Sterowanie impedancyjne teoria i podstawy realizacji

Wielkość: px
Rozpocząć pokaz od strony:

Download "Sterowanie impedancyjne teoria i podstawy realizacji"

Transkrypt

1 Sterowae mpedacyje teora podstawy realzacj Edward Jezers, Grzegorz Graos Spotae Kosorcjum RobREx Pozań, 6 weta 013 r. POLITECHNIKA ŁÓDKA

2 Pla wystąpea 1. Impedacja admtacja eletrycza (Przypade wymuszeń susodalych; deale rzeczywste źródła apęcowe prądowe; mpedacja admtacja operatorowa). Eletrycze aalog podstawowych lowych elemetów mechaczych (Podobeństwa pomędzy dyamczym uładam mechaczym eletryczym; aaloga prędość-prąd; aaloga prędość-apęce) 3. Podstawy sterowaa mpedacyjego (Sterowae pozomem źródła jego mpedacją/admtacją; mpedacja łańcucha ematyczego robota; sterowae mpedacyje łańcucha ematyczego) 4. Sterowae mpedacyje jao eodzowe uzupełee sterowaa pozycyjego pozycyjo-słowego. 5. Realzacje sterowaa mpedacyjego apędów robotów

3 Impedacja admtacja eletrycza (1) Impedacja eletrycza jest marą oporu pozorego dwójów zawerających elemety posadające zdolość gromadzea eerg. Pojęce mpedacj jest zwązae z lowym uładam eletryczym podlegającym pobudzeom susodale zmeym. Jeżel częstotlwość pobudzaa uładu jest stała w czase, to quas-ustaloe przebeg czasowe wszystch prądów apęć w obwodze lowym mają róweż charater susodaly. u( t ) U m s( u t ) ( t ) Im s( t ) Do jedozaczego odwzorowywaa tach przebegów mogą być stosowae dwuelemetowe wetory, jeda wygodejsze jest użyce lczb zespoloych. Um Im u( ) exp( ju ) ( ) exp( j ) Prawo Ohma dla staów quas-ustaloych: u( ) ( )( ) ( ) R jx( ) ( )e R rezystacja, X reatacja j( ) 3

4 Impedacja admtacja eletrycza () Twerdzee Theea; Źródła apęcowe deale rzeczywste, a a ) b) mpedacja źródła. ( ) s ( ) ( ) ( u) o ( ) e s ( ) ( u) o ( ) Twerdzee Nortoa; Źródło prądowe deale rzeczywste, a admtacja a) b) źródła. ( ) ( ) ( u) Y o ( ) s ( ) Y s ( ) ( u) Y o ( ) Admtacja dwója (odutacja +susceptacja): Y( ) 1 ( ) G jb( ) 4

5 t L e Aaloge pomędzy uładam eletryczym mechaczym Oscylacyje ułady lowe: C ut 1 LC ( t p e ω m ) u( t )( t ) m p m ( t ) d z(t ) dt f ( t z(t ) 0 Moc chwlowa w uładach eletryczych mechaczych: )( t Isteją dwe możlwośc zdefowaa tych aalog, borąc pod uwagę podobeństwo powyższych wzorów: aaloga prędość-prąd, aaloga prędość-apęce. f t m t ) 5

6 dx t) ( t) dt Aaloga prędość-prąd dq dt ( E 1 m E L 1 L przepływ mea lub parametr mechaczy mea lub parametr eletryczy Prędość (t) Sła f(t) Masa m Współczy sprężystośc Prąd (t) Napęce u(t) Iducyjość L Odwrotość pojemośc 1 / C 6

7 Podstawowe relacje: Aaloga prędość-apęce e( t) Bl( t); f ( t) Bl( t) Welośc mechacze Welośc eletrycze f Iercja d ( t) m dt E 1 m ( t) E J d dt 1 J Pojemość du ( t) C dt 1 E Cu Elastyczość ( t) df c dt E 1 cf ( t) E d c dt 1 c Iducyjość u( t) L E 1 L d dt 7

8 8 Aaloga prędość-apęce - ułady rówoważe () f 1 f f 1 m 1 m m u 1 u u 1 C 1 C C C C 1 u C u L 1 L L 3 f 1 3 m f m 1 m

9 a Sterowae mpedacją Sterowae mpedacyje Def.: Sterowae mpedacyje to otrolowae przeazywaa eerg do odbora przez zmay e tylo pozomu źródła ale róweż jego mpedacj (lub admtacj). b Sterowae admtacją o o s Sterowae Sterowae. e s u o s o Y s u o Yo pozomem apęca pozomem prądu Przyłady uładów eletroczych, w tórych wyorzystywae jest atywe oddzaływae a właścwośc mpedacyje źródła: trazystory polowe, tórych sterowae polega a zmae odutacj aału; trójstaowa brama logcza z wejścem strobującym. 9

10 Impedacja admtacja w robotyce Pojęca mpedacj admtacj w robotyce mogą być rozumae jao bezpośrede przeesee pojęć eletryczych.. Uwag: mapulator jest dyamczym obetem elowym, moża mówć jedye o loalej mpedacj lub admtacj mechaczej (zachodz potrzeba learyzacj lub dośwadczalego wyzaczea parametrów) mapulator jest obetem operującym w przestrze, ależy posługwać sę pojęcam macerzy mpedacj (admtacj). defcja tych pojęć zależy od wyboru aalog pomędzy uładam mechaczym a eletryczym. Rówaa defcyje mpedacj admtacj oparte o trasformaty wetorów prędośc artezjańsch efetora uogóloych sł, przy stosowau aalog prędość-apęce: x x f x f Y x x x 10

