Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym

Wielkość: px
Rozpocząć pokaz od strony:

Download "Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym"

Transkrypt

1 Przykład 4.1. Ściag stalowy Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym rysunku jeśli naprężenie dopuszczalne wynosi 15 MPa. Szukana siła P przyłożona jest w środku ciężkości dwuteownika. 10 cm 10 cm P I10 L00x100x10 Rozwiazanie Rozpatrywany przekrój ściągu jest przekrojem złożonym z dwóch kształtowników: dwuteownika I10 i kątownika nierównoramiennego L00x100x10. Wartości charakterystyk geometrycznych użytych kształtowników zaczerpnięto z Tablic do projektowania konstrukcji stalowych, W. Bogucki i M. Żyburtowicz, wyd. 6, Warszawa, 1995r. Poniżej, i na stronie następnej, zamieszczono potrzebne do rozwiązania rozpatrywanego zadania wielkości charakterystyczne w takim układzie współrzędnych, jaki przyjęty jest w Tablicach. - dwuteownik I10: Y h X h = 10 mm b f = 58 mm A = 14, cm I x = 38 cm 4 I y = 1,5 cm 4 bf 1

2 - kątownik nierównoramienny L00x100x10: η α Y b e y ξ X b = 00 mm a = 100 mm e x =,01 cm e y = 6,93 cm tg α = 0,63 A = 9, cm I x = 119 cm 4 I y = 10 cm 4 I η = 135, cm 4 = I min e x a W celu obliczenia maksymalnej dopuszczalnej wartości siły P należy obliczyć ekstremalne naprężenia w ściągu, traktując wartość siły P jako znaną, a następnie tak obliczone naprężenie porównać z wartością dopuszczalną. W poniższym przykładzie zaprezentowane są dwa sposoby obliczenia naprężeń normalnych. W pierwszym naprężenia określa się korzystając ze wzoru na naprężenia normalne względem osi głównych centralnych, w drugim z bardziej ogólnego wzoru na naprężenia normalne względem osi centralnych. Niezależnie od przyjętego sposobu rozwiązanie zadania rozpocząć należy od określenia charakterystyk geometrycznych rozpatrywanego przekroju złożonego.

3 1. Wyznaczenie środka ciężkości W celu wyznaczenia środka ciężkości przyjęto wstępny ukłąd współrzędnych Y 1 OZ 1.,01 cm 10 cm 10 cm O = C I Y 1 C L Z 1 6,93 cm 1 cm 10 cm W tym układzie obliczone są momenty statyczne S y1 i S z1 : ( ) 1 S y1 = 14, 0 + 9, 1 +,01 = 0 + 9, 8,01 = 33,9 cm 3 S z1 = 14, 0 + 9, (10 6,93) = 0 + 9, 3,07 = 89,64 cm 3 Pole przekroju A ma zaś wartość A = 14, + 9, = 43,4 cm Tak więc, środek ciężkości C ma następujące współrzędne w układzie Y 1 OZ 1 : y c = S z 1 A = 89,64 =,066 cm 43,4 z c = S y 1 A = 33,9 = 5,389 cm 43,4 3

4 . Wyznaczenie centralnych momentów bezładności Przyjmijmy nowy centralny układ współrzędnych Y c CZ c.,01 cm 5,389 cm 10 cm 10 cm O = C I Y 1 C Y c C L,066 cm Z 1 6,93 cm Z c 1 cm 10 cm Dla tak przyjętego układu współrzędnych obliczane są, przy pomocy wzorów Steiner a, centralne momenty bezwładności: I yc = , ( 5,389) , ( 5, ,01) = = , ,,61 = 1151 cm 4 I zc = 1,5 + 14, (,066) , (, ,07) = = 1,5 + 60, , 1,004 = 1331 cm 4 Aby obliczyć dewiacyjny moment bezwładności I ycz c rozpatrywanego przekroju potrzebna jest znajomość dewiacyjnego momentu bezwładności kątownika nierównoramiennego wchodzącego w skład przekroju złożonego (dla dwuteownika jest on oczywiście równy zeru, gdyż dwuteownik jest figurą symetryczną). Nieznany moment kątownika można łatwo obliczyć wykorzystując inne wielkości charakterystyczne kątownika. W tym celu wystarczy przekształcić znany wzór na wartośc kąta nachylenia osi głównych: tg α = I xy I x I y = I xy = 1 (I x I y ) tg α Wartości I x i I y są dane, zaś kąt α obliczamy następująco: tg α = 0,63 = α = 14, 74 o Stąd wartość biegunowego momentu bezwładności kątownika nierównoramiennego wchodzącego w skład przekroju złożonego jest równa: I xy = 1 (119 10) tg( 14,74o ) = 85,1 cm 4 4

5 Inna metoda obliczenia nieznanej wartości I xy polega na wykorzystaniu zależności pomiędzy warościami momentów bezwładności: - wzoru na promień koła Mohra ( Jx J y ) ( ) ( ) + Jxy = J1 J = Jxy = J1 J - niezmiennika sumy momentów bezwładności ( Jx J y ) J x + J y = J 1 + J = J 1 = J x + J y J Po podstawieniu odpowiednich wartości otrzymujemy: J 1 = , = 193,8 cm 4 ( ) ( ) 193,8 135, Jxy = = ( 84,7 cm 4) Jak widać wyniki otrzymane dwoma metodami różnią się. Jest to spowodowane zaokrągleniami wartości tg α oraz J min charakteryzujących przekrój kątownika L00x100x10, które zostały wykorzystane do obliczenia J xy. Zakładając, że obie te wielkości charakterystyczne obarczone są identycznym błędem zasadne jest przyjęcie do dalszych obliczeń średnią arytmetyczną tych dwóch wartości. J xy = 85,1 84,7 = 84,9 cm 4 Tak więc, można już obliczyć wartość momentu dewiacyjnego I ycz c rozpatrywanego przekroju złożonego: I ycz c = , ( 5,389) (,066) + 84,9 + 9, 1,004,61 = 519,8 cm 4 Dalszy algorytm postępowania uzależniony jest od przyjętego sposobu rozwiązywania. W przypadku obliczania naprężeń normalnych względem osi głównych centralnych należy w pierwszej kolejności wyznaczyć te osie. SPOSÓB A - obliczenia przy użyciu wzorów określonych dla osi głównych centralnych 3.A. Wyznaczenie głównych centralnych osi i momentów bezładności Kąt nachylenia osi głównych Y i Z obliczamy następująco: tg α = I y cz c I yc I zc = = α = 40,10 o 519, = 5,790 = α = 80,0o = 5

