŁÓW 7. 7. Modele materiałów 7.. Wprowadzenie Podstawowym modelem w mechanice jest model ośrodka ciągłego. Przyjmuje się, że materia wypełnia przestrzeń w sposób ciągły. Możliwe jest wyznaczenie

Bardziej szczegółowo

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Siły - wektory Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub

Bardziej szczegółowo

Dobór materiałów konstrukcyjnych cz. 7

Dobór materiałów konstrukcyjnych cz. 7 Dobór materiałów konstrukcyjnych cz. 7 dr inż. Hanna Smoleńska Katedra Inżynierii Materiałowej i Spajania Wydział Mechaniczny, Politechnika Gdańska Materiały edukacyjne Sprężystość i wytrzymałość Naprężenie

Bardziej szczegółowo

DRGANIA OSCYLATOR HARMONICZNY

DRGANIA OSCYLATOR HARMONICZNY DRGANIA OSCYLATOR HARMONICZNY wyklad8 2012/2013, zima 1 Własności sprężyste ciał stałych naprężenie rozciągające naprężenie ścinające naprężenie objętościowe Względne odkształcenie ciała zależy od naprężenia

Bardziej szczegółowo

Ćw. 3. Wyznaczanie modułu Younga metodą jednostronnego rozciągania

Ćw. 3. Wyznaczanie modułu Younga metodą jednostronnego rozciągania KATEDRA FIZYKI STOSOWANEJ P R A C O W N I A F I Z Y K I Ćw.. Wyznaczanie modułu Younga metodą jednostronnego rozciągania Wprowadzenie Ze względu na budowę struktury cząsteczkowej, ciała stałe możemy podzielić

Bardziej szczegółowo

Właściwości cieplne Stabilność termiczna materiałów. Stabilność termiczna materiałów

Właściwości cieplne Stabilność termiczna materiałów. Stabilność termiczna materiałów Właściwości cieplne Stabilność termiczna materiałów Temperatury topnienia lub mięknięcia (M) różnych materiałów Materiał T [ O K] Materiał T [ O K] Materiał T [ O K] diament, grafit 4000 żelazo 809 poliestry

Bardziej szczegółowo

możliwie jak najniższą lepkość oraz / lub niską granicę płynięcia brak lub bardzo mały udział sprężystości we właściwościach przepływowych

możliwie jak najniższą lepkość oraz / lub niską granicę płynięcia brak lub bardzo mały udział sprężystości we właściwościach przepływowych RHEOTEST Medingen Reometr RHEOTEST RN służący do reologicznej oceny systemów dwuskładnikowych na przykładzie lakierów i mas uszczelniających przy pomocy testów oscylacji Zadania podstawowe Systemy dwuskładnikowe

Bardziej szczegółowo

SPRAWDZANIE PRAWA HOOKE A I WYZNACZANIE MODUŁU YOUNGA

SPRAWDZANIE PRAWA HOOKE A I WYZNACZANIE MODUŁU YOUNGA ĆWICZENIE 10 SPRAWDZANIE PRAWA HOOKE A I WYZNACZANIE MODUŁU YOUNGA Cel ćwiczenia: Sprawdzenie prawa Hooke a oraz wyznaczenie modułu Younga badanego metalu metodą pomiaru wydłużenia. Zagadnienia: sprężystość,

Bardziej szczegółowo

Wykład XI: Właściwości cieplne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych

Wykład XI: Właściwości cieplne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Wykład XI: Właściwości cieplne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Treść wykładu: 1. Stabilność termiczna materiałów 2. Pełzanie wysokotemperaturowe

Bardziej szczegółowo

Metody badań materiałów konstrukcyjnych

Metody badań materiałów konstrukcyjnych Wyznaczanie stałych materiałowych Nr ćwiczenia: 1 Wyznaczyć stałe materiałowe dla zadanych materiałów. Maszyna wytrzymałościowa INSTRON 3367. Stanowisko do badania wytrzymałości na skręcanie. Skalibrować