11 Problemy występujące przy sterowau pozycyjo-słowym Przy pratyczych realzacjach sterowaa hybrydowego mogą wystąpć olzje mechacze lub establośc otatu efetora z elemetam otoczea. Podstawowe przyczyy: edoładośc w oszacowau położea efetora względem elemetów otoczea, zmaa właścwośc dyamczych mapulatora po dojścu efetora do sztywej powerzch, opóźea czasowe w torze regulacj. a b c X X X 11

12 Pasywe sterowae podate (1) Wszyste te eprawdłowośc mają mejsze zacze w mapulatorach, tóre charateryzują sę zmejszoą podatoścą łańcucha ematyczego. x Podatość w -tym eruu:, przy x 0 x 0. f Sztywość w -tym eruu: 1 Pasywe elemety pośrede służące do otrolowaego powęszaa podatośc łańcucha ematyczego (elastycze przeład, tłum): Y Y Modele do aalzy staów przejścowych: a p (t) m f (t) b f c m o X 1 X 1 1 Y b C G (t) u p (t) L Co 1 Y 1 X 1 X 1

13 Pasywe sterowae podate () Elemety podate mogą być taże umeszczae bezpośredo w zespołach apędowych. Przyłady słowów z szeregowym elemetam podatym frmy Yobotcs: a) eletryczy b) hydraulczy przełada śrubowo-tocza sl zespół spręży wyjśce 13

14 Od sterowaa pozycyjego do sterowaa mpedacyjego robotów Impedacja wyjścowa robota Sterowae pozycyje Pasywe sterowae podate Sterowae mpedacyje Sterowae słowe Blo sterowaa Sterowae mpedacyje = atywe sterowae podate; wpływae a ompoety mpedacj źródeł apędu. 14

15 astosowae sterowaa mpedacyjego w robotyce Obszary zastosowań: testowae właścwośc otoczea robota; wspóla realzacja operacj przez grupę robotów; roboty dwuręcze; roboty rehabltacyje; roboty usługowe współpracujące z człoweem; roboty roczące, begające saczące. maa mpedacj powoduje zmaę częstotlwośc aturalych oscylacj łańcucha ematyczego zachowae płyośc ruchów. Przyład aplacj - RABBIT (Cheallerau, Abba ; 003): a b 15

16 Realzacja sterowaa mpedacyjego robotów Realzacja sterowaa mpedacyjego robotów polega a odpowedm sterowau zespołów apędowych. Najprostsze jest sterowae mpedacyje apędów, tóre charateryzują sę aturalą podatoścą. Dobrym przyładem są słow peumatycze lub męśe peumatycze. Wówczas możemy mówć o parametryczej regulacj mpedacj zespołu apędowego. Sterowae mpedacyje apędów eletryczych jest zacze trudejsze. Do jego realzacj trzeba stosować uład regulacj sztywośc apędu (zwyle z slem PMDC lub PMAC). Mus o w trybe o-le przetwarzać formacje o atualej prędośc ruchu obrotowego sla wytwarzaym momece apędowym oraz odpowedo geerować fale PWM zaslające poszczególe uzwojea fazowe sla. 16

17 Dyama apędu peumatyczego m d dt x f ( t ) p 1 A 1 p A f fr p p 1 p1v V 1 1 pv V RT1m V 1 RT V 1 m Przyblżoe właścwośc spręży peumatyczych w otoczeu ustaloego putu pracy: f x) f ( )( x x ) p( po 1o o o d( p p ) 1o o 1o Wzrost pozomu cśea powoduje usztywee apędu oraz wzrost tarca. meae są jedocześe dwa spośród trzech ompoetów mpedacj apędu. may sztywośc mają dość ograczoy zares. 17 o

18 Sterowae mpedacyje apędów eletryczych (1) Idea metody wywodz sę z aalzy uładów zbudowaych w oparcu o wzmacacze operacyje. a ) u + - b ) o o u u o + - o o u o R a ) b ) u s s u o o u, u, R Y s s 0 0 Sterowae apęcowo ułady z WO o wyjścach a) apęcowym; b) prądowym. a ) b ) u + - o u o o u + - R c o u o o c R R Uład o wyjścu apęcowo-prądowym przełączaym a) soowo; b) w sposób płyy 18

19 Sterowae mpedacyje apędów eletryczych () + u o u sp u o o u - u sp Sumator wagowy o o e s u s Y s a ) 0, 0 s 0 b) 0, 0 s + +E u o Ilustracja przepływu prądu do obcążea, powodującego straty mocy w WO. u - u sp -E Sumator wagowy o o 19

20 Sterowae mpedacyje apędów eletryczych (3) Cel sterowaa Sterow adrzędy os robota estaw trazystorów łączowych pożądaa mpedacja pożąday pozom Sterow mpedacyjy T1 D1 T D T3 D3 U ~ Prostow u p C p A T4 D4 B T5 D5 C D T6 6 Jedosta logcza a ( t ) PM AC b ( t ) c ( t ) prądy fazowe położee wra prędość Jedosta pomarowa astosowae metody modulacj szeroośc mpulsów zmejsza straty eerg źródła. Przeształt oraz sterow wprowadzają opóźea czasowe, spowalające szybość zma mpedacj apędu w porówau do uładów parametryczej regulacj mpedacj. 0