6 ,01 cm Z 10 cm 10 cm O = C I C Y c C L Y 6,93 cm Z c 1 cm 10 cm Zaś w celu obliczenia momentów głównych centralnych korzystamy z poniższego wzoru: I 1, = 1 (I y c + I zc ) ± 1 (I yc I zc ) + 4Iy cz c W rozpatrywanym przypadku I 1, = 1 ( ) ± 1 ( ) + 4 ( 519,8) = = (141 ± 57,5) cm 4 Tak więc, maksymalny główny centralny moment bezwładności I 1 odpowiadający momentowi I z (gdyż I zc > I yc ) oraz moment minimalny I = I y mają wartości: I 1 = ,5 = 1768 cm 4 I = ,5 = 713, cm 4 = I z = I y Sprawdzenie poprawności obliczeń można wykonać na dwa sposoby: I yc + I zc = I 1 + I 1331 cm cm 4 = 1768 cm , cm 4 48 cm 4 = 48 cm 4 I yc I zc (I ycz c ) = I 1 I 1331 cm cm 4 ( 519,8 cm 4 ) = 1768 cm 4 713, cm cm 8 = cm 8 Równoznaczność otrzymanych wyników z lewej i prawej strony potwierdza poprawność obliczeń. 6

7 4.A. Obliczenie mimośrodów siły Aby wyznaczyć współrzędne punktu przyłożenia siły we współrzędnych Y CZ, które są jednocześnie mimośrodami przyłożenia siły, konieczne jest wyprowadzenie wzoru transformującego znane współrzędne Y c CZ c na współrzędne szukane. W rozpatrywanym przypadku wzór ten ma postać: y = y c cos α + z c sin α = y c cos 40,10 o + z c sin 40,10 o = 0,7649y c + 0,6441z c z = y c sin α + z c cos α = y c sin 40,10 o + z c cos 40,10 o = 0,6441y c + 0,7649z c ( ) Współrzędne punktu P przyłożenia obciążenia w układzie Y c CZ c mają wartość: y P c z P c =,066 cm = 5,389 cm co oznacza, że mimośrody siły są równe: y P = 0,7649 (,066) + 0,6441 ( 5,389) = 5,051 cm z P = 0,6441 (,066) + 0,7649 ( 5,389) =,79 cm = e y = e z 5.A. Obliczenie sił przekrojowych Zakłada się, że skłądowe momentu zginającego mają znak dodatni, jeśli wektory, które je reprezentują mają kieruneki zgodne z kierunkami osi. Siła normalna jest zaś dodatnia wtedy, gdy powoduje rozciąganie przekroju. Przy takich założeniach w dowolnym przekroju ściągu występują następujące siły wewnętrzne: N = P M y = N e z =,79 P M z = N e y = 5,051 P 6.A. Wyznaczenie wzoru na napręzenia normalne Ponieważ mimośrodowe rozciaganie można traktować jako złożenie dwóch przypadków zginania prostego i rozciągania osiowego, naprężenia normalne można zapisać w następującej postaci: σ x = σ N x + σ Mz x + σ My x = N A ± M z I z y ± M y I y z Znak przed składnikami naprężenia zależnymi od momentów zginających ustala się przeprowadzając następującą analizę: Załóżmy, że moment M z jest dodatni. Reguła śruby prawoskrętnej mówi, że taki moment powoduje ściskanie włókien o dodatniej współrzędnej y. Oznacza to, że dla M z > 0 i y > 0 naprężenie σx Mz jest ujemne. Ponieważ moment bezwładności I z jest zawsze większy od zera naprężenie normalne zależne od momentu M z musi być więc opisane wzorem: σ Mz x = M z I z y 7

8 Analogicznie określamy znak we wzorze na naprężenie normalne zależne od momentu M y : Załóżmy, że moment M y jest dodatni. Reguła śruby prawoskrętnej mówi, że taki moment powoduje rozciąganie włókien o dodatniej współrzędnej z. Oznacza to, że dla M y > 0 i z > 0 naprężenie σx My jest dodatnie. Ponieważ moment bezwładności I y jest zawsze większy od zera naprężenie normalne zależne od momentu M z musi być opisane wzorem: σ My x = + M y I y z Stąd ostatecznie: σ x = σ N x + σ Mz x + σ My x = N A M z I z y + M y I y z 7.A. Wyznaczenie osi obojętnej Oś obojętną wyznaczamy wiedząc, że naprężenia na niej panujące są równe zero, stąd: σ x = 0 = N A M z I z y + M y I y z = 0 = = P 43,4 5,051P 1768 y +,79P 713, z = 0 = =, P, P y 3, P z = 0 Aby obliczyć współrzędne przecięcia osi głównych centralnych Y i Z przez szukaną oś obojętną należy przekształcić powyższe równanie prostej na postać odcinkową. Przy czym y a y + z a z = 1, a y = = 8,066 cm, , a z = = 5,886 cm 3, Tak więc równanie osi obojętnej ma postać: σ x = 0 = y 8,066 + z 5,886 = 1 Z powyższych przekształceń wynika, że oś obojętna przechodzi przez punkty (5,886 cm;0) i (0;8,066 cm). 8