Bardziej szczegółowo

FIZYKA METALI - LABORATORIUM 6 Wyznaczanie modułu sztywności metodą wahadła torsyjnego

FIZYKA METALI - LABORATORIUM 6 Wyznaczanie modułu sztywności metodą wahadła torsyjnego FIZYKA METALI - LABORATORIUM 6 Wyznaczanie modułu sztywności metodą wahadła torsyjnego 1. CEL ĆWICZENIA Celem laboratorium jest zdobycie umiejętności i wiedzy w zakresie wyznaczania modułu sztywności G

Bardziej szczegółowo

Sylabus modułu kształcenia/przedmiotu

Sylabus modułu kształcenia/przedmiotu Sylabus modułu kształcenia/przedmiotu Nr pola Nazwa pola Opis 1 Jednostka Instytut Politechniczny/Zakład Technologii Materiałów 2 Kierunek studiów Inżynieria Materiałowa 3 Nazwa modułu kształcenia/ Nauka

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH

POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH POLITECHNIKA WASZAWSKA WYDZIAŁ ELEKTYCZNY INSTYTUT ELEKTOTECHNIKI TEOETYCZNEJ I SYSTEMÓW INOMACYJNO-POMIAOWYCH ZAKŁAD WYSOKICH NAPIĘĆ I KOMPATYBILNOŚCI ELEKTOMAGNETYCZNEJ PACOWNIA MATEIAŁOZNAWSTWA ELEKTOTECHNICZNEGO

Bardziej szczegółowo

STATYCZNA PRÓBA ROZCIĄGANIA

STATYCZNA PRÓBA ROZCIĄGANIA Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: STATYCZNA PRÓBA ROZCIĄGANIA oprac. dr inż. Jarosław Filipiak Cel ćwiczenia 1. Zapoznanie się ze sposobem przeprowadzania statycznej

Bardziej szczegółowo

Integralność konstrukcji

Integralność konstrukcji 1 Integraność konstrukcji Wykład Nr 2 Inżynierska i rzeczywista krzywa rozciągania Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji http://zwmik.imir.agh.edu.p/dydaktyka/imir/index.htm

Bardziej szczegółowo

ĆWICZENIE. Oznaczanie szybkości relaksacji naprężeń wulkanizatów

ĆWICZENIE. Oznaczanie szybkości relaksacji naprężeń wulkanizatów ĆWICZENIE Oznaczanie szybkości relaksacji naprężeń wulkanizatów 1 1. CEL ĆWICZENIA Celem dwiczenia pn. Oznaczanie szybkości relaksacji naprężeo wulkanizatów jest określenie wpływu rodzaju węzłów w sieci

Bardziej szczegółowo

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY WŁASNOŚCI CIAŁ STAŁYCH I CIECZY Polimery Sieć krystaliczna Napięcie powierzchniowe Dyfuzja 2 BUDOWA CIAŁ STAŁYCH Ciała krystaliczne (kryształy): monokryształy, polikryształy Ciała amorficzne (bezpostaciowe)

Bardziej szczegółowo

Prawa ruchu: dynamika

Prawa ruchu: dynamika Prawa ruchu: dynamika Fizyka I (B+C) Wykład XII: Siły sprężyste Opory ruchu Tarcie Lepkość Ruch w ośrodku Siła sprężysta Prawo Hooke a Opisuje zależność siły sprężystej od odkształcenia ciała: L Prawo

Bardziej szczegółowo

POLITECHNIKA BIAŁOSTOCKA

POLITECHNIKA BIAŁOSTOCKA POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Podstawy techniki i technologii Kod przedmiotu: IS01123; IN01123 Ćwiczenie 5 BADANIE WŁASNOŚCI MECHANICZNYCH

Bardziej szczegółowo

dr hab. inż. Józef Haponiuk Katedra Technologii Polimerów Wydział Chemiczny PG

dr hab. inż. Józef Haponiuk Katedra Technologii Polimerów Wydział Chemiczny PG 3. POLIMERY AMORFICZNE dr hab. inż. Józef Haponiuk Katedra Technologii Polimerów Wydział Chemiczny PG Politechnika Gdaoska, 2011 r. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego

Bardziej szczegółowo

INSTRUKCJA DO CWICZENIA NR 4

INSTRUKCJA DO CWICZENIA NR 4 INSTRUKCJA DO CWICZENIA NR 4 Temat ćwiczenia: Statyczna próba rozciągania metali Celem ćwiczenia jest wykonanie próby statycznego rozciągania metali, na podstawie której można określić następujące własności

Bardziej szczegółowo

TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania

TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika

Bardziej szczegółowo

4.7 Pomiar prędkości dźwięku w metalach metodą echa ultradźwiękowego(f9)

4.7 Pomiar prędkości dźwięku w metalach metodą echa ultradźwiękowego(f9) 198 Fale 4.7 Pomiar prędkości dźwięku w metalach metodą echa ultradźwiękowego(f9) Celem ćwiczenia jest wyznaczenie prędkości dźwięku w wybranych metalach na podstawie pomiarów metodą echa ultradźwiękowego.

Bardziej szczegółowo

Laboratorium wytrzymałości materiałów

Laboratorium wytrzymałości materiałów Politechnika Lubelska MECHANIKA Laboratorium wytrzymałości materiałów Ćwiczenie 19 - Ścinanie techniczne połączenia klejonego Przygotował: Andrzej Teter (do użytku wewnętrznego) Ścinanie techniczne połączenia

Bardziej szczegółowo

Rodzaje obciążeń, odkształceń i naprężeń

Rodzaje obciążeń, odkształceń i naprężeń Rodzaje obciążeń, odkształceń i naprężeń 1. Podział obciążeń i odkształceń Oddziaływania na konstrukcję, w zależności od sposobu działania sił, mogą być statyczne lun dynamiczne. Obciążenia statyczne występują

Bardziej szczegółowo

Wyznaczanie modułu sztywności metodą Gaussa

Wyznaczanie modułu sztywności metodą Gaussa Ćwiczenie M13 Wyznaczanie modułu sztywności metodą Gaussa M13.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu sztywności stali metodą dynamiczną Gaussa. M13.2. Zagadnienia związane z

Bardziej szczegółowo

Wyznaczanie współczynnika sprężystości sprężyn i ich układów

Wyznaczanie współczynnika sprężystości sprężyn i ich układów Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie

Bardziej szczegółowo

GEOFIZYKA STOSOWANA wykład 2. Podstawy sejsmiki

GEOFIZYKA STOSOWANA wykład 2. Podstawy sejsmiki GEOFIZYKA STOSOWANA wykład Podstawy sejsmiki Naprężenie całkowite działające na nieskończenie mały element ośrodka ciągłego o objętości dv i powierzchni ds można opisać jeśli znamy rozkład naprężeń działających

Bardziej szczegółowo

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania Charakterystyczne wielkości i równania PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny Instytut L-5, Wydział Inżynierii Lądowej,

Bardziej szczegółowo

Pręt nr 1 - Element żelbetowy wg. PN-B-03264

Pręt nr 1 - Element żelbetowy wg. PN-B-03264 Pręt nr 1 - Element żelbetowy wg. PN-B-03264 Informacje o elemencie Nazwa/Opis: element nr 5 (belka) - Brak opisu elementu. Węzły: 13 (x6.000m, y24.000m); 12 (x18.000m, y24.000m) Profil: Pr 350x900 (Beton

Bardziej szczegółowo

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko

Bardziej szczegółowo

RÓWNANIA FIZYCZNE DLA CIAŁ LINIOWO - SPRĘŻYSTYCH

RÓWNANIA FIZYCZNE DLA CIAŁ LINIOWO - SPRĘŻYSTYCH Część 5. RÓWNANIA FIZYCZNE DLA CIAŁ LINIOWO - SPRĘŻYSTYCH 5. RÓWNANIA FIZYCZNE DLA CIAŁ LINIOWO - SPRĘŻYSTYCH 5.. ZWIĄZKI MIĘDZY ODKSZTAŁCENIAMI I GŁÓWNYMI NAPRĘŻENIAMI W każdym materiale konstrukcyjnym