21 Uwag ogóle 1. W robotyce wygodym jest posługwae sę pojęcam mpedacj oraz admtacj przeesoym z obszaru żyer eletryczej.. Sterowae mpedacyje może być rozumae jao sta pośred pomędzy sterowaem pozycyjym a słowym. Pozwala a łagodą trazycję pomędzy tym dwoma lasyczym sposobam sterowaa efetora robota.. 3. Natura dowodła, że sterowae mpedacyje jest eodzowe, zapewa bezpeczeństwo ruchu zwęsza efetywość eergetyczą chodu/begu. 4. Realzacja pożądaej mpedacj apędu peumatyczego jest stosuowo prosta, jeda powoduje duże straty eerg. 5. Realzacja sterowaa mpedacyjego robotów wyposażoych w apędy eletrycze sprowadza sę do otrolowaa w czase rzeczywstym relacj prędość-momet apędowy sla. 1

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

Pomiary parametrów napięć i prądów przemiennych

Pomiary parametrów napięć i prądów przemiennych Ćwczee r 3 Pomary parametrów apęć prądów przemeych Cel ćwczea: zapozae z pomaram wartośc uteczej, średej, współczyków kształtu, szczytu, zekształceń oraz mocy czyej, berej, pozorej współczyka cosϕ w obwodach

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechia Warszawsa Wydział Samochodów i Maszy Roboczych Istytut Podstaw Budowy Maszy Załad Mechaii http://www.ipbm.simr.pw.edu.pl/ Teoria maszy i podstawy automatyi semestr zimowy 206/207 dr iż. Sebastia

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechia Warszawsa Wydział Samochodów i Maszy Roboczych Istytut Podstaw Budowy Maszy Załad Mechaii http://www.ipbm.simr.pw.edu.pl/ Teoria maszy i podstawy automatyi semestr zimowy 07/08 dr iż. Sebastia

Bardziej szczegółowo

BADANIE UKŁADÓW ZAWIERAJĄCYCH WZMACNIACZE OPERACYJNE

BADANIE UKŁADÓW ZAWIERAJĄCYCH WZMACNIACZE OPERACYJNE ADANI UKŁADÓW ZAWIAJĄCYCH WZMACNIACZ OPACYJN CL ĆWICZNIA: Pozae zasady dzałaa wzmacacza operacyjego w zakrese skch częstotlwośc. Aalza kładów zawerających wzmacacze operacyje pracjące w zakrese lowym elowym.

Bardziej szczegółowo

Analiza Matematyczna Ćwiczenia. J. de Lucas

Analiza Matematyczna Ćwiczenia. J. de Lucas Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y

Bardziej szczegółowo

ELEKTROTECHNIKA. Obwody elektryczne. Elementy obwodu elektrycznego. Elementy obwodu elektrycznego. Elementy obwodu elektrycznego.

ELEKTROTECHNIKA. Obwody elektryczne. Elementy obwodu elektrycznego. Elementy obwodu elektrycznego. Elementy obwodu elektrycznego. ELEKOEHNK Q Q rąd elerycy płye w obwode amęym Źródło eerg Wyład Obwody eleryce Zespół elemeów prewodących prąd, awerający pryajmej jedą drogę amęą dla prepływ prąd W elemeach obwod elerycego achodą procesy

Bardziej szczegółowo

STATYKA. Cel statyki. Prof. Edmund Wittbrodt

STATYKA. Cel statyki. Prof. Edmund Wittbrodt STATYKA Cel statyk Celem statyk jest zastąpee dowolego układu sł ym, rówoważym układem sł, w tym układem złożoym z jedej tylko sły jedej pary sł (redukcja do sły mometu główego) lub zbadae waruków, jake

Bardziej szczegółowo

Analiza spektralna stóp zwrotu z inwestycji w akcje

Analiza spektralna stóp zwrotu z inwestycji w akcje Nasz rye aptałowy, 003 r3, str. 38-43 Joaa Góra, Magdalea Osńsa Katedra Eoometr Statysty Uwersytet Mołaja Kopera w Toruu Aalza spetrala stóp zwrotu z westycj w acje. Wstęp Agregacja w eoom eoometr bywa

Bardziej szczegółowo

Wykłady z Analizy rzeczywistej i zespolonej w Matematyce stosowanej. Literatura. W. Rudin: Podstawy analizy matematycznej, PWN, Warszawa, 1982.