9 Z 1 C Y 8.A. Wyznaczenie naprężeń w punktach przekroju najbardziej oddalonych od osi obojętnej Najbardziej oddalone od osi obojętnej punkty przekroju oznaczono jako 1 i. Współrzędne tych punktów w układzie Y c CZ c wynoszą odpowiednio: yc 1 =, ,8 = 0,834 cm zc 1 = 5, = 11,389 cm y c =, = 7,934 cm zc = 5, = 11,611 cm zaś ich współrzędne w układzie Y CZ obliczam wykorzystując wzór ( ) wyprowadzony w podrozdziale 4.A.: y 1 = 0,7649 0, ,6441 ( 11,389) = 6,698 cm z 1 = 0,6441 0, ,7649 ( 11,389) = 9,904 cm y = 0,7649 7, ,6441 ( 11,611) = 9,49 cm z = 0,6441 7, ,7649 ( 11,611) = 3,006 cm 9

10 Podstawiając otrzymane współrzędne do wzoru na naprężenia, otrzymujemy maksymalne i minimalne wartości naprężeń w przekroju złożonym. σ 1 x = σ x ( 6,698 cm; 9,904 cm) = =, P, P ( 6,698) 3, P ( 9,904) = = 7, P = σ max σx = σ x ( 9,49 cm; 3,006 cm) = =, P, P ( 9,49) 3, P 3,006 = =, P = σ min W ten sposób obliczone zostały interesujące nas ekstremalne wartości naprężeń normalnych. oś obojętna 7,838 σ [10- P/cm ] -,558 9.A. Obliczenie dopuszczalnej siły P Dopuszczalną wartość siły P obliczymy porównując największe, niezależnie od znaku, naprężenie w przekroju z naprężeniem dopuszczalnym. Ponieważ obliczeń dokonywaliśmy w centymetrach musimy przekształcić wartość σ dop. σ dop = 15 MPa = kn kn kn = = 1,5 m 10 4 cm cm 10

11 max ( σx 1 ; σ x ) = σx 1 = 7, P σ dop = 1,5 kn cm = 1,5 = P = 74,3 kn 7, Tak więc ostatecznie P dop = 74,3 kn Te same wyniki otrzymać można stosując obliczenia względem osi centralnych, tj. w rozpatrywanym przypadku osi Y c i Z c. SPOSÓB B - obliczenia przy użyciu wzorów określonych dla osi centralnych 3.B. Obliczenie mimośrodów siły Współrzędne punktu P przyłożenia obciążenia w układzie Y c CZ c mają wartość: y P c z P c =,066 cm = 5,389 cm 4.B. Obliczenie sił przekrojowych Niezmieniając opisanych w punkcie 5.A. założeń dotyczących znaków sił wewnętrznych można zapisać wartości sił przekrojowych: N = P M yc = 5,389 P M zc =,066 P 5.B. Wyznaczenie wzoru na naprężenia normalne Wzór na naprężenia normalne w rozpatrywanym układzie współrzędnych ma postać: σ x = N A + J y cz c M yc + J yc M zc J y cz c J yc J zc y J yczcm zc + J zcm yc z Jy cz c J yc J zc 11

12 Podstawiając znane wartości sił i momentów bezwładności otrzymujemy: σ x = P 519,8 ( P 5,389) P,066 + y + 43,4 519, ,8 P, ( P 5,389) z = 519, = P 43,4 + 44, P y z = =, P + 3, P y 4, P z 6.B. Wyznaczenie osi obojętnej W celu wyznaczenia równania osi obojętnej należy przyrównać wzór na naprężenia normalne do zera. Niezerowe współrzędne punktów przecięcia osi współrzędnych z osią obojętną mają wartości:, a yc = = 68,51 cm 3, , a zc = = 4,766 cm 4, oś obojętna 1 C Z c Y c 1

13 7.B. Wyznaczenie naprężeń w punktach przekroju najbardziej oddalonych od osi obojętnej Z zamieszczonego na poprzedniej stronie rysunku widać, że najbardziej oddalonymi od osi obojętnej punktami są punkty 1 i, których współrzędne wynoszą: y 1 =,066 cm +,9 cm = 0,8345 cm z 1 = 5,389 cm 6 cm = 11,389 cm y =,066 cm + 10 cm = 7,934 cm z = 5,389 cm + 6 cm + 10 cm = 10,61 cm Podstawiając obliczone współrzędne do wzoru na naprężenia otrzymujemy naprężenia ekstremalne. σ 1 x = σ x (0,8345 cm; 11,389 cm) = =, P + 3, P 0,8345 4, P ( 11,389) = = 7, P = σ max σ x = σ x (7,934 cm; 10,61 cm) = =, P + 3, P 7,934 4, P 10,61 = =, P = σ min oś obojętna 7,838 σ [10- P/cm ] -,558 13

14 8.B. Obliczenie dopuszczalnej siły P Sprawdzenie warunku nośności przekroju ze względu na naprężenia normalne prowadzi do obliczenia dopuszczalnej wartości siły P. max (σ max ; σ min ) σ dop = = 7, cm P 15 MPa = kn kn = 1,5 = 10 4 cm cm = P 74,3 kn = P dop = 74,3 kn Jak łatwo zauważyć zastosowanie ogólniejszego wzoru (obowiązującego w układzie współrzędnych nie będących głównymi) nie wymaga wyznaczania współrzędnych punktu w obróconym układzie współrzędnych oraz obliczania charakterystyk przekroju w osiach głównych. Tak więc zastosowanie sposobu B w rozpatrywanym przypadku jest bardziej racjonalne ze względu na nakład obliczeń. 14

9. Mimośrodowe działanie siły

9. Mimośrodowe działanie siły 9. MIMOŚRODOWE DZIŁIE SIŁY 1 9. 9. Mimośrodowe działanie siły 9.1 Podstawowe wiadomości Mimośrodowe działanie siły polega na jednoczesnym działaniu w przekroju pręta siły normalnej oraz dwóc momentów zginającyc.