Bardziej szczegółowo

Analityczne Modele Tarcia. Tadeusz Stolarski Katedra Podstaw Konstrukcji I Eksploatacji Maszyn

Analityczne Modele Tarcia. Tadeusz Stolarski Katedra Podstaw Konstrukcji I Eksploatacji Maszyn Analityczne Modele Tarcia Tadeusz Stolarski Katedra odstaw Konstrukcji I Eksploatacji Maszyn owierzchnia rzeczywista Struktura powierzchni Warstwa zanieczyszczeo - 30 A Warstwa tlenków - 100 A Topografia

Bardziej szczegółowo

PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH

PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH 1 Przedmowa Okładka CZĘŚĆ PIERWSZA. SPIS PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH 1. STAN NAPRĘŻENIA 1.1. SIŁY POWIERZCHNIOWE I OBJĘTOŚCIOWE 1.2. WEKTOR NAPRĘŻENIA 1.3. STAN NAPRĘŻENIA W PUNKCIE 1.4. RÓWNANIA

Bardziej szczegółowo

Instytutu Ceramiki i Materiałów Budowlanych

Instytutu Ceramiki i Materiałów Budowlanych Instytutu Ceramiki i Materiałów Budowlanych Scientific Works of Institute of Ceramics and Building Materials Nr 12 ISSN 1899-3230 Rok VI Warszawa Opole 2013 ANNA GERLE * JACEK PODWÓRNY ** Słowa kluczowe:

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW PRÓBA UDARNOŚCI METALI Opracował: Dr inż. Grzegorz Nowak Gliwice

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Wytrzymałość materiałów Rok akademicki: 2030/2031 Kod: MEI-1-305-s Punkty ECTS: 2 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Edukacja Techniczno Informatyczna Specjalność:

Bardziej szczegółowo

Wydział Inżynierii Materiałowej i Ceramiki AGH CERAMICZNE TWORZYWA KONSTRUKCYJNE

Wydział Inżynierii Materiałowej i Ceramiki AGH CERAMICZNE TWORZYWA KONSTRUKCYJNE Wydział Inżynierii Materiałowej i Ceramiki AGH CERAMICZNE TWORZYWA KONSTRUKCYJNE Laboratorium Rok akademicki 2015/16 Ćwiczenie 4 Wyznaczanie modułu Younga materiałów metodą rezonansową Zagadnienia do opracowania:

Bardziej szczegółowo

ĆWICZENIE 1 STATYCZNA PRÓBA ROZCIĄGANIA METALI - UPROSZCZONA. 1. Protokół próby rozciągania Rodzaj badanego materiału. 1.2.

ĆWICZENIE 1 STATYCZNA PRÓBA ROZCIĄGANIA METALI - UPROSZCZONA. 1. Protokół próby rozciągania Rodzaj badanego materiału. 1.2. Ocena Laboratorium Dydaktyczne Zakład Wytrzymałości Materiałów, W2/Z7 Dzień i godzina ćw. Imię i Nazwisko ĆWICZENIE 1 STATYCZNA PRÓBA ROZCIĄGANIA METALI - UPROSZCZONA 1. Protokół próby rozciągania 1.1.

Bardziej szczegółowo

LABORATORIUM REOLOGICZNE PODSTAWY TECHNOLOGII POLIMERÓW ĆWICZENIE NR 3 WŁAŚCIWOŚCI REOLOGICZNE POLIMERÓW (OZNACZANIE KRZYWEJ PŁYNIĘCIA)

