IDENTYFIKACJA MODELU MATEMATYCZNEGO ROBOTA INSPEKCYJNEGO

Wielkość: px
Rozpocząć pokaz od strony:

Download "IDENTYFIKACJA MODELU MATEMATYCZNEGO ROBOTA INSPEKCYJNEGO"

Transkrypt

1 MODELOWANIE INśYNIERSKIE ISSN X 36,. 87-9, liwice 008 IDENTYFIKACJA MODELU MATEMATYCZNEO ROBOTA INSPEKCYJNEO JÓZEF IERIEL, KRZYSZTOF KURC Katedra Mechaniki Stoowanej i Robotyki, Politechnika Rzezowka Strezczenie. W pracy do identyikacji modelu matematycznego robota inpekcyjnego zatoowano ztuczne ieci neuronowe z radialnym rozzerzeniem unkcyjnym w potaci unkcji aua. Rozwiązanie problemu zotało przeprowadzone na drodze numerycznej.. WSTĘP Przy modelowania manipulatorów i robotów popełnia ię wiele niedokładności związanych np. z ocenami parametrów modelu lub nieuwzględniania niektórych zjawik. Z reguły model matematyczny nie jet dokładnie znany. Poprawna analiza dynamiki układów złoŝonych, do jakich zalicza ię roboty inpekcyjne, wymaga identyikacji dynamicznych równań ruchu [][6]. Potać matematyczną opiu zjawik izycznych uzykano, toując równanie Lagrange a II rodzaju.. IDENTYFIKACJA MODELU MATEMATYCZNEO Do opiu ruchu robota inpekcyjnego (ry..a) przyjęto model pokazany na (ry..b). Ry.. a) Robot inpekcyjny, b) model zatępczy robota

2 88 J. IERIEL, K. KURC Do badań wykorzytano dynamiczne równanie ruchu robota inpekcyjnego wyprowadzone przez autorów w pracach [][][3][5]. Ma ono potać: 3600( l+ r) z tg( ϕ) ( 3m + m+ m3) 0800Ix( l+ r) z tg( ϕ) IFyz + + zkπ zkπ r zk 60ml ( l+ r) ztg( ϕ) ( in( ψ) ) && α+ β 3600m( l+ r) z tg( ϕ) IByz 3m5 z l co( ϕ) 3ICyz l co( ϕ) zkπ && () zkπ co( δ) zk co( δ) zk co( δ) zk r co( δ ) 80ztg( ϕ) N ( l+ r) 80ztg( ϕ) in( β)( l+ r) 60 in( β) ztg( ϕ)( l+ r) + + zkπ r zkπ zkπ co( ϕ) + = M 603 in( β) z ( ) 60 in ( ) 3co zl( 5r in N ) co tg ϕ l r γ ztg ϕ l r ϕ π γ + ( δ) z π z π co( δ) z π r co( δ) k k k m, m, m 3, m, m 5 to may podzepołów robota, I By, I Bz, I Cy, I Cz, I Fy, I Fz, I x to maowe momenty bezwładności podzepołów robota określone względem odpowiednich oi, N, N to iły naciku kół,, to ramiona oporu toczenia kół, M to moment napędowy ilnika, l to odległość wynikająca z geometrii układu, r to promień kół. Po przekztałceniach równanie () zapiano w przetrzeni tanu: & α = Aα + B ( α, β, γ) + ( α, β, γ) u( t) () lub w potaci wektorowej: & α 0 α 0 = + ( && β 3) u( t) α α & 3600( l+ r) z tg( ϕ) ( 3m + m + m3) 0800Ix( l+ r) z tg( ϕ) IFyz = z π z π r z k k k ( + ) ( ϕ) ( + ) ( ϕ) ( ( ψ) ) ( ϕ) ( ϕ) IByz 5 3ICyz l co kπ co δ k co δ k co δ k co δ 3600m l r z tg 3m z l co z z z z r 60ml l r z tg in = z π k ( ϕ) ( + ) ( ϕ) ( β)( + ) ( β) ( ϕ)( + ) 80z tg N l r 80z tg in l r 60 in z tg l r 3 = zkπ r zkπ zkπ ( β) ( ϕ)( + ) ( γ) ( ϕ)( + ) co ( ϕ) ( δ) ( + ) ( ϕ) π in( γ) co 603 in z tg l 3co r 60 in z tg l z l r N r + + z π z π δ z π r δ co = co k k k 5 (3) W zaleŝnościach,, 3, wytępują nieliniowe parametry: β, γ, δ. Wytępujące w równaniu () (,, ) ( α, β, γ ) = ( α, β, γ) = ( && β + 3) a u( t) M( t) = to wymuzenie. α β γ i (,, ) α β γ to nieliniowe unkcje:

3 IDENTYFIKACJA MODELU MATEMATYCZNEO ROBOTA INSPEKCYJNEO 89 Do rozwiązania zadania identyikacji modelu matematycznego robota zatoowano ztuczne ieci neuronowe z radialnym rozzerzeniem unkcyjnym w potaci unkcji aua. Zapiano dynamiczne równanie ruchu robota inpekcyjnego w potaci (). Dodając i odejmując od równania () wyraŝenie A α, gdzie A jet odpowiednio dobraną tabilną macierzą projektową [6], otrzymano: & α = Amα + ( A Am) α+ B ( α, β, γ) + ( α, β, γ) u () Równanie to deiniuje trukturę identyikatora ˆ& α = A ˆ ˆ (, ˆ, ˆ) ˆ (, ˆ, ˆ mα + A Am α+ B α β γ + α β γ) u (5) ˆ α jet etymatą wektora tanu α, zaś ˆ ( α, ˆ β, ˆ γ ) i ˆ ( α, ˆ β, ˆ γ ) to etymaty nieliniowych unkcji wytępujących w równaniu (). Błąd etymacji tanu zdeiniowano jako % α = α ˆ α. Odejmując równanie (5) od równania (), otrzymano opi analizowanego zadania identyikacji w przetrzeni błędów &% α = A % (,,, ˆ, ˆ) (,,, ˆ, ˆ mα + B % α β γ β γ + % α β γ β γ) u (6) A % α = A α A ˆ α (7) m m m m ( α, β, γ, ˆ β, ˆ γ) = ( α, β, γ) ˆ( α, ˆ β, ˆ γ) ( α, β, γ, ˆ β, ˆ γ) = ( α, β, γ) ˆ( α, ˆ β, ˆ γ) Do wyznaczenia unkcji ˆ ( α, ˆ β, ˆ γ ) i ˆ(, ˆ, ˆ) PoniewaŜ unkcje (,, ) neuronowych, więc:,, % (8) % (9) α β γ i (,, ) α β γ zatoowano ieci neuronowe. m α β γ mają być aprokymowane za pomocą ieci ( α, β, γ) W T S ( α, β, γ) ε ( α, β, γ) ( α, β, γ) W T S ( α, β, γ) ε ( α, β, γ) = + (0) = + () ε ( α β γ ) i ε ( α, β, γ ) - niedokładność aprokymacji unkcji ( α, β, γ ) i ( α, β, γ ) przez ieci neuronowe, W i W - macierz wag połączeń neuronowych, S ( α, β, γ ) i S (,, ) α β γ - wektory unkcji bazowych. Sieci te mają trukturę ieci z radialnym rozzerzeniem unkcyjnym w potaci unkcji aua: j exp( -β - j ) c j oznacza j-te centrum. Ogólna truktura tego układu jet pokazana na ry.. S x = x c ()