Bardziej szczegółowo

SKRĘCANIE WAŁÓW OKRĄGŁYCH

SKRĘCANIE WAŁÓW OKRĄGŁYCH KRĘCANIE AŁÓ OKRĄGŁYCH kręcanie występuje wówczas gdy para sił tworząca moment leży w płaszczyźnie prostopadłej do osi elementu konstrukcyjnego zwanego wałem Rysunek pokazuje wał obciążony dwiema parami

Bardziej szczegółowo

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA 1 3. 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA Analizując płaski stan naprężenia posługujemy się składowymi tensora naprężenia w postaci wektora {,,y } (3.1) Za dodatnie

Bardziej szczegółowo

Zbigniew Mikulski - zginanie belek z uwzględnieniem ściskania

Zbigniew Mikulski - zginanie belek z uwzględnieniem ściskania Przykład. Wyznaczyć linię ugięcia osi belki z uwzględnieniem wpływu ściskania. Przedstawić wykresy sił przekrojowych, wyznaczyć reakcje podpór oraz ekstremalne naprężenia normalne w belce. Obliczenia wykonać

Bardziej szczegółowo

ĆWICZENIE 3 Wykresy sił przekrojowych dla ram. Zasady graficzne sporządzania wykresów sił przekrojowych dla ram

ĆWICZENIE 3 Wykresy sił przekrojowych dla ram. Zasady graficzne sporządzania wykresów sił przekrojowych dla ram ĆWICZENIE 3 Wykresy sił przekrojowych dla ram Zasady graficzne sporządzania wykresów sił przekrojowych dla ram Wykresy N i Q Wykres sił dodatnich może być narysowany zarówno po górnej jak i dolnej stronie

Bardziej szczegółowo

Ć w i c z e n i e K 3

Ć w i c z e n i e K 3 Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa

Bardziej szczegółowo

Notacja Denavita-Hartenberga

Notacja Denavita-Hartenberga Notacja DenavitaHartenberga Materiały do ćwiczeń z Podstaw Robotyki Artur Gmerek Umiejętność rozwiązywania prostego zagadnienia kinematycznego jest najbardziej bazową umiejętność zakresu Robotyki. Wyznaczyć

Bardziej szczegółowo

Raport wymiarowania stali do programu Rama3D/2D:

Raport wymiarowania stali do programu Rama3D/2D: 2. Element poprzeczny podestu: RK 60x40x3 Rozpiętość leff=1,0m Belka wolnopodparta 1- Obciążenie ciągłe g=3,5kn/mb; 2- Ciężar własny Numer strony: 2 Typ obciążenia: Suma grup: Ciężar własny, Stałe Rodzaj

Bardziej szczegółowo

Wewnętrzny stan bryły

Wewnętrzny stan bryły Stany graniczne Wewnętrzny stan bryły Bryła (konstrukcja) jest w równowadze, jeżeli oddziaływania zewnętrzne i reakcje się równoważą. P α q P P Jednak drugim warunkiem równowagi jest przeniesienie przez

Bardziej szczegółowo

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej. Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami

Bardziej szczegółowo

Ć W I C Z E N I E N R E-15

Ć W I C Z E N I E N R E-15 NSTYTUT FZYK WYDZAŁ NŻYNER PRODUKCJ TECNOLOG MATERAŁÓW POLTECNKA CZĘSTOCOWSKA PRACOWNA ELEKTRYCZNOŚC MAGNETYZMU Ć W C Z E N E N R E-15 WYZNACZANE SKŁADOWEJ POZOMEJ NATĘŻENA POLA MAGNETYCZNEGO ZEM METODĄ

Bardziej szczegółowo

2.1. Wyznaczenie nośności obliczeniowej przekroju przy jednokierunkowym zginaniu

2.1. Wyznaczenie nośności obliczeniowej przekroju przy jednokierunkowym zginaniu Obliczenia statyczne ekranu - 1 - dw nr 645 1. OBLICZENIE SŁUPA H = 4,00 m (wg PN-90/B-0300) wysokość słupa H 4 m rozstaw słupów l o 6.15 m 1.1. Obciążenia 1.1.1. Obciążenia poziome od wiatru ( wg PN-B-0011:1977.

Bardziej szczegółowo

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu:

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu: Funkcja jednej zmiennej - przykładowe rozwiązania Zadanie 4 c) Badając przebieg zmienności funkcji postępujemy według poniższego schematu:. Analiza funkcji: (a) Wyznaczenie dziedziny funkcji (b) Obliczenie

Bardziej szczegółowo

PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH

PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH 1 Przedmowa Okładka CZĘŚĆ PIERWSZA. SPIS PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH 1. STAN NAPRĘŻENIA 1.1. SIŁY POWIERZCHNIOWE I OBJĘTOŚCIOWE 1.2. WEKTOR NAPRĘŻENIA 1.3. STAN NAPRĘŻENIA W PUNKCIE 1.4. RÓWNANIA

Bardziej szczegółowo

Z1/2 ANALIZA BELEK ZADANIE 2

Z1/2 ANALIZA BELEK ZADANIE 2 05/06 Z1/. NLIZ LK ZNI 1 Z1/ NLIZ LK ZNI Z1/.1 Zadanie Udowodnić geometryczną niezmienność belki złożonej na rysunku Z1/.1 a następnie wyznaczyć reakcje podporowe oraz wykresy siły poprzecznej i momentu

Bardziej szczegółowo

Podpora montażowa wielka stopa.

Podpora montażowa wielka stopa. opracowanie: PROJEKT TECHNICZNY nazwa elementu: Podpora montażowa wielka stopa. treść opracowania: PROJEKT TECHNICZNY inwestor: Gloobal Industrial, ul.bukowa 9, 43-438 Brenna branża: KONSTRUKCJA Projektował

Bardziej szczegółowo

Projekt nr 1. Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej

Projekt nr 1. Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI Projekt nr 1 Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej

Bardziej szczegółowo

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1 Wszelkie prawa zastrzeżone. Rozpowszechnianie, wypożyczanie i powielanie niniejszych testów w jakiejkolwiek formie surowo zabronione. W przypadku złamania zakazu mają zastosowanie przepisy dotyczące naruszenia

Bardziej szczegółowo

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów

Bardziej szczegółowo

Pomoce dydaktyczne: normy: [1] norma PN-EN 1991-1-1 Oddziaływania na konstrukcje. Oddziaływania ogólne. Ciężar objętościowy, ciężar własny, obciążenia użytkowe w budynkach. [] norma PN-EN 1991-1-3 Oddziaływania

Bardziej szczegółowo

Jako pokrycie dachowe zastosować płytę warstwową z wypełnieniem z pianki poliuretanowej grubości 100mm, np. PolDeck TD firmy Europanels.