LABORATORIUM REOLOGICZNE PODSTAWY TECHNOLOGII POLIMERÓW ĆWICZENIE NR 3 WŁAŚCIWOŚCI REOLOGICZNE POLIMERÓW (OZNACZANIE KRZYWEJ PŁYNIĘCIA) LABORATORIUM REOLOGICZNE PODSTAWY TECHNOLOGII POLIMERÓW ĆWICZENIE NR 3 WŁAŚCIWOŚCI REOLOGICZNE POLIMERÓW (OZNACZANIE KRZYWEJ PŁYNIĘCIA) 1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie krzywej płynięcia

Bardziej szczegółowo

PEŁZANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH

PEŁZANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie PEŁZANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Reologia jest nauką,

Bardziej szczegółowo

BADANIA CECH REOLOGICZNYCH MIESZANEK MINERALNO-ASFALTOWYCH PODCZAS PEŁZANIA PRZY ZGINANIU W NISKICH TEMPERATURACH

BADANIA CECH REOLOGICZNYCH MIESZANEK MINERALNO-ASFALTOWYCH PODCZAS PEŁZANIA PRZY ZGINANIU W NISKICH TEMPERATURACH Mgr inż. Marek Pszczoła Prof. dr hab. inż. Józef Judycki Politechnika Gdańska Zakład Budowy Dróg BADANIA CECH REOLOGICZNYCH MIESZANEK MINERALNO-ASFALTOWYCH PODCZAS PEŁZANIA PRZY ZGINANIU W NISKICH TEMPERATURACH

Bardziej szczegółowo

Właściwości mechaniczne

Właściwości mechaniczne Właściwości mechaniczne materiałów budowlanych Właściwości mechaniczne 1. Wytrzymałość na ściskanie 2. Wytrzymałość na rozciąganie 3. Wytrzymałość na zginanie 4. Podatność na rozmiękanie 5. Sprężystość

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Próba skręcania pręta o przekroju okrągłym Numer ćwiczenia: 4 Laboratorium z

Bardziej szczegółowo

Materiały dydaktyczne. Semestr IV. Laboratorium

Materiały dydaktyczne. Semestr IV. Laboratorium Materiały dydaktyczne Wytrzymałość materiałów Semestr IV Laboratorium 1 Temat: Statyczna zwykła próba rozciągania metali. Praktyczne przeprowadzenie statycznej próby rozciągania metali, oraz zapoznanie

Bardziej szczegółowo

15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: Elektroautomatyka okrętowa Rozkład zajęć w czasie studiów Liczba godzin

15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: Elektroautomatyka okrętowa Rozkład zajęć w czasie studiów Liczba godzin 15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: Elektroautomatyka okrętowa Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze w

Bardziej szczegółowo

DZIAŁ TEMAT NaCoBeZu kryteria sukcesu w języku ucznia

DZIAŁ TEMAT NaCoBeZu kryteria sukcesu w języku ucznia ODDZIAŁYWANIA DZIAŁ TEMAT NaCoBeZu kryteria sukcesu w języku ucznia 1. Organizacja pracy na lekcjach fizyki w klasie I- ej. Zapoznanie z wymaganiami na poszczególne oceny. Fizyka jako nauka przyrodnicza.

Bardziej szczegółowo

WSTĘP DO TEORII PLASTYCZNOŚCI

WSTĘP DO TEORII PLASTYCZNOŚCI 13. WSTĘP DO TORII PLASTYCZNOŚCI 1 13. 13. WSTĘP DO TORII PLASTYCZNOŚCI 13.1. TORIA PLASTYCZNOŚCI Teoria plastyczności zajmuje się analizą stanów naprężeń ciał, w których w wyniku działania obciążeń powstają

Bardziej szczegółowo

Studia podyplomowe INŻYNIERIA MATERIAŁÓW POLIMEROWYCH Edycja II marzec - listopad 2014

Studia podyplomowe INŻYNIERIA MATERIAŁÓW POLIMEROWYCH Edycja II marzec - listopad 2014 Studia podyplomowe INŻYNIERIA MATERIAŁÓW POLIMEROWYCH Edycja II marzec - listopad 2014 Organizacja i realizacja studiów oraz opracowanie materiałów dydaktycznych są współfinansowane ze środków Unii Europejskiej