Wykłady z Analizy rzeczywistej i zespolonej w Matematyce stosowanej. Literatura. W. Rudin: Podstawy analizy matematycznej, PWN, Warszawa, 1982. Wyłady z Aalzy rzeczywstej zespoloej w Matematyce stosowaej Lteratura W Rud: Podstawy aalzy matematyczej, PWN, Warszawa, 1982 W Rud: Aalza rzeczywsta zespoloa, PZWS, Warszawa, 1986 W Szabat: Wstęp do aalzy

Bardziej szczegółowo

Wykład II. ELEMENTY I PODSTAWOWE UKŁADY REZYSTANCYJNE

Wykład II. ELEMENTY I PODSTAWOWE UKŁADY REZYSTANCYJNE . Wprowadzee 7 Wyład. ELEMENTY PODTAWOWE KŁADY EZYTANCYJNE Poe eetrycze przepływowe Jeś zewętrze źródło poa eetryczego wymusza uporządoway ruch (przepływ) ładuów w cee przewodzącym, czy odpływ z ego jedych

Bardziej szczegółowo

Laboratorium z Biomechatroniki Ćwiczenie 3 Wyznaczanie położenia środka masy ciała człowieka za pomocą dźwigni jednostronnej

Laboratorium z Biomechatroniki Ćwiczenie 3 Wyznaczanie położenia środka masy ciała człowieka za pomocą dźwigni jednostronnej Wydzał: Mechaczy Techologczy Keruek: Grupa dzekańska: Semestr: perwszy Dzeń laboratorum: Godza: Laboratorum z Bomechatrok Ćwczee 3 Wyzaczae położea środka masy cała człoweka za pomocą dźwg jedostroej 1.

Bardziej szczegółowo

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X PERMUTACJE Permutacą zboru -elemetowego X azywamy dowolą wzaeme edozaczą fucę f : X X f : X X Przyład permutac X = { a, b, c, d } f (a) = d, f (b) = a, f (c) = c, f (d) = b a b c d Zaps permutac w postac

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Iducja matematycza Twerdzee. zasada ducj matematyczej Nech T ozacza pewą tezę o lczbe aturalej. Jeżel dla pewej lczby aturalej 0 teza T 0 jest prawdzwa dla ażdej lczby aturalej 0 z prawdzwośc tezy T wya

Bardziej szczegółowo

BRYŁA SZTYWNA. Zestaw foliogramów. Opracowała Lucja Duda II Liceum Ogólnokształcące w Pabianicach

BRYŁA SZTYWNA. Zestaw foliogramów. Opracowała Lucja Duda II Liceum Ogólnokształcące w Pabianicach BRYŁA SZTYWNA Zestaw fologamów Opacowała Lucja Duda II Lceum Ogólokształcące w Pabacach Pabace 003 Byłą sztywą azywamy cało, któe e defomuje sę pod wpływem sł zewętzych. Poszczególe częśc były sztywej

Bardziej szczegółowo

T. Hofman, Wykłady z Termodynamiki technicznej i chemicznej, Wydział Chemiczny PW, kierunek: Technologia chemiczna, sem.

T. Hofman, Wykłady z Termodynamiki technicznej i chemicznej, Wydział Chemiczny PW, kierunek: Technologia chemiczna, sem. . Hofma Wyłady z ermodyam techczej chemczej Wydzał Chemczy PW erue: echologa chemcza sem.3 215/216 WYKŁAD 3-4. D. Blase reatorów chemczych E. II zasada termodyam F. Kosewecje zasad termodyam D. BILANE

Bardziej szczegółowo

UWAGI O BILANSIE MASY I PĘDU W GRADIENTOWEJ TERMOMECHANICE

UWAGI O BILANSIE MASY I PĘDU W GRADIENTOWEJ TERMOMECHANICE ROCZNIKI INŻYNIERII BUDOWLANEJ ZEZYT 15/2015 Komsa Iżyer Budowlae Oddzał Polse Aadem Nau w Katowcach UWAGI O BILANIE MAY I PĘDU W GRADIENTOWEJ TERMOMECHANICE Ja KUBIK Wydzał Budowctwa Archtetury, Poltecha

Bardziej szczegółowo

OBLICZANIE GEOMETRYCZNYCH MOMENTÓW BEZWŁADNOŚCI FIGUR PŁASKICH, TWIERDZENIE STEINERA LABORATORIUM RACHUNKOWE

OBLICZANIE GEOMETRYCZNYCH MOMENTÓW BEZWŁADNOŚCI FIGUR PŁASKICH, TWIERDZENIE STEINERA LABORATORIUM RACHUNKOWE OBLICZNIE GEOMETRYCZNYCH MOMENTÓW BEZWŁDNOŚCI FIGUR PŁSKICH, TWIERDZENIE STEINER LBORTORIUM RCHUNKOWE Prz oblczeach wtrzmałoścowch dotczącch ektórch przpadków obcążea (p. zgae) potrzeba jest zajomość pewch

Bardziej szczegółowo

Urządzenia wejścia-wyjścia

Urządzenia wejścia-wyjścia Urządzea wejśca-wyjśca Urządzea wejśca-wyjśca Darusz Wawrzyak Pla wykładu Klasyfkacja ń wejśca-wyjśca Struktura mechazmu wejśca-wyjśca (sprzętu oprogramowaa) Iterakcja jedostk cetralej z am wejścawyjśca

Bardziej szczegółowo

Typ może być dowolny. //realizacja funkcji zamiana //przestawiajacej dwa elementy //dowolnego typu void zamiana(int &A, int &B) { int t=a; A=B; B=t; }

Typ może być dowolny. //realizacja funkcji zamiana //przestawiajacej dwa elementy //dowolnego typu void zamiana(int &A, int &B) { int t=a; A=B; B=t; } Idea: Wyzaczamy ameszy elemet w cągu tablcy zameamy go mescam z elemetem perwszym, astępe z pozostałego cągu wyberamy elemet ameszy ustawamy go a druge mesce tablcy zmeamy, td. Realzaca w C++ vod seleca