Jako pokrycie dachowe zastosować płytę warstwową z wypełnieniem z pianki poliuretanowej grubości 100mm, np. PolDeck TD firmy Europanels. Pomoce dydaktyczne: [1] norma PN-EN 1991-1-1 Oddziaływania na konstrukcję. Oddziaływania ogólne. Ciężar objętościowy, ciężar własny, obciążenia użytkowe w budynkach. [2] norma PN-EN 1991-1-3 Oddziaływania

Bardziej szczegółowo

Profile zimnogięte. Typu Z i C

Profile zimnogięte. Typu Z i C Profile zimnogięte Typu Z i C Profile zimnogięte Głównym zastosowaniem produkowanych przez nas profili zimnogiętych są płatwie dachowe oraz rygle ścienne. Na elementy te (jako stosunkowo mało obciążone

Bardziej szczegółowo

Stan naprężenia. Przykład 1: Tarcza (płaski stan naprężenia) Określić siły masowe oraz obciążenie brzegu tarczy jeśli stan naprężenia wynosi:

Stan naprężenia. Przykład 1: Tarcza (płaski stan naprężenia) Określić siły masowe oraz obciążenie brzegu tarczy jeśli stan naprężenia wynosi: Stan naprężenia Przkład 1: Tarcza (płaski stan naprężenia) Określić sił masowe oraz obciążenie brzegu tarcz jeśli stan naprężenia wnosi: 5 T σ. 8 Składowe sił masowch obliczam wkonując różniczkowanie zapisane

Bardziej szczegółowo

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

Energia potencjalna pola elektrostatycznego ładunku punktowego

Energia potencjalna pola elektrostatycznego ładunku punktowego Energia potencjalna pola elektrostatycznego ładunku punktowego Wszystkie rysunki i animacje zaczerpnięto ze strony http://web.mit.edu/8.02t/www/802teal3d/visualizations/electrostatics/index.htm. Tekst

Bardziej szczegółowo

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY Rozwiązania zadań Arkusz maturalny z matematyki nr POZIOM PODSTAWOWY Zadanie (pkt) Sposób I Skoro liczba jest środkiem przedziału, więc odległość punktu x od zapisujemy przy pomocy wartości bezwzględnej.

Bardziej szczegółowo

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y Przykład 1 Dane są trzy siły: P 1 = 3i + 4j, P 2 = 2i 5j, P 3 = 7i + 3j (składowe sił wyrażone są w niutonach), przecinające się w punkcie A (1, 2). Wyznaczyć wektor wypadkowej i jej wartość oraz kąt α

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI poziom rozszerzony

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI poziom rozszerzony Próbny egzamin maturalny z matematyki. Poziom rozszerzony 1 PRÓNY EGZMIN MTURLNY Z MTEMTYKI poziom rozszerzony ZNI ZMKNIĘTE W każdym z zadań 1.. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne. Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

Stateczność ramy - wersja komputerowa

Stateczność ramy - wersja komputerowa Stateczność ramy - wersja komputerowa Cel ćwiczenia : - Obliczenie wartości obciążenia krytycznego i narysowanie postaci wyboczenia. utraty stateczności - Obliczenie przemieszczenia i sił przekrojowych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę

Bardziej szczegółowo

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4)

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4) Rozdział 1 Prosta i płaszczyzna 1.1 Przestrzeń afiniczna Przestrzeń afiniczna to matematyczny model przestrzeni jednorodnej, bez wyróżnionego punktu. Można w niej przesuwać punkty równolegle do zadanego

Bardziej szczegółowo

Dopasowanie prostej do wyników pomiarów.

Dopasowanie prostej do wyników pomiarów. Dopasowanie prostej do wyników pomiarów. Graficzna analiza zależności liniowej Założenie: każdy z pomiarów obarczony jest taką samą niepewnością pomiarową (takiej samej wielkości prostokąty niepewności).

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji

Bardziej szczegółowo

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008 Zajęcia fakultatywne z matematyki 008 WYRAŻENIA ARYTMETYCZNE I ALGEBRAICZNE. Wylicz b z równania a) ba + a = + b; b) a = b ; b+a c) a b = b ; d) a +ab =. a b. Oblicz a) [ 4 (0, 5) ] + ; b) 5 5 5 5+ 5 5

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej. LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.. Wprowadzenie Soczewką nazywamy ciało przezroczyste ograniczone

Bardziej szczegółowo

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Michał Łasica klasa IIId nr 13 22 grudnia 2006 1 1 Doświadczalne wyznaczanie ogniskowej soczewki 1.1

Bardziej szczegółowo

Podstawy działań na wektorach - dodawanie

Podstawy działań na wektorach - dodawanie Podstawy działań na wektorach - dodawanie Metody dodawania wektorów można podzielić na graficzne i analityczne (rachunkowe). 1. Graficzne (rysunkowe) dodawanie dwóch wektorów. Założenia: dane są dwa wektory

Bardziej szczegółowo

Zapis liczb binarnych ze znakiem

Zapis liczb binarnych ze znakiem Zapis liczb binarnych ze znakiem W tej prezentacji: Zapis Znak-Moduł (ZM) Zapis uzupełnień do 1 (U1) Zapis uzupełnień do 2 (U2) Zapis Znak-Moduł (ZM) Koncepcyjnie zapis znak - moduł (w skrócie ZM - ang.