Bardziej szczegółowo

Wyznaczanie modułu sprężystości za pomocą wahadła torsyjnego

Wyznaczanie modułu sprężystości za pomocą wahadła torsyjnego Wyznaczanie modułu sprężystości za pomocą wahadła torsyjnego Obowiązkowa znajomość zagadnień Charakterystyka odkształceń sprężystych, pojęcie naprężenia. Prawo Hooke a, moduł Kirchhoffa i jego wpływ na

Bardziej szczegółowo

Mechanika i wytrzymałość materiałów Kod przedmiotu

Mechanika i wytrzymałość materiałów Kod przedmiotu Mechanika i wytrzymałość materiałów - opis przedmiotu Informacje ogólne Nazwa przedmiotu Mechanika i wytrzymałość materiałów Kod przedmiotu 06.9-WM-IB-P-22_15W_pNadGenRDG4C Wydział Kierunek Wydział Mechaniczny

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Ścisła próba rozciągania stali Numer ćwiczenia: 2 Laboratorium z przedmiotu:

Bardziej szczegółowo

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)185 4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu

Bardziej szczegółowo

Mechanika i Wytrzymałość Materiałów. Wykład nr 1 Wprowadzenie i podstawowe pojęcia. Rachunek wektorowy. Wypadkowa układu sił. Równowaga.

Mechanika i Wytrzymałość Materiałów. Wykład nr 1 Wprowadzenie i podstawowe pojęcia. Rachunek wektorowy. Wypadkowa układu sił. Równowaga. Mechanika i Wytrzymałość Materiałów Wykład nr 1 Wprowadzenie i podstawowe pojęcia. Rachunek wektorowy. Wypadkowa układu sił. Równowaga. Przedmiot Mechanika (ogólna, techniczna, teoretyczna): Dział fizyki

Bardziej szczegółowo

700 [kg/m 3 ] * 0,012 [m] = 8,4. Suma (g): 0,138 Ze względu na ciężar wykończenia obciążenie stałe powiększono o 1%:

700 [kg/m 3 ] * 0,012 [m] = 8,4. Suma (g): 0,138 Ze względu na ciężar wykończenia obciążenie stałe powiększono o 1%: Producent: Ryterna modul Typ: Moduł kontenerowy PB1 (długość: 6058 mm, szerokość: 2438 mm, wysokość: 2800 mm) Autor opracowania: inż. Radosław Noga (na podstawie opracowań producenta) 1. Stan graniczny

Bardziej szczegółowo

Nauka o Materiałach. Wykład IV. Polikryształy I. Jerzy Lis

Nauka o Materiałach. Wykład IV. Polikryształy I. Jerzy Lis Wykład IV Polikryształy I Jerzy Lis Treść wykładu I i II: 1. Budowa polikryształów - wiadomości wstępne. 2. Budowa polikryształów: jednofazowych porowatych z fazą ciekłą 3. Metody otrzymywania polikryształów

Bardziej szczegółowo

Laboratorium wytrzymałości materiałów

Laboratorium wytrzymałości materiałów Politechnika Lubelska MECHANIKA Laboratorium wytrzymałości materiałów Ćwiczenie 1 - Statyczna próba rozciągania Przygotował: Andrzej Teter (do użytku wewnętrznego) Statyczna próba rozciągania Statyczną

Bardziej szczegółowo

Prędkośd rozchodzenia się sprężystych fal podłużnych w ciałach stałych, cieczach i

Prędkośd rozchodzenia się sprężystych fal podłużnych w ciałach stałych, cieczach i 1 S t r o n a 6. Prędkośd rozchodzenia się sprężystych fal podłużnych w ciałach stałych, cieczach i gazach. Prawo Hooke a: Siła sprężystości: F Xsp = k. 0) Co do wartości bezwzględnej jest ona równa (lub

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły

Bardziej szczegółowo

Wykład IV: Polikryształy I. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych

Wykład IV: Polikryształy I. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Wykład IV: Polikryształy I JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Treść wykładu (część I i II): 1. Budowa polikryształów - wiadomości wstępne.