Bardziej szczegółowo

PRZETWORNIKI C/A 1. STRUKTURA PRZETWORNIKA C/A

PRZETWORNIKI C/A 1. STRUKTURA PRZETWORNIKA C/A PZETWON C/A. STTA PZETWONA C/A. PZETWON C/A NAPĘCOWE.. PZETWON NAPĘCOWE Z DZELNEM NAPĘCOWYM WYJŚCEM NAPĘCOWYM... Przetwori C/A z drabią rówoległą Deoder z N N N wy stawieia przełącziów dla sytuacji, gdy

Bardziej szczegółowo

Olejowe śrubowe sprężarki powietrza. Seria R55-75kW

Olejowe śrubowe sprężarki powietrza. Seria R55-75kW Olejowe śrubowe sprężark powetrza Sera R55-75kW Nowy pozom ezawodośc, efektywośc wydajośc Śrubowe sprężark powetrza ser R frmy Igersoll Rad to połączee ajlepszych, sprawdzoych kostrukcj techolog z owym,

Bardziej szczegółowo

Pomiary podstawowych wielkości elektrycznych prądu stałego i przemiennego

Pomiary podstawowych wielkości elektrycznych prądu stałego i przemiennego aład Napędów Wieloźródłowych stytut Maszy oboczych ięŝich PW aboratorium Eletrotechii i Eletroii Ćwiczeie P - istrucja Pomiary podstawowych wielości eletryczych prądu stałego i przemieego Data wyoaia ćwiczeia...

Bardziej szczegółowo

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację.

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację. Wrażlwość oblgacj Jedym z czyków ryzyka westowaa w oblgacje jest zmeość rykowych stóp procetowych. Iżyera fasowa dyspouje metodam pozwalającym zabezpeczyć portfel przed egatywym skutkam zma stóp procetowych.

Bardziej szczegółowo

Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych. Materiał ilustracyjny do przedmiotu. (Cz. 2)

Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych. Materiał ilustracyjny do przedmiotu. (Cz. 2) Poltechnka Wrocławska nstytut Maszyn, Napędów Pomarów Elektrycznych Materał lustracyjny do przedmotu EEKTOTEHNKA (z. ) Prowadzący: Dr nż. Potr Zelńsk (-9, A10 p.408, tel. 30-3 9) Wrocław 005/6 PĄD ZMENNY

Bardziej szczegółowo

Wybrane zagadnienia obliczania zwarć w systemie elektroenergetycznym

Wybrane zagadnienia obliczania zwarć w systemie elektroenergetycznym Systemy eletroeergetycze Wyład_12 Wybrae zagadea oblczaa zwarć w systeme eletroeergetyczym Opracował: : Jausz Broże Katedra Eletrotech Eletroeergety AGH Lteratura 1. Bajore J.: Podstawy eletroeergety termoety.

Bardziej szczegółowo

Wykład 3 : Podstawowe prawa, twierdzenia i reguły Teorii Obwodów

Wykład 3 : Podstawowe prawa, twierdzenia i reguły Teorii Obwodów OBWODY SYNAŁY Wyład 3 : Podstawowe prawa, twierdzeia i reguły Teorii Obwodów 3. PODSTAWOWE PAWA TWEDZENA TEO OBWODÓW 3.. SCHEMAT DEOWY OBWOD Schematem ideowym obwodu (siecią) azywamy graficze przedstawieie

Bardziej szczegółowo

ROZDZIAŁ 3. Elektrotechnika podstawowa 41

ROZDZIAŁ 3. Elektrotechnika podstawowa 41 Eletrotechia podstawowa 4 OZDZAŁ 3 Elemety obwodów prądu stałego Na początu objaśioo owecje strzałowaia prądu i apięcia w elemetach obwodu oraz przypomiao prawa fizycze dotyczące obwodów eletryczych. odstawowymi

Bardziej szczegółowo

Planowanie eksperymentu pomiarowego I

Planowanie eksperymentu pomiarowego I POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak

Bardziej szczegółowo

Instalacje i Urządzenia Elektryczne Automatyki Przemysłowej. Modernizacja systemu chłodzenia Ciągu Technologicznego-II część elektroenergetyczna

Instalacje i Urządzenia Elektryczne Automatyki Przemysłowej. Modernizacja systemu chłodzenia Ciągu Technologicznego-II część elektroenergetyczna stalacje i Urządzeia Eletrycze Automatyi Przemysłowej Moderizacja systemu chłodzeia Ciągu echologiczego- część eletroeergetycza Wyoali: Sebastia Marczyci Maciej Wasiuta Wydział Eletryczy Politechii Szczecińsiej

Bardziej szczegółowo

Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM

Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM Aademia GórniczoHutnicza im. St. Staszica w Kraowie Wydział Inżynierii Mechanicznej i Robotyi Katedra Automatyzacji Procesów Podstawy Automatyi Zbiór zadań dla studentów II rou AiR oraz MiBM Tomasz Łuomsi

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzee macerzowe werdzee: Dla dwóch macerzy A B o tych samych wymarach zachodz: ( ) ( ) wersz a) R A R B A ~ B Dowód: wersz a) A ~ B stee P taka że PA B 3 0 A 4 3 0 0 E A B 0 0 0 E B 3 6 4 0 0 0