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja MMA-P_P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 0 minut Instrukcja dla zdającego. Sprawdź, czy arkusz egzaminacyjny zawiera 5 stron (zadania

Bardziej szczegółowo

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1)

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1) ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL 1. Problem Rozważmy układ dwóch równań z dwiema niewiadomymi (x 1, x 2 ): 1 x1 sin x2 x2 cos x1 (1) Nie jest

Bardziej szczegółowo

Optymalizacja konstrukcji

Optymalizacja konstrukcji Optymalizacja konstrukcji Kształtowanie konstrukcyjne: nadanie właściwych cech konstrukcyjnych przeszłej maszynie określenie z jakiego punktu widzenia (wg jakiego kryterium oceny) będą oceniane alternatywne

Bardziej szczegółowo

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6 ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch 6 Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs. 6.. s. 6. rzed przstąpieniem

Bardziej szczegółowo

KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny

KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny Kryteria oceniania z matematyki KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny Arytmetyka: Ocenę dopuszczającą otrzymuje uczeń, który potrafi : - określić pojęcie liczby naturalnej, całkowitej,

Bardziej szczegółowo

GEOMETRIA ANALITYCZNA W PRZESTRZENI

GEOMETRIA ANALITYCZNA W PRZESTRZENI GEOMETRIA ANALITYCZNA W PRZESTRZENI Położenie punktu w przestrzeni określamy za pomocą trzech liczb (x, y, z). Liczby te odpowiadają rzutom na osie układu współrzędnych: każdy rzut wzdłuż płaszczyzny równoległej

Bardziej szczegółowo

DZIAŁ I: LICZBY I DZIAŁANIA Ocena dostateczna. Ocena dobra. Ocena bardzo dobra (1+2) (1+2+3+4) Uczeń: (1+2+3) Uczeń: określone warunki

DZIAŁ I: LICZBY I DZIAŁANIA Ocena dostateczna. Ocena dobra. Ocena bardzo dobra (1+2) (1+2+3+4) Uczeń: (1+2+3) Uczeń: określone warunki MATEMATYKA KLASA I I PÓŁROCZE -wyróżnia liczby naturalne, całkowite, wymierne -zna kolejność wykonywania działań -rozumie poszerzenie osi liczbowej na liczby ujemne -porównuje liczby wymierne -zaznacza

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM NA OCENĘ DOPUSZCZJĄCĄ UCZEN: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie

Bardziej szczegółowo

Przedmiotowy system oceniania dla uczniów z obowiązkiem dostosowania wymagań edukacyjnych z matematyki w kl.i

Przedmiotowy system oceniania dla uczniów z obowiązkiem dostosowania wymagań edukacyjnych z matematyki w kl.i Matematyka klasa I kryteria oceniania dla uczniów z obowiązkiem dostosowania wymagań edukacyjnych Liczby i działania Na ocenę dopuszczającą uczeń: - zna pojęcie liczby naturalnej - rozumie różnicę między

Bardziej szczegółowo

SAS 670/800. Zbrojenie wysokiej wytrzymałości

SAS 670/800. Zbrojenie wysokiej wytrzymałości SAS 670/800 Zbrojenie wysokiej wytrzymałości SAS 670/800 zbrojenie wysokiej wytrzymałości Przewagę zbrojenia wysokiej wytrzymałości SAS 670/800 nad zbrojeniem typowym można scharakteryzować następująco:

Bardziej szczegółowo

INŻYNIERIA ŚRODOWISKA Mechanika techniczna i wytrzymałość materiałów. Wykład 2: Organizacja studiów

INŻYNIERIA ŚRODOWISKA Mechanika techniczna i wytrzymałość materiałów. Wykład 2: Organizacja studiów INŻYNIERIA ŚRODOWISKA Mechanika techniczna i wytrzymałość materiałów Wykład 2: Organizacja studiów Załączniki Zał. 1: mechanika.txt (spis zawartości FTP) Zał. 2: literatura.doc Zał. 3: Zalecenia 1. Ilości

Bardziej szczegółowo

Dopuszczający Dostateczny Dobry Bardzo dobry Celujący

Dopuszczający Dostateczny Dobry Bardzo dobry Celujący Liczby i wyrażenia zna pojęcie liczby naturalnej, całkowitej, wymiernej zna pojęcie liczby niewymiernej, rzeczywistej zna sposób zaokrąglania liczb umie zapisać i odczytać liczby naturalne dodatnie w systemie

Bardziej szczegółowo

1. Obliczenia sił wewnętrznych w słupach (obliczenia wykonane zostały uproszczoną metodą ognisk)

1. Obliczenia sił wewnętrznych w słupach (obliczenia wykonane zostały uproszczoną metodą ognisk) Zaprojektować słup ramy hali o wymiarach i obciążeniach jak na rysunku. DANE DO ZADANIA: Rodzaj stali S235 tablica 3.1 PN-EN 1993-1-1 Rozstaw podłużny słupów 7,5 [m] Obciążenia zmienne: Śnieg 0,8 [kn/m

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016 SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016 Ocenę dopuszczającą otrzymuje uczeń, który: (Liczby i działania) zna pojęcie liczby naturalnej, całkowitej, wymiernej

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM

WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM na rok szkolny 2014/2015 Wymagania edukacyjne na poszczególne oceny: (na każdą wyższą ocenę obowiązują również wiadomości na oceny niższe oraz wiadomości

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM OCENA DOPUSZCZAJĄCA pojęcie liczby naturalnej, całkowitej, wymiernej, pojęcia: rozwinięcie dziesiętne skończone, nieskończone, okres, algorytm zaokrąglania

Bardziej szczegółowo

PF11- Dynamika bryły sztywnej.