4 90 J. IERIEL, K. KURC Ry.. Struktura ieci radialnych realizujących aprokymację unkcji ˆ ( α, ˆ β, ˆ γ ) i ˆ ( α, ˆ β, ˆ γ ) Przyjmując etymaty unkcji wytępujących w równaniach (8) i (9) w potaci ˆ ˆ ˆ T α, β, ˆ γ = W S α, ˆ β, ˆ γ (3) ˆ T α, β, ˆ γ W (,, ˆ S α β γ) ˆ ˆ = ˆ () ZaleŜności (8) i (9) zapiano w potaci % α, β, γ, ˆ β, ˆ γ = W % T S α, β, γ, ˆ β, ˆ γ + ε α, β, γ (5),, ε ( α β γ ) i (,, ) ( α, β, γ, ˆ β, ˆ γ) = W (,,, ˆ, ˆ) T S α β γ β γ + ε( α, β, γ) % % (6) ε α β γ - to błędy aprokymacji ieci, W % i W % - błędy etymacji wag ieci. Równanie (6) będzie miało potać & T ( ˆ T % α = A %,,,, ˆ) (,,, ˆ, ˆ mα + B W% S α β γ β γ + W% S α β γ β γ) + B R + R (7) R = ε ( α, β, γ), R ε( α, β, γ) u S α, β, γ, ˆ β, ˆ γ u S,,, ˆ α β γ β, ˆ = γ. =, Stabilność układu zbadano na podtawie kryterium tabilności Lapunowa. Wiadomo, Ŝe układ dynamiczny będzie tabilny, jeŝeli itnieje dla niego unkcja Lapunowa [][6]. Funkcję tę przyjmuje ię w potaci: T T T V = % α P % α+ trw% F W% + trw% F W% (8) Aby unkcja ta była unkcją Lapunowa, jej pochodna mui być ujemna. V& (,,, ˆ, ˆ) (,,, ˆ, ˆ) T Q T PB W T S W T S R R trw T α α α α β γ β γ α β γ β γ F W trw T = % % + % % + % % %& + % F W% & Uczenie wag ieci przebiega zgodnie z zaleŝnościami:,,, ˆ, T W &% = F S α β γ β ˆ γ % α PB (9) (,,, ˆ, ˆ) &% % (0) T W = F S α β γ β γ α PB Z macierzowego równania Lapunowa: T E P+ PE= Q= I () określono macierz hermitowką:

5 IDENTYFIKACJA MODELU MATEMATYCZNEO ROBOTA INSPEKCYJNEO 9 p p P= p p 3 rozwiązując równanie: e e p p p p e e - 0 e e p p + 3 p p = 3 e e 0 - () Otatecznie algorytm uczenia wag (9) i (0) ma potać: & ˆ,,, ˆ T W = F S α β γ β, ˆ γ % α h (3) (,,, ˆ, ˆ) & ˆ T W = F S α β γ β γ % α h () 3. SYMULACJA NEURONOWA IDENTYFIKACJI MODELU Zaproponowana procedura identyikacji parametrycznej ruchu mobilnego robota inpekcyjnego z zatoowaniem ieci neuronowych w proceie identyikacji układów nieliniowych zotała wygenerowana w pakiecie Matlab/Simulink według truktury pokazanej na ry.3. M(t) u(t) Al u(t) Obiekt dynamiczny Al Al u(t) Identyikacja Ry.3. Struktura identyikatora Strukturę bloku identyikacji przedtawiono na ry.. Al A 3 u(t) Mux (u) Am B I ^ Am ^ Siec Siec Ry.. Struktura bloku identyikacji Symulacja : Przy dobranej macierzy projektowej diagonalnej A diag(, 35) m = przeprowadzono identyikację modelu matematycznego robota. W celu weryikacji zaproponowanego

6 9 J. IERIEL, K. KURC rozwiązania, przeprowadzono ekperyment numeryczny. W ymulacji za ygnał wymuzający przyjęto moment napędowy wygenerowany z zadania odwrotnego dynamiki [] pokazany na (ry.5). Przebiegi uzykane z modelu dynamicznego przedtawiono na ry.6. Ry.5. Przebieg ygnału wymuzającego Ry.6. Przebiegi z obiektu dynamicznego Ry.7. ˆ ( α, ˆ β, ˆ γ ) i ˆ ( α, ˆ β, ˆ γ ) Ry.7 przedtawia etymaty nieliniowych unkcji równań (3) i (). u Ry.8. Przebiegi etymowane Na ry.8 przedtawiono przebiegi etymowane nieliniowych unkcji obiektu dynamicznego (ry.6) aprokymowane przez ieci neuronowe z radialnym rozzerzeniem unkcyjnym w potaci unkcji aua. Przebiegi te odjęto od iebie i uzykano błąd etymacji tanu zdeiniowano jako % α = α ˆ α (ry.9).

7 IDENTYFIKACJA MODELU MATEMATYCZNEO ROBOTA INSPEKCYJNEO 93 Ry.9. Błędy identyikacji neuronowej Ry.0. Wybrane wagi ieci Ry.0 przedtawia jak zmieniały ię wagi ieci podcza uczenia ich według zaleŝności (3), (), przyjmując podcza ymulacji zerowe wagi początkowe ( W ˆ 0 = 0 ) i ( W ˆ 0 = 0 ). Symulacja : Dobierając na drodze ekperymentalnej inne wpółczynniki macierzy projektowej A = diag 5, 60 przeprowadzono identyikację modelu matematycznego diagonalnej m robota przy tym amym wymuzeniu (ry.5) i tych amych przebiegach z obiektu dynamicznego (ry.6). Ry.. ˆ ( α, ˆ β, ˆ γ ) i ˆ ( α, ˆ β, ˆ γ ) Tak jak w ymulacji nr przedtawiono etymaty nieliniowych unkcji (ry.), błąd etymacji tanu zdeiniowano jako % α = α ˆ α (ry.) i zmieniany wag ieci podcza ich uczenia (ry.3). u Ry.. Błędy identyikacji neuronowej Ry.3. Wybrane wagi ieci

8 9 J. IERIEL, K. KURC Uzykane rozwiązania w ymulacji nr i ą ograniczone, a ich dokładność moŝna zwiękzyć poprzez odpowiedni dobór macierzy projektowej A m co znacznie zmniejzyło błąd identyikacji neuronowej (ry.) w porównaniu do ry.9.. PODSUMOWANIE Zaproponowana procedura identyikacji modelu matematycznego robota inpekcyjnego umoŝliwia zatoowanie ieci neuronowych w proceie identyikacji układów nieliniowych. Uzykane rezultaty numeryczne wkazują, Ŝe układ zotał odpowiednio pobudzony przez moment ilnika napędowego podcza realizacji zadanej trajektorii ruchu. Zatoowanie tego podejścia moŝe zotać wykorzytane do monitorowania obciąŝeń, wykrywania uzkodzeń itp. LITERATURA. iergiel J., Kurc K.: Contruction, analyi and imulation o the inpective robot. Machine Dynamic Problem 006, Vol. 30, No 3, p iergiel J., Kurc K.: Modeling o dynamic o the inpective robot. 0 th international eminar o applied mechanic. Politechnika Śląka, iergiel J., Kurc K.: Mechatronic o the inpective robot. Mechanic and Mechanical Engineering 006, Vol. 0, No iergiel J., Hendzel Z., śylki W.: Kinematyka, dynamika i terowanie mobilnych robotów kołowych w ujęciu mechatronicznym. Kraków : AH, 000. Monograie. 5. iergiel J., Kurc K.: Mechatroniczne projektowanie robota inpekcyjnego. Pomiary, automatyk, kontrola 007, Vol. 53, nr 6, Hendzel Z., iergiel M., śylki W.: Modelowanie i terowanie mobilnych robotów kołowych. Warzawa: Wyd. Nauk. PWN, 00. IDENTIFICATION OF THE MATHEMATICAL MODEL INSPECTION ROBOT Summary. To identiication o the mathematical model inpection robot were ued artiicial neural network with the radial broaden unctional in the orm o au' unction. Preented problem wa olved on the numerical way. Praca wykonana w ramach projektu badawczego nr N N