Bardziej szczegółowo

Wyrażanie niepewności pomiaru

Wyrażanie niepewności pomiaru Wyrażae epewośc pomaru Adrzej Kubaczyk Wydzał Fzyk, Poltechka Warszawska Warszawa, 05 Iformacje wstępe Każdy pomar welkośc fzyczej dokoyway jest ze skończoą dokładoścą, co ozacza, że wyk tego pomaru dokoyway

Bardziej szczegółowo

INSTYTUT ŁĄCZNOŚCI PAŃSTWOWY INSTYTUT BADAWCZY. Zakład Teletransmisji i Technik Optycznych (Z-14)

INSTYTUT ŁĄCZNOŚCI PAŃSTWOWY INSTYTUT BADAWCZY. Zakład Teletransmisji i Technik Optycznych (Z-14) INSTYTUT ŁĄCZNOŚCI PAŃSTWOWY INSTYTUT BADAWCZY Załad Teletrasmsj Tech Optyczych (Z-4) Aalza badaa efetów zachodzących w śwatłowodowym medum trasmsyjym degradujących jaość trasmsj w systemach DWDM o dużej

Bardziej szczegółowo

ZARYS METODY OCENY TRWAŁOSCI I NIEZAWODNOSCI OBIEKTU Z UWZGLEDNIENIEM CZYNNIKA LUDZKIEGO I PŁASZCZYZNY LICZB ZESPOLONYCH

ZARYS METODY OCENY TRWAŁOSCI I NIEZAWODNOSCI OBIEKTU Z UWZGLEDNIENIEM CZYNNIKA LUDZKIEGO I PŁASZCZYZNY LICZB ZESPOLONYCH Zdzsław IDZIASZEK 1 Mechatrocs ad Avato Faculty Mltary Uversty of Techology, 00-908 Warsaw 49, Kalskego street r zdzaszek@wat.edu.pl Norbert GRZESIK Avato Faculty Polsh Ar Force Academy, 08-51 Dębl, Dywzjou

Bardziej szczegółowo

Termodynamika defektów sieci krystalicznej

Termodynamika defektów sieci krystalicznej Termodyamika defektów sieci krystaliczej Defekty sieci krystaliczej puktowe (wakasje, atomy międzywęzłowe, obce atomy) jedowymiarowe (dyslokacje krawędziowe i śrubowe) dwuwymiarowe (graice międzyziarowe,

Bardziej szczegółowo

Zmiana bazy i macierz przejścia

Zmiana bazy i macierz przejścia Auomaya Roboya Algebra -Wyład - dr Adam Ćmel cmel@agh.edu.pl Zmaa bazy macerz prześca Nech V będze wymarową przesrzeą lową ad całem K. Nech Be e będze bazą przesrze V. Rozważmy ową bazę B e... e. Oczywśce

Bardziej szczegółowo

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = = 4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ. W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT.. Zagadee trasportowe w postac tablcy Z m puktów (odpowedo A,...,A m ) wysyłamy edorody produkt w loścach a,...,a m do puktów odboru (odpowedo B,...,B ), gdze est odberay w

Bardziej szczegółowo

Równania rekurencyjne

Równania rekurencyjne Rówaa reurecyje Ja stosować do przelczaa obetów obatoryczych? zaleźć zwąze reurecyjy, oblczyć la początowych wartośc, odgadąć ogóly wzór, tóry astępe udowaday stosując ducję ateatyczą. W etórych przypadach,

Bardziej szczegółowo

WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ

WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ 9 Cel ćwczea Ćwczee 9 WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANE PODCZAS ZDERZENIA CIAŁ Celem ćwczea jest wyzaczee wartośc eerg rozpraszaej podczas zderzea cał oraz współczyka restytucj charakteryzującego

Bardziej szczegółowo

Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07)

Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07) Wyład 9 Fizya 1 (Informatya - EEIiA 006/07) 9 11 006 c Mariusz Krasińsi 006 Spis treści 1 Ruch drgający. Dlaczego właśnie harmoniczny? 1 Drgania harmoniczne proste 1.1 Zależność między wychyleniem, prędością

Bardziej szczegółowo

POMIAR WSPÓŁCZYNNIKA POCHŁANIANIA PROMIENIOWANIA γ

POMIAR WSPÓŁCZYNNIKA POCHŁANIANIA PROMIENIOWANIA γ Ćwczee 56 POMIAR WSPÓŁCZYNNIKA POCHŁANIANIA PROMIENIOWANIA γ 56.. Wadomośc ogóle Rozpatrzmy wąską skolmowaą wązkę prome γ o atężeu I 0, padającą a płytkę substacj o grubośc x (rys. 56.). Natężee promeowaa

Bardziej szczegółowo

Wyższe momenty zmiennej losowej

Wyższe momenty zmiennej losowej Wyższe momety zmieej losowej Deiicja: Mometem m rzędu azywamy wartość oczeiwaą ucji h( dla dysretej zm. losowej oraz ucji h( dla ciągłej zm. losowej: m E P m E ( d Deiicja: Mometem cetralym µ rzędu dla

Bardziej szczegółowo

ELEMENTY TEORII MOŻLIWOŚCI

ELEMENTY TEORII MOŻLIWOŚCI ELEMENTY TEORII MOŻLIWOŚCI Opracował: M. Kweselewcz Zadeh (978) wprowadzł pojęce rozkładu możlwośc jako rozmyte ograczee, kóre odzaływuje w sposób elastyczy a wartośc przypsae daej zmeej. Defcja. Nech