PF11- Dynamika bryły sztywnej. Instytut Fizyki im. Mariana Smoluchowskiego Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego Zajęcia laboratoryjne w I Pracowni Fizycznej dla uczniów szkół ponadgimnazjalych

Bardziej szczegółowo

MECHANIKA PŁYNÓW LABORATORIUM

MECHANIKA PŁYNÓW LABORATORIUM MECANIKA PŁYNÓW LABORATORIUM Ćwiczenie nr 4 Współpraca pompy z układem przewodów. Celem ćwiczenia jest sporządzenie charakterystyki pojedynczej pompy wirowej współpracującej z układem przewodów, przy różnych

Bardziej szczegółowo

17. 17. Modele materiałów

17. 17. Modele materiałów 7. MODELE MATERIAŁÓW 7. 7. Modele materiałów 7.. Wprowadzenie Podstawowym modelem w mechanice jest model ośrodka ciągłego. Przyjmuje się, że materia wypełnia przestrzeń w sposób ciągły. Możliwe jest wyznaczenie

Bardziej szczegółowo

Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum

Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum DZIAŁ 1. LICZBY I DZIAŁANIA HASŁO PROGRAMOWE WIADOMOŚCI I UMIEJĘTNOŚCI PODSTAWOWE WIADOMOŚCI

Bardziej szczegółowo

Wymagania edukacyjne klasa trzecia.

Wymagania edukacyjne klasa trzecia. TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne

Bardziej szczegółowo

X Olimpiada Matematyczna Gimnazjalistów

X Olimpiada Matematyczna Gimnazjalistów www.omg.edu.pl X Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część korespondencyjna (10 listopada 01 r. 15 grudnia 01 r.) Szkice rozwiązań zadań konkursowych 1. nia rozmieniła banknot

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM OCENA DOPUSZCZAJĄCA I DZIAŁ; LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby

Bardziej szczegółowo

EGZAMIN MATURALNY 2010 MATEMATYKA

EGZAMIN MATURALNY 2010 MATEMATYKA entralna Komisja Egzaminacyjna w Warszawie EGZMIN MTURLNY 010 MTEMTYK POZIOM PODSTWOWY Klucz punktowania odpowiedzi MJ 010 Egzamin maturalny z matematyki Zadania zamknięte W zadaniach od 1. do 5. podane

Bardziej szczegółowo

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY DLA I KLASY GIMNAZJUM

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY DLA I KLASY GIMNAZJUM WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY DLA I KLASY GIMNAZJUM OPRACOWANO NA PODSTAWIE PLANU REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI Matematyka 1 Podręcznik do gimnazjum Nowa wersja, praca zbiorowa

Bardziej szczegółowo

Wymagania przedmiotowe z matematyki w klasie I gimnazjum opracowane dla programu Matematyka z plusem GWO DZIAŁ 1. LICZBY I DZIAŁANIA

Wymagania przedmiotowe z matematyki w klasie I gimnazjum opracowane dla programu Matematyka z plusem GWO DZIAŁ 1. LICZBY I DZIAŁANIA Wymagania przedmiotowe z matematyki w klasie I gimnazjum opracowane dla programu Matematyka z plusem GWO POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna

Bardziej szczegółowo

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń używa języka matematycznego

Bardziej szczegółowo

SPRAWOZDANIE Z BADAŃ

SPRAWOZDANIE Z BADAŃ POLITECHNIKA ŁÓDZKA ul. Żeromskiego 116 90-924 Łódź KATEDRA BUDOWNICTWA BETONOWEGO NIP: 727 002 18 95 REGON: 000001583 LABORATORIUM BADAWCZE MATERIAŁÓW I KONSTRUKCJI BUDOWLANYCH Al. Politechniki 6 90-924

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

Dopuszczający. Opracowanie: mgr Michał Wolak 2

Dopuszczający. Opracowanie: mgr Michał Wolak 2 Dopuszczający zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby wymierne proste przypadki umie zaznaczać liczbę wymierną na

Bardziej szczegółowo

KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE- MATEMATYKA klasa 1g

KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE- MATEMATYKA klasa 1g KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE- MATEMATYKA klasa 1g POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena

Bardziej szczegółowo

Wstęp do analizy matematycznej

Wstęp do analizy matematycznej Wstęp do analizy matematycznej Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań w

Bardziej szczegółowo

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum) Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o

Bardziej szczegółowo

Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.)

Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.) IV etap edukacyjny Nowa podstawa programowa z matematyki ( w liceum od 01.09.01 r.) Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń

Bardziej szczegółowo

Wymogi edukacyjne z kryteriami na poszczególne oceny z matematyki dla uczniów klasy pierwszej Publicznego Gimnazjum nr 1 w Strzelcach Opolskich

Wymogi edukacyjne z kryteriami na poszczególne oceny z matematyki dla uczniów klasy pierwszej Publicznego Gimnazjum nr 1 w Strzelcach Opolskich Wymogi edukacyjne z kryteriami na poszczególne oceny z matematyki dla uczniów klasy pierwszej Publicznego Gimnazjum nr 1 w Strzelcach Opolskich Na ocenę dopuszczającą uczeń: zna pojęcie liczby naturalnej,

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC 2013. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC 2013. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

Pomiar ogniskowych soczewek metodą Bessela

Pomiar ogniskowych soczewek metodą Bessela Ćwiczenie O4 Pomiar ogniskowych soczewek metodą Bessela O4.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie ogniskowych soczewek skupiających oraz rozpraszających z zastosowaniem o metody Bessela. O4.2.