LABORATORIUM Z AUTOMATYKI NAPĘDU ELEKTRYCZNEGO

LABORATORIUM Z AUTOMATYKI NAPĘDU ELEKTRYCZNEGO Intytut Mazyn, Napędów i Pomiarów Elektrycznych Politechniki Wrocławkiej ZAKŁAD NAPĘDÓW ELEKTRYCZNYCH LABORATORIUM Z AUTOMATYKI NAPĘDU ELEKTRYCZNEGO Bezpośrednie terowanie momentem ilnika indukcyjnego

Bardziej szczegółowo

1 Przekształcenie Laplace a

1 Przekształcenie Laplace a Przekztałcenie Laplace a. Definicja i podtawowe właności przekztałcenia Laplace a Definicja Niech dana będzie funkcja f określona na przedziale [,. Przekztałcenie (tranformatę Laplace a funkcji f definiujemy

Bardziej szczegółowo

Schematy blokowe. Akademia Morska w Gdyni Katedra Automatyki Okrętowej Teoria sterowania. Mirosław Tomera 1. ELEMENTY SCHEMATU BLOKOWEGO

Schematy blokowe. Akademia Morska w Gdyni Katedra Automatyki Okrętowej Teoria sterowania. Mirosław Tomera 1. ELEMENTY SCHEMATU BLOKOWEGO Akademia Morka w dyni Katedra Automatyki Okrętowej Teoria terowania Miroław Tomera. ELEMENTY SCEMATU BLOKOWEO Opi układu przy użyciu chematu blokowego jet zeroko i powzechnie toowany w analizowaniu działania

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: KINEMATYKA I DYNAMIKA MANIPULATORÓW I ROBOTÓW Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy na specjalności: Systemy sterowania Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU

Bardziej szczegółowo

2.12. Zadania odwrotne kinematyki

2.12. Zadania odwrotne kinematyki Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów str. 1 2.12. Zadania odwrotne kinematyki Określenie zadania odwrotnego kinematyki T 0 N = [ ] n s a p = r 11 r 12 r 13 p x r 21 r 22 r 23

Bardziej szczegółowo

Zadanie bloczek. Rozwiązanie. I sposób rozwiązania - podział na podukłady.

Zadanie bloczek. Rozwiązanie. I sposób rozwiązania - podział na podukłady. Zadanie bloczek Przez zamocowany bloczek o masie m przerzucono nierozciągliwą nitkę na której zawieszono dwa obciąŝniki o masach odpowiednio m i m. Oblicz przyspieszenie z jakim będą poruszać się obciąŝniki.

Bardziej szczegółowo

Podstawy automatyki. Energetyka Sem. V Wykład 1. Sem /17 Hossein Ghaemi

Podstawy automatyki. Energetyka Sem. V Wykład 1. Sem /17 Hossein Ghaemi Podstawy automatyki Energetyka Sem. V Wykład 1 Sem. 1-2016/17 Hossein Ghaemi Hossein Ghaemi Katedra Automatyki i Energetyki Wydział Oceanotechniki i Okrętownictwa Politechnika Gdańska pok. 222A WOiO Tel.:

Bardziej szczegółowo

Efekty kształcenia na kierunku AiR drugiego stopnia - Wiedza Wydziału Elektrotechniki, Automatyki i Informatyki Politechniki Opolskiej

Efekty kształcenia na kierunku AiR drugiego stopnia - Wiedza Wydziału Elektrotechniki, Automatyki i Informatyki Politechniki Opolskiej Efekty na kierunku AiR drugiego stopnia - Wiedza K_W01 K_W02 K_W03 K_W04 K_W05 K_W06 K_W07 K_W08 K_W09 K_W10 K_W11 K_W12 K_W13 K_W14 Ma rozszerzoną wiedzę dotyczącą dynamicznych modeli dyskretnych stosowanych

Bardziej szczegółowo

WYZNACZANIE MODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G ORAZ NAPRĘŻEŃ SKRĘCAJĄCYCH METODĄ TENSOMETRYCZNĄ

WYZNACZANIE MODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G ORAZ NAPRĘŻEŃ SKRĘCAJĄCYCH METODĄ TENSOMETRYCZNĄ Ćwiczenie 7 WYZNACZANIE ODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G ORAZ NAPRĘŻEŃ SKRĘCAJĄCYCH ETODĄ TENSOETRYCZNĄ A. PRĘT O PRZEKROJU KOŁOWY 7. WPROWADZENIE W pręcie o przekroju kołowym, poddanym obciążeniu momentem

Bardziej szczegółowo

Skręcanie prętów naprężenia styczne, kąty obrotu 4

Skręcanie prętów naprężenia styczne, kąty obrotu 4 Skręcanie prętów naprężenia tyczne, kąty obrotu W przypadku kręcania pręta jego obciążenie tanowią momenty kręcające i. Na ry..1a przedtawiono przykład pręta ztywno zamocowanego na ewym końcu (punkt ),

Bardziej szczegółowo

Zadanie 1. Podaj model matematyczny układu jak na rysunku: a) w postaci transmitancji, b) w postaci równań stanu (równań różniczkowych).

Zadanie 1. Podaj model matematyczny układu jak na rysunku: a) w postaci transmitancji, b) w postaci równań stanu (równań różniczkowych). Zadanie Podaj model matematyczny uładu ja na ryunu: a w potaci tranmitancji, b w potaci równań tanu równań różniczowych. a ranmitancja operatorowa LC C b ównania tanu uładu di dt i A B du c u c dt i u

Bardziej szczegółowo

NEURONOWO-ROZMYTE SYSTEMY STEROWANIA MOBILNYM ROBOTEM KOŁOWYM

NEURONOWO-ROZMYTE SYSTEMY STEROWANIA MOBILNYM ROBOTEM KOŁOWYM MODELOWANIE INŻYNIERSKIE nr 5, t., rok ISSN 96-77X NEURONOWO-ROZMYTE SYSTEMY STEROWANIA MOBILNYM ROBOTEM KOŁOWYM Zenon Hendzel a, Magdalena Muszyńska b Katedra Mechaniki Stosowanej i Robotyki, Politechnika

Bardziej szczegółowo

Zeszyty Problemowe Maszyny Elektryczne Nr 75/2006 47

Zeszyty Problemowe Maszyny Elektryczne Nr 75/2006 47 ezyty Problemowe Mazyny Elektryczne Nr 75006 47 Maria J. ielińka Wojciech G. ielińki Politechnika Lubelka Lublin POŚLIGOWA HARAKTERYSTYKA ADMITANJI STOJANA SILNIKA INDUKYJNEGO UYSKANA PRY ASTOSOWANIU SYMULAJI

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI KATEDRA AUTOMATYKI. Robot do pokrycia powierzchni terenu

WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI KATEDRA AUTOMATYKI. Robot do pokrycia powierzchni terenu WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI KATEDRA AUTOMATYKI Robot do pokrycia powierzchni terenu Zadania robota Zadanie całkowitego pokrycia powierzchni na podstawie danych sensorycznych Zadanie unikania przeszkód

Bardziej szczegółowo

Filtry aktywne czasu ciągłego i dyskretnego

Filtry aktywne czasu ciągłego i dyskretnego Politechnika Wrocławka Intytut Telekomunikacji, Teleinformatyki i Akutyki czau ciągłego i dykretnego Wrocław 9 Politechnika Wrocławka Intytut Telekomunikacji, Teleinformatyki i Akutyki odzaje Ze względu

Bardziej szczegółowo

Gramatyki, wyprowadzenia, hierarchia Chomsky ego. Gramatyka

Gramatyki, wyprowadzenia, hierarchia Chomsky ego. Gramatyka Gramatyki, wyprowadzenia, hierarchia Chomsky ego Teoria automatów i języków formalnych Dr inŝ. Janusz Majewski Katedra Informatyki Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną gdzie: G =

Bardziej szczegółowo

Podstawy robotyki wykład VI. Dynamika manipulatora

Podstawy robotyki wykład VI. Dynamika manipulatora Podstawy robotyki Wykład VI Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Dynamika opisuje sposób zachowania się manipulatora poddanego wymuszeniu

Bardziej szczegółowo

MODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZA II. Zdający może rozwiązać zadania każdą poprawną metodą. Otrzymuje wtedy maksymalną liczbę punktów.

MODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZA II. Zdający może rozwiązać zadania każdą poprawną metodą. Otrzymuje wtedy maksymalną liczbę punktów. MODEL ODOWEDZ SCHEMAT OCENANA AKUSZA Zdający może rozwiązać zadania każdą poprawną metodą. Otrzymuje wtedy makymalną liczbę punktów. Numer zadania Czynności unktacja Uwagi. Amperomierz należy podłączyć

Bardziej szczegółowo

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory

Bardziej szczegółowo

ROZKŁAD A PRIORI W CZYNNIKU BAYESOWSKIM A WYBÓR MODELU KLAS UKRYTYCH

ROZKŁAD A PRIORI W CZYNNIKU BAYESOWSKIM A WYBÓR MODELU KLAS UKRYTYCH B A D A N I A O P E R A C Y J N E I D E C Y Z J E Nr 3 2009 Robert KAPŁON* ROZKŁAD A PRIORI W CZYNNIKU BAYEOWKIM A WYBÓR MODELU KLA UKRYTYCH Na etapie wyboru liczby egmentów w analizie kla ukrytych kryteria

Bardziej szczegółowo

1. Funkcje zespolone zmiennej rzeczywistej. 2. Funkcje zespolone zmiennej zespolonej

1. Funkcje zespolone zmiennej rzeczywistej. 2. Funkcje zespolone zmiennej zespolonej . Funkcje zepolone zmiennej rzeczywitej Jeżeli każdej liczbie rzeczywitej t, t α, β] przyporządkujemy liczbę zepoloną z = z(t) = x(t) + iy(t) to otrzymujemy funkcję zepoloną zmiennej rzeczywitej. Ciągłość

Bardziej szczegółowo

Algorytmy ewolucyjne (2)

Algorytmy ewolucyjne (2) Algorytmy ewolucyjne (2) zajecia.jakubw.pl/nai/ ALGORYTM GEETYCZY Cel: znaleźć makimum unkcji. Założenie: unkcja ta jet dodatnia. 1. Tworzymy oobników loowych. 2. Stoujemy operacje mutacji i krzyżowania

Bardziej szczegółowo

Algorytmy sztucznej inteligencji

Algorytmy sztucznej inteligencji Algorytmy sztucznej inteligencji Dynamiczne sieci neuronowe 1 Zapis macierzowy sieci neuronowych Poniżej omówione zostaną części składowe sieci neuronowych i metoda ich zapisu za pomocą macierzy. Obliczenia

Bardziej szczegółowo

Podstawy robotyki wykład V. Jakobian manipulatora. Osobliwości

Podstawy robotyki wykład V. Jakobian manipulatora. Osobliwości Podstawy robotyki Wykład V Jakobian manipulatora i osobliwości Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Metoda bezpośrednia uzyskania macierzy

Bardziej szczegółowo

Filtry aktywne czasu ciągłego i dyskretnego

Filtry aktywne czasu ciągłego i dyskretnego Politechnika Wrocławka Intytut Telekomunikacji, Teleinformatyki i Akutyki czau ciągłego i dykretnego Wrocław 9 Politechnika Wrocławka Intytut Telekomunikacji, Teleinformatyki i Akutyki odzaje Ze względu

Bardziej szczegółowo

Część 1 9. METODA SIŁ 1 9. METODA SIŁ

Część 1 9. METODA SIŁ 1 9. METODA SIŁ Część 1 9. METOD SIŁ 1 9. 9. METOD SIŁ Metoda ił jet poobem rozwiązywania układów tatycznie niewyznaczalnych, czyli układów o nadliczbowych więzach (zewnętrznych i wewnętrznych). Sprowadza ię ona do rozwiązania

Bardziej szczegółowo

Notacja Denavita-Hartenberga

Notacja Denavita-Hartenberga Notacja DenavitaHartenberga Materiały do ćwiczeń z Podstaw Robotyki Artur Gmerek Umiejętność rozwiązywania prostego zagadnienia kinematycznego jest najbardziej bazową umiejętność zakresu Robotyki. Wyznaczyć

Bardziej szczegółowo

Zastosowania sieci neuronowych - automatyka identyfikacja sterowanie

Zastosowania sieci neuronowych - automatyka identyfikacja sterowanie Zastosowania sieci neuronowych - automatyka identyfikacja sterowanie LABORKA Piotr Ciskowski ZASTOSOWANIA SIECI NEURONOWYCH IDENTYFIKACJA zastosowania przegląd zastosowania sieci neuronowych: o identyfikacja

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura

Bardziej szczegółowo

Tadeusz SZKODNY. POLITECHNIKA ŚLĄSKA ZESZYTY NAUKOWE Nr 1647 MODELOWANIE I SYMULACJA RUCHU MANIPULATORÓW ROBOTÓW PRZEMYSŁOWYCH

Tadeusz SZKODNY. POLITECHNIKA ŚLĄSKA ZESZYTY NAUKOWE Nr 1647 MODELOWANIE I SYMULACJA RUCHU MANIPULATORÓW ROBOTÓW PRZEMYSŁOWYCH POLITECHNIKA ŚLĄSKA ZESZYTY NAUKOWE Nr 1647 Tadeusz SZKODNY SUB Gottingen 217 780 474 2005 A 3014 MODELOWANIE I SYMULACJA RUCHU MANIPULATORÓW ROBOTÓW PRZEMYSŁOWYCH GLIWICE 2004 SPIS TREŚCI WAŻNIEJSZE OZNACZENIA

Bardziej szczegółowo

Politechnika Śląska w Gliwicach Instytut Maszyn i Urządzeń Energetycznych Zakład Podstaw Konstrukcji i Eksploatacji Maszyn Energetycznych

Politechnika Śląska w Gliwicach Instytut Maszyn i Urządzeń Energetycznych Zakład Podstaw Konstrukcji i Eksploatacji Maszyn Energetycznych Politechnika Śląka w Gliwicach Intytut Mazyn i Urządzeń Energetycznych Zakład Podtaw Kontrukcji i Ekploatacji Mazyn Energetycznych Ćwiczenie laboratoryjne z wytrzymałości materiałów Temat ćwiczenia: Wyboczenie