Bardziej szczegółowo

n k n k ( ) k ) P r s r s m n m n r s r s x y x y M. Przybycień Rachunek prawdopodobieństwa i statystyka

n k n k ( ) k ) P r s r s m n m n r s r s x y x y M. Przybycień Rachunek prawdopodobieństwa i statystyka Wyższe momety zmieej losowej Deiicja: Mometem m rzędu azywamy wartość oczeiwaą ucji h() dla dysretej zm. losowej oraz ucji h() dla ciągłej zm. losowej: m E P m E ( ) d Deiicja: Mometem cetralym µ rzędu

Bardziej szczegółowo

POLSKA FEDERACJA STOWARZYSZEŃ RZECZOZNAWCÓW MAJĄTKOWYCH POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) KRAJOWY STANDARD WYCENY SPECJALISTYCZNY NR 4 KSWS 4

POLSKA FEDERACJA STOWARZYSZEŃ RZECZOZNAWCÓW MAJĄTKOWYCH POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) KRAJOWY STANDARD WYCENY SPECJALISTYCZNY NR 4 KSWS 4 POZECHNE KRAJOE ZAADY YCENY (PKZ) KRAJOY TANDARD YCENY PECJALITYCZNY NR 4 K 4 YCENA ŁUŻEBNOŚCI PRZEYŁU I OKREŚLANIE KOTY YNAGRODZENIA ZA BEZUMONE KORZYTANIE Z NIERUCHOMOŚCI PRZY INETYCJACH LINIOYCH 1.

Bardziej szczegółowo

Wykład FIZYKA II. 4. Indukcja elektromagnetyczna. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 4. Indukcja elektromagnetyczna.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 4. Indukcja elektromagnetyczna Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ PRAWO INDUKCJI FARADAYA SYMETRIA W FIZYCE

Bardziej szczegółowo

Sterowanie optymalne statkiem w obszarze ze zmiennym prądem problem czasooptymalnej marszruty. Zenon Zwierzewicz

Sterowanie optymalne statkiem w obszarze ze zmiennym prądem problem czasooptymalnej marszruty. Zenon Zwierzewicz Sterowae otymale statem w obszarze ze zmeym rądem roblem czasootymalej marszrty Zeo Zwerzewcz Szczec Zeo Zwerzewcz Sterowae otymale statem w obszarze ze zmeym rądem roblem czasootymalej marszrty W artyle

Bardziej szczegółowo

PŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej

PŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej PŁAKA GEOMETRIA MA Środek cężkośc fgury płaskej Mometam statyczym M x M y fgury płaskej względem os x lub y (rys. 7.1) azywamy gracę algebraczej sumy loczyów elemetarych pól d przez ch odległośc od os,

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fasowy gospodark Zajęca r 7 Krzywa retowośc, zadaa (mat. f.), marża w hadlu, NPV IRR, Ustawa o kredyce kosumeckm, fukcje fasowe Excela Krzywa retowośc (dochodowośc) Yeld Curve Krzywa ta jest grafczym

Bardziej szczegółowo

Średnia arytmetyczna Klasyczne Średnia harmoniczna Średnia geometryczna Miary położenia inne

Średnia arytmetyczna Klasyczne Średnia harmoniczna Średnia geometryczna Miary położenia inne Mary położea Średa arytmetycza Klasycze Średa harmocza Średa geometrycza Mary położea e Modala Kwartyl perwszy Pozycyje Medaa (kwartyl drug) Kwatyle Kwartyl trzec Decyle Średa arytmetycza = + +... + 2

Bardziej szczegółowo

Bajki kombinatoryczne

Bajki kombinatoryczne Artyuł powstał a podstawe odczytu pod tym samym tytułem, wygłoszoego podczas XXXVI Szoły Matematy Poglądowej Pomysł czy rachue? w Grzegorzewcach, styczeń 006. Baj ombatorycze Joaa JASZUŃSKA, Warszawa Ja

Bardziej szczegółowo

GEODEZJA INŻYNIERYJNA SEMESTR 6 STUDIA NIESTACJONARNE

GEODEZJA INŻYNIERYJNA SEMESTR 6 STUDIA NIESTACJONARNE GEODEZJ INŻNIERJN SEMESTR 6 STUDI NIESTCJONRNE CZNNIKI WPŁWJĄCE N GEOMETRIĘ UDNKU/OIEKTU Zmaę geometr budyku mogą powodować m.: czyk atmosferycze, erówomere osadae płyty fudametowej mogące skutkować wychyleem

Bardziej szczegółowo

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwczena: BADANIE POPRAWNOŚCI OPISU STANU TERMICZNEGO POWIETRZA PRZEZ RÓWNANIE

Bardziej szczegółowo

Korekta do instrukcji obsługi , , ,

Korekta do instrukcji obsługi , , , Techka apędowa \ Automatyka apędowa \ Itegracja systemów \ Serwsy Korekta do strukcj obsług 19373201, 19372809, 19373600, 19374003 Mechatroczy układ apędowy MOVIGEAR MGF..4/XT Wersja ze zwększoym mometem

Bardziej szczegółowo

Ćwiczenie E03IN. Charakterystyki tranzystorów: bipolarnego (npn) w układzie WE i unipolarnego (z kanałem typu n) Laboratorium elektroniki

Ćwiczenie E03IN. Charakterystyki tranzystorów: bipolarnego (npn) w układzie WE i unipolarnego (z kanałem typu n) Laboratorium elektroniki Laboratorum elektrok Ćwczee E03IN Charakterystyk trazystorów: bpolarego (p) w układze WE upolarego (z kaałem typu ) Wersja. (4 marca 09) Sps treśc:. Cel ćwczea... 3. Zagrożea... 3 3. Wprowadzee teoretycze...