Bardziej szczegółowo

Teoria sprężystości F Z - F Z

Teoria sprężystości F Z - F Z Teoria sprężystości Ciało sprężyste bryła, która pod wpływem działających sił zewnętrznych ulega deformacji zmienia swój kształt i/lub objętość i wraca do pierwotnej postaci po ustaniu działania tych sił.

Bardziej szczegółowo

2016-01-06 WŁAŚCIWOŚCI MECHANICZNE PĘKANIE. Dekohezja. Wytrzymałość materiałów. zniszczenie materiału pod wpływem naprężeń

2016-01-06 WŁAŚCIWOŚCI MECHANICZNE PĘKANIE. Dekohezja. Wytrzymałość materiałów. zniszczenie materiału pod wpływem naprężeń WŁAŚCIWOŚCI MECHANICZNE PĘKANIE Dekohezja zniszczenie materiału pod wpływem naprężeń pękanie zmęczenie udar skrawanie Wytrzymałość materiałów Typowo dla materiałów ceramicznych: 10 20 R m rozc. = R m ścisk.

Bardziej szczegółowo

9. PODSTAWY TEORII PLASTYCZNOŚCI

9. PODSTAWY TEORII PLASTYCZNOŚCI 9. PODSTAWY TEORII PLASTYCZNOŚCI 1 9. 9. PODSTAWY TEORII PLASTYCZNOŚCI 9.1. Pierwsze kroki Do tej pory zajmowaliśmy się w analizie ciał i konstrukcji tylko analizą sprężystą. Nie zastanawialiśmy się, co

Bardziej szczegółowo

INŻYNIERIA MATERIAŁOWA

INŻYNIERIA MATERIAŁOWA POLITECHNIKA GDAŃSKA WYDZIAŁ CHEMICZNY KATEDRA TECHNOLOGII POLIMERÓW INŻYNIERIA MATERIAŁOWA INŻYNIERIA POLIMERÓW Właściwości tworzyw polimerowych przy rozciąganiu. Streszczenie: Celem ćwiczenia jest przeprowadzenie

Bardziej szczegółowo

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość

Bardziej szczegółowo

FIZYKA CIAŁA STAŁEGO

FIZYKA CIAŁA STAŁEGO FIZYKA CIAŁA STAŁEGO Stany skupienia materii, typy i zasięg uporządkowań Ciała krystaliczne i amorficzne Krzyształy (monokryształy i polikryształy) Amorfizm (bezpostaciowość) Plazma czwarty stan skupienia

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Zwykła statyczna próba ściskania metali Numer ćwiczenia: 3 Laboratorium z przedmiotu:

Bardziej szczegółowo

gruntów Ściśliwość Wytrzymałość na ścinanie

gruntów Ściśliwość Wytrzymałość na ścinanie Właściwości mechaniczne gruntów Ściśliwość Wytrzymałość na ścinanie Ściśliwość gruntów definicja, podstawowe informacje o zjawisku, podstawowe informacje z teorii sprężystości, parametry ściśliwości, laboratoryjne

Bardziej szczegółowo

podać przykład wielkości fizycznej, która jest iloczynem wektorowym dwóch wektorów.

podać przykład wielkości fizycznej, która jest iloczynem wektorowym dwóch wektorów. PLAN WYNIKOWY FIZYKA - KLASA TRZECIA TECHNIKUM 1. Ruch postępowy i obrotowy bryły sztywnej Lp. Temat lekcji Treści podstawowe 1 Iloczyn wektorowy dwóch wektorów podać przykład wielkości fizycznej, która

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI. Ćwiczenie 5 POMIAR WZGLĘDNEJ LEPKOŚCI CIECZY PRZY UŻYCIU

POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI. Ćwiczenie 5 POMIAR WZGLĘDNEJ LEPKOŚCI CIECZY PRZY UŻYCIU POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI Ćwiczenie 5 POMIAR WZGLĘDNEJ LEPKOŚCI CIECZY PRZY UŻYCIU WISKOZYMETRU KAPILARNEGO I. WSTĘP TEORETYCZNY Ciecze pod względem struktury