Bardziej szczegółowo

ENERGOOSZCZĘDNY NAPĘD Z SILNIKIEM SYNCHRONICZNYM O MAGNESACH TRWAŁYCH Z ŁAGODNYM STARTEM

ENERGOOSZCZĘDNY NAPĘD Z SILNIKIEM SYNCHRONICZNYM O MAGNESACH TRWAŁYCH Z ŁAGODNYM STARTEM POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 75 Electrical Engineering 213 Tomaz PAJCHROWSKI* ENERGOOSZCZĘDNY NAPĘD Z SILNIKIEM SYNCHRONICZNYM O MAGNESACH TRWAŁYCH Z ŁAGODNYM STARTEM W artykule

Bardziej szczegółowo

MODEL BEZSZCZOTKOWEGO SILNIKA PRĄDU STAŁEGO WYKORZYSTANY W ANALIZIE MANIPULATORA RÓWNOLEGŁEGO

MODEL BEZSZCZOTKOWEGO SILNIKA PRĄDU STAŁEGO WYKORZYSTANY W ANALIZIE MANIPULATORA RÓWNOLEGŁEGO ELEKTRYKA 24 Zezyt 4(232) Rok LX Januz HETMAŃCZYK, Maciej SAJKOWSKI, Tomaz STENZEL, Krzyztof KRYKOWSKI Politechnika Śląka w Gliwicach MODEL BEZSZCZOTKOWEGO SILNIKA PRĄDU STAŁEGO WYKORZYSTANY W ANALIZIE

Bardziej szczegółowo

KO OF Szczecin:

KO OF Szczecin: 55OF D KO OF Szczecin: www.of.zc.pl L OLMPADA FZYZNA (005/006). Stopień, zadanie doświadczalne D Źródło: Komitet Główny Olimpiady Fizycznej A. Wymołek; Fizyka w Szkole nr 3, 006. Autor: Nazwa zadania:

Bardziej szczegółowo

Analiza częstościowa sprzęgła o regulowanej podatności skrętnej

Analiza częstościowa sprzęgła o regulowanej podatności skrętnej Dr inż. Paweł Kołodziej Dr inż. Marek Boryga Katedra Inżynierii Mechanicznej i Autoatyki, Wydział Inżynierii Produkcji, Uniwerytet Przyrodniczy w Lublinie, ul. Doświadczalna 5A, -8 Lublin, Polka e-ail:

Bardziej szczegółowo

S Y L A B U S P R Z E D M I O T U

S Y L A B U S P R Z E D M I O T U "Z A T W I E R D Z A M Prof. dr hab. inż. Radosław TRĘBIŃSKI Dziekan Wydziału Mechatroniki i Lotnictwa Warszawa, dnia... NAZWA PRZEDMIOTU: Wersja anglojęzyczna: Kod przedmiotu: S Y L A B U S P R Z E D

Bardziej szczegółowo

Jakobiany. Kinematykę we współrzędnych możemy potraktować jako operator przekształcający funkcje czasu

Jakobiany. Kinematykę we współrzędnych możemy potraktować jako operator przekształcający funkcje czasu Wstęp do Robotyki c W. Szynkiewicz, 29 1 Jakobiany Kinematykę we współrzędnych możemy potraktować jako operator przekształcający funkcje czasu ( t )z(t)=k(x(t)) Ponieważ funkcje w powyższym równaniu są

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 206/207

Bardziej szczegółowo

Zad. 4 Oblicz czas obiegu satelity poruszającego się na wysokości h=500 km nad powierzchnią Ziemi.

Zad. 4 Oblicz czas obiegu satelity poruszającego się na wysokości h=500 km nad powierzchnią Ziemi. Grawitacja Zad. 1 Ile muiałby wynoić okre obrotu kuli ziemkiej wokół włanej oi, aby iła odśrodkowa bezwładności zrównoważyła na równiku iłę grawitacyjną? Dane ą promień Ziemi i przypiezenie grawitacyjne.

Bardziej szczegółowo

INSTRUKCJA. Ćwiczenie A2. Wyznaczanie współczynnika sprężystości sprężyny metodą dynamiczną.

INSTRUKCJA. Ćwiczenie A2. Wyznaczanie współczynnika sprężystości sprężyny metodą dynamiczną. INSRUKCJA Ćwiczenie A Wyznaczanie wpółczynnia prężytości prężyny metodą dynamiczną. Przed zapoznaniem ię z intrucją i przytąpieniem do wyonania ćwiczenia należy zapoznać ię z natępującymi zagadnieniami:

Bardziej szczegółowo

1. Podstawowe pojęcia

1. Podstawowe pojęcia 1. Podstawowe pojęcia Sterowanie optymalne obiektu polega na znajdowaniu najkorzystniejszej decyzji dotyczącej zamierzonego wpływu na obiekt przy zadanych ograniczeniach. Niech dany jest obiekt opisany

Bardziej szczegółowo

Metody Sztucznej Inteligencji II

Metody Sztucznej Inteligencji II 17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału

Bardziej szczegółowo

Wyznaczanie sił w przegubach maszyny o kinematyce równoległej w trakcie pracy, z wykorzystaniem metod numerycznych

Wyznaczanie sił w przegubach maszyny o kinematyce równoległej w trakcie pracy, z wykorzystaniem metod numerycznych kinematyka równoległa, symulacja, model numeryczny, sterowanie mgr inż. Paweł Maślak, dr inż. Piotr Górski, dr inż. Stanisław Iżykowski, dr inż. Krzysztof Chrapek Wyznaczanie sił w przegubach maszyny o

Bardziej szczegółowo

Charakterystyka statyczna diody półprzewodnikowej w przybliŝeniu pierwszego stopnia jest opisywana funkcją

Charakterystyka statyczna diody półprzewodnikowej w przybliŝeniu pierwszego stopnia jest opisywana funkcją 1 CEL ĆWCZEN Celem ćwiczenia jet zapoznanie ię z: przebiegami tatycznych charakterytyk prądowo-napięciowych diod półprzewodnikowych protowniczych, przełączających i elektroluminecencyjnych, metodami pomiaru

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )

Bardziej szczegółowo

WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA

WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA aboratorium z Fizyki Materiałów 010 Ćwiczenie WYZNCZNIE MODUŁU YOUNG METODĄ STRZŁKI UGIĘCI Zadanie: 1.Za pomocą przyrządów i elementów znajdujących ię w zetawie zmierzyć moduł E jednego pręta wkazanego

Bardziej szczegółowo

ZASTOSOWANIE GRAFÓW ZALEŻNOŚCI I DRZEW ROZGRYWAJĄCYCH PARAMETRYCZNIE W PROCESIE INNOWACJI NA PRZYKŁADZIE UKŁADÓW MASZYNOWYCH

ZASTOSOWANIE GRAFÓW ZALEŻNOŚCI I DRZEW ROZGRYWAJĄCYCH PARAMETRYCZNIE W PROCESIE INNOWACJI NA PRZYKŁADZIE UKŁADÓW MASZYNOWYCH ZASTOSOWANIE GRAFÓW ZALEŻNOŚCI I DRZEW ROZGRYWAJĄCYCH PARAMETRYCZNIE W PROCESIE INNOWACJI NA PRZYKŁADZIE UKŁADÓW MASZYNOWYCH Adam DEPTUŁA, Marian A. PARTYKA Strezczenie: W oracowaniu rzedtawiono zatoowanie