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM I PODRĘCZNIKA O NR DOP. 168/1/2015/z1

Bardziej szczegółowo

Matura próbna 2014 z matematyki-poziom podstawowy

Matura próbna 2014 z matematyki-poziom podstawowy Matura próbna 2014 z matematyki-poziom podstawowy Klucz odpowiedzi do zadań zamkniętych zad 1 2 3 4 5 6 7 8 9 10 11 12 odp A C C C A A B B C B D A 13 14 15 16 17 18 19 20 21 22 23 24 25 C C A B A D C B

Bardziej szczegółowo

POLITECHNIKA KRAKOWSKA Katedra Konstrukcji Stalowych i Spawalnictwa PRZYKŁADY WYMIAROWANIA KONSTRUKCJI STALOWYCH Z PROFILI SIN

POLITECHNIKA KRAKOWSKA Katedra Konstrukcji Stalowych i Spawalnictwa PRZYKŁADY WYMIAROWANIA KONSTRUKCJI STALOWYCH Z PROFILI SIN POLITECHIKA KRAKOWSKA Katedra Konstrukcji Stalowych i Spawalnictwa PRZYKŁADY WYIAROWAIA KOSTRUKCJI STALOWYCH Z PROFILI SI Kraków Prof. dr hab. inż. Zbigniew EDERA gr inż. Krzysztof KUCHTA Katedra Konstrukcji

Bardziej szczegółowo

Autodesk Robot Structural Analysis Professional Przykłady weryfikacyjne dla Polskich Norm SPIS TREŚCI

Autodesk Robot Structural Analysis Professional Przykłady weryfikacyjne dla Polskich Norm SPIS TREŚCI Autodesk Robot Structural Analysis Professional PRZYKŁADY WERYFIKACYJNE DO OBLICZEŃ WG POLSKICH NORM Marzec 2014 SPIS TREŚCI WSTĘP... 1 STAL - PN-90/B-03200... 2 PRZYKŁAD WERYFIKACYJNY 1 - ŚCISKANIE OSIOWE

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM I PODRĘCZNIKA O NR DOP. 168/1/2015/z1

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Próbny egzamin maturalny z matematyki listopad 009 Klucz odpowiedzi do

Bardziej szczegółowo

Wymagania edukacyjne z matematyki Klasa I I. Liczby wymierne dodatnie. Ocena dopuszczająca: Uczeń: zna pojęcie liczby naturalnej, rozumie pojęcie

Wymagania edukacyjne z matematyki Klasa I I. Liczby wymierne dodatnie. Ocena dopuszczająca: Uczeń: zna pojęcie liczby naturalnej, rozumie pojęcie Wymagania edukacyjne z matematyki Klasa I I. Liczby wymierne dodatnie. Ocena dopuszczająca: Uczeń: zna pojęcie liczby naturalnej, rozumie pojęcie dziesiątkowego systemu liczenia, rozumie pojęcie pozycyjnego

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM I PODRĘCZNIKA O NR DOP. 168/1/2015/z1

Bardziej szczegółowo

Egzamin gimnazjalny 2015 część matematyczna

Egzamin gimnazjalny 2015 część matematyczna Egzamin gimnazjalny 2015 część matematyczna imię i nazwisko Kalendarz gimnazjalisty Tydz. Dział start 22.09 29 26.09 Przygotowanie do pracy zapoznanie się z informacjami na temat egzaminu gimnazjalnego

Bardziej szczegółowo

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI Materiał ćwiczeniowy zawiera informacje prawnie chronione do momentu rozpoczęcia diagnozy. Materiał ćwiczeniowy chroniony jest prawem autorskim. Materiału nie należy powielać ani udostępniać w żadnej innej

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny Matematyka klasa I Gimnazjum

Wymagania edukacyjne na poszczególne oceny Matematyka klasa I Gimnazjum Wymagania edukacyjne na poszczególne oceny Matematyka klasa I Gimnazjum Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których

Bardziej szczegółowo

Wymagania edukacyjne klasa pierwsza.

Wymagania edukacyjne klasa pierwsza. Wymagania edukacyjne klasa pierwsza. TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglanie liczb. Szacowanie wyników Dodawanie

Bardziej szczegółowo

Modelowanie układów prętowych

Modelowanie układów prętowych Modelowanie kładów prętowych Elementy prętowe -definicja Elementami prętowymi można modelować - elementy konstrkcji o stosnk wymiarów poprzecznych do podłżnego poniżej 0.1, - elementy, które są wąskie

Bardziej szczegółowo

Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii

Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii Obliczenia geometryczne z zastosowaniem własności funkcji trygonometrycznych w wielokątach wypukłych Wielokąt - figura płaską będąca sumą

Bardziej szczegółowo

DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE

DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Kryteria oceniania z zakresu klasy trzeciej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE HASŁO PROGRAMOWE WIADOMOŚCI I UMIEJĘTNOŚCI PODSTAWOWE

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena dobra (4) D - dopełniający ocena

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2015 WPISUJE ZDAJĄCY KOD PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY PRZYKŁADOWY

Bardziej szczegółowo

Zadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby

Zadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby Zadania 1 Przedsiębiorstwo wytwarza cztery rodzaje wyrobów: A, B, C, D, które są obrabiane na dwóch maszynach M 1 i M 2. Czas pracy maszyn przypadający na obróbkę jednostki poszczególnych wyrobów podany

Bardziej szczegółowo

Dział programowy: Liczby i działania ( 1 )

Dział programowy: Liczby i działania ( 1 ) 1 S t r o n a Dział programowy: Liczby i działania ( 1 ) 14-20 Liczby. Rozwinięcia liczb dziesiętne liczb wymiernych. Zaokrąglanie liczb. Szacowanie wyników. Dodawanie i odejmowanie liczb dodatnich. MnoŜenie

Bardziej szczegółowo

Podstawy Robotyki Określenie kinematyki oraz dynamiki manipulatora

Podstawy Robotyki Określenie kinematyki oraz dynamiki manipulatora Podstawy Robotyki Określenie kinematyki oraz dynamiki manipulatora AiR V sem. Gr. A4/ Wicher Bartłomiej Pilewski Wiktor 9 stycznia 011 1 1 Wstęp Rysunek 1: Schematyczne przedstawienie manipulatora W poniższym

Bardziej szczegółowo

Wymagania edukacyjne z matematyki Klasa I

Wymagania edukacyjne z matematyki Klasa I Wymagania edukacyjne z matematyki Klasa I Ocena Celujący (obejmuje wymagania na ocenę bardzo dobrą) Ocena śródroczna DZIAŁ I - LICZBY I DZIAŁANIA - umie znajdować liczby spełniające określone nietypowe

Bardziej szczegółowo