Bardziej szczegółowo

KONSTRUKCJE DREWNIANE I MUROWE

KONSTRUKCJE DREWNIANE I MUROWE POLITECHNIKA BIAŁOSTOCKA WBiIŚ KATEDRA KONSTRUKCJI BUDOWLANYCH ZAJĘCIA 5 KONSTRUKCJE DREWNIANE I MUROWE Mgr inż. Julita Krassowska 1 CHARAKTERYSTYKI MATERIAŁOWE drewno lite sosnowe klasy C35: - f m,k =

Bardziej szczegółowo

16. 16. Badania materiałów budowlanych

16. 16. Badania materiałów budowlanych 16. BADANIA MATERIAŁÓW BUDOWLANYCH 1 16. 16. Badania materiałów budowlanych 16.1 Statyczna próba ściskania metali W punkcie 13.2 opisano statyczną próbę rozciągania metali plastycznych i kruchych. Dla

Bardziej szczegółowo

Pale fundamentowe wprowadzenie

Pale fundamentowe wprowadzenie Poradnik Inżyniera Nr 12 Aktualizacja: 09/2016 Pale fundamentowe wprowadzenie Celem niniejszego przewodnika jest przedstawienie problematyki stosowania oprogramowania pakietu GEO5 do obliczania fundamentów

Bardziej szczegółowo

STATYKA I DYNAMIKA PŁYNÓW (CIECZE I GAZY)

STATYKA I DYNAMIKA PŁYNÓW (CIECZE I GAZY) STTYK I DYNMIK PŁYNÓW (CIECZE I GZY) Ciecz idealna: brak sprężystości postaci (czyli brak naprężeń ścinających) Ciecz rzeczywista małe naprężenia ścinające - lepkość F s F n Nawet najmniejsza siła F s

Bardziej szczegółowo

BADANIA MIESZANEK MINERALNO-ASFALTOWYCH W NISKICH TEMPERATURACH

BADANIA MIESZANEK MINERALNO-ASFALTOWYCH W NISKICH TEMPERATURACH BADANIA MIESZANEK MINERALNO-ASFALTOWYCH W NISKICH TEMPERATURACH Dr inż. Marek Pszczoła Katedra Inżynierii Drogowej, Politechnika Gdańska Warsztaty Viateco, 12 13 czerwca 2014 PLAN PREZENTACJI Wprowadzenie

Bardziej szczegółowo

Wewnętrzny stan bryły

Wewnętrzny stan bryły Stany graniczne Wewnętrzny stan bryły Bryła (konstrukcja) jest w równowadze, jeżeli oddziaływania zewnętrzne i reakcje się równoważą. P α q P P Jednak drugim warunkiem równowagi jest przeniesienie przez

Bardziej szczegółowo

1. BADANIE SPIEKÓW 1.1. Oznaczanie gęstości i porowatości spieków

1. BADANIE SPIEKÓW 1.1. Oznaczanie gęstości i porowatości spieków 1. BADANIE SPIEKÓW 1.1. Oznaczanie gęstości i porowatości spieków Gęstością teoretyczną spieku jest stosunek jego masy do jego objętości rzeczywistej, to jest objętości całkowitej pomniejszonej o objętość

Bardziej szczegółowo

Naprężenia, przemieszczenia, odkształcenia Właściwości materiałów. dr hab. inż. Tadeusz Chyży Katedra Mechaniki Konstrukcji

Naprężenia, przemieszczenia, odkształcenia Właściwości materiałów. dr hab. inż. Tadeusz Chyży Katedra Mechaniki Konstrukcji Naprężenia, przemieszczenia, odkształcenia Właściwości materiałów dr hab. inż. Tadeusz Chyży Katedra Mechaniki Konstrukcji Naprężeniem (p) nazywa się iloraz nieskończenie małej wypadkowej siły spójności

Bardziej szczegółowo