Bardziej szczegółowo

Wydział Elektryczny. Katedra Telekomunikacji i Aparatury Elektronicznej. Instrukcja do pracowni specjalistycznej

Wydział Elektryczny. Katedra Telekomunikacji i Aparatury Elektronicznej. Instrukcja do pracowni specjalistycznej Politchnika Białotocka Wydział Elktryczny Katdra Tlkomunikacji i Aparatury Elktronicznj Intrukcja do pracowni pcjalitycznj Tmat ćwicznia: Dokładność ciągłych i dykrtnych układów rgulacji Numr ćwicznia:

Bardziej szczegółowo

Wykład z Technologii Informacyjnych. Piotr Mika

Wykład z Technologii Informacyjnych. Piotr Mika Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły

Bardziej szczegółowo

MODELOWANIE ZMIANY PROGRAMU SYGNALIZACJI ZA POMOCĄ HIERARCHICZNYCH GRAFÓW PRZEJŚĆ AUTOMATÓW SKOŃCZONYCH

MODELOWANIE ZMIANY PROGRAMU SYGNALIZACJI ZA POMOCĄ HIERARCHICZNYCH GRAFÓW PRZEJŚĆ AUTOMATÓW SKOŃCZONYCH KAWALEC Piotr 1 KRUKOWICZ Tomaz 2 Sterownik ygnalizacji, program tartowy, program końcowy, zmiana programów, język opiu przętu, VHDL, FSM MODELOWANIE ZMIANY PROGRAMU SYGNALIZACJI ZA POMOCĄ HIERARCHICZNYCH

Bardziej szczegółowo

Maksymalny błąd oszacowania prędkości pojazdów uczestniczących w wypadkach drogowych wyznaczonej różnymi metodami

Maksymalny błąd oszacowania prędkości pojazdów uczestniczących w wypadkach drogowych wyznaczonej różnymi metodami BIULETYN WAT VOL LV, NR 3, 2006 Makymalny błąd ozacowania prędkości pojazdów uczetniczących w wypadkach drogowych wyznaczonej różnymi metodami BOLESŁAW PANKIEWICZ, STANISŁAW WAŚKO* Wojkowa Akademia Techniczna,

Bardziej szczegółowo

R L. Badanie układu RLC COACH 07. Program: Coach 6 Projekt: CMA Coach Projects\ PTSN Coach 6\ Elektronika\RLC.cma Przykłady: RLC.cmr, RLC1.

R L. Badanie układu RLC COACH 07. Program: Coach 6 Projekt: CMA Coach Projects\ PTSN Coach 6\ Elektronika\RLC.cma Przykłady: RLC.cmr, RLC1. OAH 07 Badanie układu L Program: oach 6 Projekt: MA oach Projects\ PTSN oach 6\ Elektronika\L.cma Przykłady: L.cmr, L1.cmr, V L Model L, Model L, Model L3 A el ćwiczenia: I. Obserwacja zmian napięcia na

Bardziej szczegółowo

KINEMATYKA ODWROTNA TRIPODA Z NAPĘDEM MIMOŚRODOWYM

KINEMATYKA ODWROTNA TRIPODA Z NAPĘDEM MIMOŚRODOWYM 4-2007 PROBLEMY EKSPLOATACJI 275 Andrzej ZBROWSKI Instytut Technologii Eksploatacji PIB, Radom Krzysztof ZAGROBA Politechnika Warszawska, Warszawa KINEMATYKA ODWROTNA TRIPODA Z NAPĘDEM MIMOŚRODOWYM Słowa

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Podstawy robotyki Rodzaj przedmiotu: Zaliczenie Język wykładowy:

Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Podstawy robotyki Rodzaj przedmiotu: Zaliczenie Język wykładowy: Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia Przedmiot: Podstawy robotyki Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: MT 1 S 0 6 38-0_1 Rok: III Semestr: 6 Forma studiów:

Bardziej szczegółowo

Pomiar rezystancji. Rys.1. Schemat układu do pomiaru rezystancji metodą techniczną: a) poprawnie mierzonego napięcia; b) poprawnie mierzonego prądu.

Pomiar rezystancji. Rys.1. Schemat układu do pomiaru rezystancji metodą techniczną: a) poprawnie mierzonego napięcia; b) poprawnie mierzonego prądu. Pomiar rezytancji. 1. Cel ćwiczenia: Celem ćwiczenia jet zapoznanie ię z najważniejzymi metodami pomiaru rezytancji, ich wadami i zaletami, wynikającymi z nich błędami pomiarowymi, oraz umiejętnością ich

Bardziej szczegółowo

Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki

Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Stabilność rozwiązań równań różniczkowych w ujęciu lokalnych układów dynamicznych. Adam Kanigowski Toruń 2010 1 Spis treści 1 Wprowadzenie

Bardziej szczegółowo

Symulacja działania sterownika dla robota dwuosiowego typu SCARA w środowisku Matlab/Simulink.

Symulacja działania sterownika dla robota dwuosiowego typu SCARA w środowisku Matlab/Simulink. Symulacja działania sterownika dla robota dwuosiowego typu SCARA w środowisku Matlab/Simulink. Celem ćwiczenia jest symulacja działania (w środowisku Matlab/Simulink) sterownika dla dwuosiowego robota

Bardziej szczegółowo

STEROWANIE MOMENTEM ELEKTROMAGNETYCZNYM SILNIKA INDUKCYJNEGO Z WYKORZYSTANIEM REGULATORA PREDYKCYJNEGO ZE SKOŃCZONYM ZBIOREM ROZWIĄZAŃ

STEROWANIE MOMENTEM ELEKTROMAGNETYCZNYM SILNIKA INDUKCYJNEGO Z WYKORZYSTANIEM REGULATORA PREDYKCYJNEGO ZE SKOŃCZONYM ZBIOREM ROZWIĄZAŃ Prace aukowe Intytutu Mazyn, apędów i Pomiarów Elektrycznych r 7 Politechniki Wrocławkiej r 7 Studia i Materiały r Karol WRÓBEL* ilnik indukcyjny, terowanie predykcyjne, kończony zbiór rozwiązań STEROWAIE

Bardziej szczegółowo

Informacje ogólne. ABS ESP ASR Wspomaganie układu kierowniczego Aktywne zawieszenie Inteligentne światła Inteligentne wycieraczki

Informacje ogólne. ABS ESP ASR Wspomaganie układu kierowniczego Aktywne zawieszenie Inteligentne światła Inteligentne wycieraczki Mechatronika w środkach transportu Informacje ogólne Celem kształcenia na profilu dyplomowania Mechatronika w środkach transportu jest przekazanie wiedzy z zakresu budowy, projektowania, diagnostyki i

Bardziej szczegółowo

Materiał dydaktyczny - dr inż. Dariusz Sobala ŚWIATŁO PRZEPUSTU Przykład obliczeń dla przepustu o niezatopionym wlocie i wylocie

Materiał dydaktyczny - dr inż. Dariusz Sobala ŚWIATŁO PRZEPUSTU Przykład obliczeń dla przepustu o niezatopionym wlocie i wylocie Materiał dydaktyczny - dr inż. Dariuz Sobala ŚWIATŁO PRZEPUSTU Przykład obliczeń dla przeputu o niezatopionym wlocie i wylocie Piśmiennictwo: 1.. ROZPORZĄDZENIE MINISTRA TRANSPORTU I GOSPODARKI MORSKIEJ

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody ytemowe i decyzyjne w informatyce Ćwiczenia lita zadań nr 1 Prote zatoowania równań różniczkowych Zad. 1 Liczba potencjalnych użytkowników portalu połecznościowego wynoi 4 miliony oób. Tempo, w

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Ćwiczenia lista zadań nr 7 autorzy: A. Gonczarek, J.M. Tomczak Przykładowe problemy Klasyfikacja binarna Dla obrazu x zaproponowano dwie cechy φ(x) = (φ 1 (x) φ 2 (x)) T. Na obrazie

Bardziej szczegółowo

2. Cena CD ROM-u wraz z 7% podatkiem VAT wynosiła 252 zł 60 gr. Oblicz jego cenę z 22% podatkiem VAT.

2. Cena CD ROM-u wraz z 7% podatkiem VAT wynosiła 252 zł 60 gr. Oblicz jego cenę z 22% podatkiem VAT. Tematy zadań sprawdziany klasa I poziom podstawowy Elementy logiki Określ, czy podane wyraŝenie jest zdaniem logicznym lub formą zdaniową Odpowiedź uzasadnij a) Liczbą przeciwną do liczby jest liczba x

Bardziej szczegółowo

Metody numeryczne. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50

Metody numeryczne. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50 Metody numeryczne Układy równań liniowych, część II Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50 Układy równań liniowych, część II 1. Iteracyjne poprawianie

Bardziej szczegółowo

Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta

Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta www.michalbereta.pl Sieci radialne zawsze posiadają jedną warstwę ukrytą, która składa się z neuronów radialnych. Warstwa wyjściowa składa

Bardziej szczegółowo

MODEL MANIPULATORA O STRUKTURZE SZEREGOWEJ W PROGRAMACH CATIA I MATLAB MODEL OF SERIAL MANIPULATOR IN CATIA AND MATLAB

MODEL MANIPULATORA O STRUKTURZE SZEREGOWEJ W PROGRAMACH CATIA I MATLAB MODEL OF SERIAL MANIPULATOR IN CATIA AND MATLAB Kocurek Łukasz, mgr inż. email: kocurek.lukasz@gmail.com Góra Marta, dr inż. email: mgora@mech.pk.edu.pl Politechnika Krakowska, Wydział Mechaniczny MODEL MANIPULATORA O STRUKTURZE SZEREGOWEJ W PROGRAMACH

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją

Bardziej szczegółowo

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu 1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie

Bardziej szczegółowo

LABORATORIUM Z FIZYKI

LABORATORIUM Z FIZYKI Projekt Plan rozwoju Politechniki Częstochowskiej współfinansowany ze środków UNII EUROPEJSKIEJ w ramach EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Numer Projektu: POKL.4.1.1--59/8 INSTYTUT FIZYKI WYDZIAŁINśYNIERII

Bardziej szczegółowo

Algebra z geometrią analityczną zadania z odpowiedziami

Algebra z geometrią analityczną zadania z odpowiedziami Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści 0 Wyrażenia algebraiczne, indukcja matematyczna 2 2 2 1 Geometria analityczna w R 2 3 3 3 2 Liczby zespolone 4 4 4 3

Bardziej szczegółowo

WPŁYW KINEMATYCZNYCH CHARAKTERYSTYK RUCHU CHWYTAKA NA POŁOśENIA, PRĘDKOŚCI I PRZYSPIESZENIA OGNIW AGROROBOTA

WPŁYW KINEMATYCZNYCH CHARAKTERYSTYK RUCHU CHWYTAKA NA POŁOśENIA, PRĘDKOŚCI I PRZYSPIESZENIA OGNIW AGROROBOTA InŜynieria Rolnicza 11/006 Andrzej Graboś, Marek Boryga Katedra Podstaw Techniki Akademia Rolnicza w Lublinie WPŁYW KINEMATYCZNYCH CHARAKTERYSTYK RUCHU CHWYTAKA NA POŁOśENIA, PRĘDKOŚCI I PRZYSPIESZENIA

Bardziej szczegółowo

Koncepcja zastosowania metody CBR oraz algorytmów genetycznych w systemie obsługującym windykację ubezpieczeniową

Koncepcja zastosowania metody CBR oraz algorytmów genetycznych w systemie obsługującym windykację ubezpieczeniową Rozdział monografii: 'Bazy Danych: truktury, Algorytmy, Metody', Kozielki., Małyiak B., Kaprowki P., Mrozek D. (red.), WKŁ 2006 Rozdział 40 Koncepca zatoowania metody CBR oraz algorytmów genetycznych w

Bardziej szczegółowo

Matematyka kompendium 2

Matematyka kompendium 2 Matematyka kompendium 2 Spis treści Trygonometria Funkcje trygonometryczne Kąt skierowany Kąt skierowany umieszczony w układzie współrzędnych Wartości funkcji trygonometrycznych kątów 30 o, 45 o, 60 o

Bardziej szczegółowo

Wykład Ćwiczenia Laborat orium. Zaliczenie na ocenę. egzamin

Wykład Ćwiczenia Laborat orium. Zaliczenie na ocenę. egzamin Wydział Elektroniki PWr KARTA PRZEDMIOTU Nazwa w języku polskim: Metody matematyczne automatyki i robotyki Nazwa w języku angielskim: Mathematical methods of automation and robotics Kierunek studiów: Automatyka

Bardziej szczegółowo

KADD Minimalizacja funkcji

KADD Minimalizacja funkcji Minimalizacja funkcji Poszukiwanie minimum funkcji Foma kwadratowa Metody przybliżania minimum minimalizacja Minimalizacja w n wymiarach Metody poszukiwania minimum Otaczanie minimum Podział obszaru zawierającego

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Podstawy robotyki Rodzaj przedmiotu: Zaliczenie Język wykładowy:

Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Podstawy robotyki Rodzaj przedmiotu: Zaliczenie Język wykładowy: Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia Przedmiot: Podstawy robotyki Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: MT 1 S 0 6 38-0_1 Rok: III Semestr: 6 Forma studiów:

Bardziej szczegółowo

Algebra z geometrią analityczną zadania z odpowiedziami

Algebra z geometrią analityczną zadania z odpowiedziami Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki opracowanie Spis treści I Wyrażenia algebraiczne, indukcja matematyczna 2 II Geometria analityczna w R 2 4 III Liczby zespolone 5

Bardziej szczegółowo

Ć W I C Z E N I E N R E-7

Ć W I C Z E N I E N R E-7 NSTYTT FYK WYDAŁ NŻYNER PRODKCJ TECHNOOG MATERAŁÓW POTECHNKA CĘSTOCHOWSKA PRACOWNA EEKTRYCNOŚC MAGNETYM Ć W C E N E N R E-7 WYNACANE WSPÓŁCYNNKA NDKCJ WŁASNEJ CEWK . agadnienia do przetudiowania 1. jawiko

Bardziej szczegółowo

Pattern Classification

Pattern Classification Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley & Sons, 2000 with the permission of the authors

Bardziej szczegółowo

BADANIE ZALEŻNOŚCI PRĘDKOŚCI DŹWIĘKU OD TEMPERATURY

BADANIE ZALEŻNOŚCI PRĘDKOŚCI DŹWIĘKU OD TEMPERATURY Ć w i c z e n i e 30 BADANIE ZALEŻNOŚCI PRĘDKOŚCI DŹWIĘKU OD EMPERAURY 30.1 Wtęp teoretyczny 30.1.1. Prędkość dźwięku. Do bardzo rozpowzechnionych proceów makrokopowych należą ruchy określone wpólną nazwą

Bardziej szczegółowo

Filtry aktywne czasu ciągłego i dyskretnego

Filtry aktywne czasu ciągłego i dyskretnego Politechnika Wrocławka czau ciągłego i dykretnego Wrocław 5 Politechnika Wrocławka, w porównaniu z filtrami paywnymi L, różniają ię wieloma zaletami, np. dużą tabilnością pracy, dokładnością, łatwością

Bardziej szczegółowo

Blok 2: Zależność funkcyjna wielkości fizycznych

Blok 2: Zależność funkcyjna wielkości fizycznych Blok : Zależność funkcyjna wielkości fizycznych ZESTAW ZADAŃ NA ZAJĘCIA 1. Na podtawie wykreu oblicz średnią zybkość ciała w opianym ruchu.. Na ryunku przedtawiono wykre v(t) pewnego pojazdu jadącego po

Bardziej szczegółowo

Katedra Systemów Decyzyjnych. Kierownik: prof. dr hab. inż. Zdzisław Kowalczuk ksd@eti.pg.gda.pl

Katedra Systemów Decyzyjnych. Kierownik: prof. dr hab. inż. Zdzisław Kowalczuk ksd@eti.pg.gda.pl Katedra Systemów Decyzyjnych Kierownik: prof. dr hab. inż. Zdzisław Kowalczuk ksd@eti.pg.gda.pl 2010 Kadra KSD profesor zwyczajny 6 adiunktów, w tym 1 z habilitacją 4 asystentów 7 doktorantów Wydział Elektroniki,

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI BUDOWLANYCH

DYNAMIKA KONSTRUKCJI BUDOWLANYCH DYNAMIKA KONSTRUKCJI BUDOWLANYCH Roman Lewandowski Wydawnictwo Politechniki Poznańskiej, Poznań 2006 Książka jest przeznaczona dla studentów wydziałów budownictwa oraz inżynierów budowlanych zainteresowanych

Bardziej szczegółowo

Zadania do rozdziału 3. Zad.3.1. Rozważmy klocek o masie m=2 kg ciągnięty wzdłuż gładkiej poziomej płaszczyzny

Zadania do rozdziału 3. Zad.3.1. Rozważmy klocek o masie m=2 kg ciągnięty wzdłuż gładkiej poziomej płaszczyzny Zadania do rozdziału 3. Zad.3.1. Rozważy klocek o aie kg ciągnięty wzdłuż gładkiej pozioej płazczyzny przez iłę P. Ile wynoi iła reakcji F N wywierana na klocek przez gładką powierzchnię? Oblicz iłę P,

Bardziej szczegółowo

Przykładowy program ćwiczeń

Przykładowy program ćwiczeń Przykładowy program ćwiczeń Ćwiczenie 1. Obliczenie funkcji elementarnych za pomocą szeregów. Opracowanie wyrażeń rekurencyjnych. 3 4 Realizacja w Ecelu funkcji e 1. 1!! 3! 4! Przykład 1: Obliczenie wartości

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra InŜynierii Systemów Sterowania Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra InŜynierii Systemów Sterowania Podstawy Automatyki Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra InŜynierii Systemów Sterowania Podstawy Automatyki Stabilność systemów sterowania kryterium Nyquist a Materiały pomocnicze do ćwiczeń termin

Bardziej szczegółowo

9. DZIAŁANIE SIŁY NORMALNEJ

9. DZIAŁANIE SIŁY NORMALNEJ Część 2 9. DZIŁIE SIŁY ORMLEJ 1 9. DZIŁIE SIŁY ORMLEJ 9.1. ZLEŻOŚCI PODSTWOWE Przyjmiemy, że materiał pręta jet jednorodny i izotropowy. Jeśli ponadto założymy, że pręt jet pryzmatyczny, to łuzne ą wzory

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 2 - Dobór napędów Instytut Automatyki i Robotyki Warszawa, 2015 Wstępny dobór napędu: dane o maszynie Podstawowe etapy projektowania Krok 1: Informacje o kinematyce maszyny Krok 2: Wymagania dotyczące

Bardziej szczegółowo

Wyznaczanie stałej szybkości reakcji wymiany jonowej

Wyznaczanie stałej szybkości reakcji wymiany jonowej Wyznaczanie stałej szybkości reakcji wymiany jonowej Ćwiczenie laboratoryjne nr 4 Elementy termodynamiki i kinetyki procesowej Anna Ptaszek Elementy kinetyki chemicznej Pojęcie szybkości reakcji Pojęcie

Bardziej szczegółowo

Arkusz 6. Elementy geometrii analitycznej w przestrzeni

Arkusz 6. Elementy geometrii analitycznej w przestrzeni Arkusz 6. Elementy geometrii analitycznej w przestrzeni Zadanie 6.1. Obliczyć długości podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos

Bardziej szczegółowo

Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2)

Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Ewa Wołoszko Praca pisana pod kierunkiem Pani dr hab. Małgorzaty Doman Plan tego wystąpienia Teoria Narzędzia

Bardziej szczegółowo

MECHANIKA II. Drgania wymuszone

MECHANIKA II. Drgania wymuszone MECHANIKA II. Drgania wymuszone Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny Daniel Lewandowski (I-19) MECHANIKA II. Drgania wymuszone 1 / 30 Układ drgajacy o jednym stopniu swobody

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: PODSTAWY MODELOWANIA PROCESÓW WYTWARZANIA Fundamentals of manufacturing processes modeling Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności APWiR Rodzaj

Bardziej szczegółowo

Mechanika Robotów. Wojciech Lisowski. 5 Planowanie trajektorii ruchu efektora w przestrzeni roboczej

Mechanika Robotów. Wojciech Lisowski. 5 Planowanie trajektorii ruchu efektora w przestrzeni roboczej Katedra Robotyki i Mechatroniki Akademia Górniczo-Hutnicza w Krakowie Mechanika Robotów Wojciech Lisowski 5 Planowanie trajektorii ruchu efektora w przestrzeni roboczej Mechanika Robotów KRiM, WIMIR, AGH

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e

Bardziej szczegółowo

Podstawy robotyki - opis przedmiotu

Podstawy robotyki - opis przedmiotu Podstawy robotyki - opis przedmiotu Informacje ogólne Nazwa przedmiotu Podstawy robotyki Kod przedmiotu 06.9-WE-AiRP-PR Wydział Kierunek Wydział Informatyki, Elektrotechniki i Automatyki Automatyka i robotyka

Bardziej szczegółowo

D l. D p. Rodzaje baz jezdnych robotów mobilnych

D l. D p. Rodzaje baz jezdnych robotów mobilnych ERO Elementy robotyki 1 Rodzaje baz jezdnych robotów mobilnych Napęd różnicowy dwa niezależnie napędzane koła jednej osi, dla zachowania równowagi dodane jest trzecie koło bierne (lub dwa bierne koła)

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA Wydział Maszyn Roboczych i Transportu

POLITECHNIKA POZNAŃSKA Wydział Maszyn Roboczych i Transportu POLITECHNIKA POZNAŃSKA Wydział Maszyn Roboczych i Transportu PRACA DYPLOMOWA BADANIA I MODELOWANIE PRACY UKŁADU NAPĘDOWEGO SAMOCHODU Z AUTOMATYCZNĄ SKRZYNIĄ BIEGÓW Autor: inŝ. Janusz Walkowiak Promotor:

Bardziej szczegółowo