Bardziej szczegółowo

JEDNOWYMIAROWA ZMIENNA LOSOWA

JEDNOWYMIAROWA ZMIENNA LOSOWA JEDNOWYMIAROWA ZMIENNA LOSOWA Nech E będze zborem zdarzeń elemetarych daego dośwadczea. Fucję X(e) przyporządowującą ażdemu zdarzeu elemetaremu e E jedą tylo jedą lczbę X(e)=x azywamy ZMIENNĄ LOSOWĄ. Przyład:

Bardziej szczegółowo

Wykład lutego 2016 Krzysztof Korona. Wstęp 1. Prąd stały 1.1 Podstawowe pojęcia 1.2 Prawa Ohma Kirchhoffa 1.3 Przykłady prostych obwodów

Wykład lutego 2016 Krzysztof Korona. Wstęp 1. Prąd stały 1.1 Podstawowe pojęcia 1.2 Prawa Ohma Kirchhoffa 1.3 Przykłady prostych obwodów Wykład Obwody prądu stałego zmennego 9 lutego 6 Krzysztof Korona Wstęp. Prąd stały. Podstawowe pojęca. Prawa Ohma Krchhoffa.3 Przykłady prostych obwodów. Prąd zmenny. Podstawowe elementy. Obwody L.3 mpedancja.4

Bardziej szczegółowo

Niepewności pomiarów. DR Andrzej Bąk

Niepewności pomiarów. DR Andrzej Bąk Nepewośc pomarów DR Adrzej Bąk Defcje Błąd pomar - różca mędz wkem pomar a wartoścą merzoej welkośc fzczej. Bwa też azwa błędem bezwzględm pomar. Poeważ wartość welkośc merzoej wartość prawdzwa jest w

Bardziej szczegółowo

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = = 4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ ). W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,

Bardziej szczegółowo

Układ sterowania górniczego wielosilnikowego przenośnika taśmowego

Układ sterowania górniczego wielosilnikowego przenośnika taśmowego dr ż. ARIAN HYLA Poltechka Śląska Katedra Eergoelektrok, Napędu Elektryczego Robotyk Układ sterowaa górczego weloslkowego przeośka taśmowego W artykule przedstawoo kocepcję realzację praktyczą układu sterowaa

Bardziej szczegółowo

EA3 Silnik komutatorowy uniwersalny

EA3 Silnik komutatorowy uniwersalny Akademia Góriczo-Huticza im.s.staszica w Krakowie KAEDRA MASZYN ELEKRYCZNYCH EA3 Silik komutatorowy uiwersaly Program ćwiczeia 1. Oględziy zewętrze 2. Pomiar charakterystyk mechaiczych przy zasilaiu: a

Bardziej szczegółowo

Kier. MTR Programowanie w MATLABie Laboratorium Ćw. 12

Kier. MTR Programowanie w MATLABie Laboratorium Ćw. 12 Ker. MTR Programowane w MATLABe Laboratorum Ćw. Analza statystyczna grafczna danych pomarowych. Wprowadzene MATLAB dysponuje weloma funcjam umożlwającym przeprowadzene analzy statystycznej pomarów, czy

Bardziej szczegółowo

( ) + ( ) T ( ) + E IE E E. Obliczanie gradientu błędu metodą układu dołączonego

( ) + ( ) T ( ) + E IE E E. Obliczanie gradientu błędu metodą układu dołączonego Obliczanie gradientu błędu metodą uładu dołączonego /9 Obliczanie gradientu błędu metodą uładu dołączonego Chodzi o wyznaczenie pochodnych cząstowych funcji błędu E względem parametrów elementów uładu

Bardziej szczegółowo

Permutacje. } r ( ) ( ) ( ) 1 2 n. f = M. Przybycień Matematyczne Metody Fizyki I Wykład 2-2

Permutacje. } r ( ) ( ) ( ) 1 2 n. f = M. Przybycień Matematyczne Metody Fizyki I Wykład 2-2 Permutacje { 2,,..., } Defcja: Permutacją zboru lczb azywamy dowolą różowartoścową fukcję określoą a tym zborze o wartoścach w tym zborze. Uwaga: Lczba wszystkch permutacj wyos! Permutacje zapsujemy w

Bardziej szczegółowo

TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA

TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA Ćwczee 8 TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA 8.. Cel ćwczea Celem ćwczea jest wyzaczee statyczego współczyka tarca pomędzy walcową powerzchą cała a opasującą je lą. Poadto a drodze eksperymetalej

Bardziej szczegółowo

Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy

Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy Wyład 7 Przestrzeie metrycze zwarte Defiicja 8 (przestrzei zwartej i zbioru zwartego Przestrzeń metryczą ( ρ X azywamy zwartą jeśli ażdy ciąg elemetów tej przestrzei posiada podciąg zbieży (do putu tej

Bardziej szczegółowo

PRZYKŁADOWE TEMATY ZADAŃ PROJEKTOWYCH

PRZYKŁADOWE TEMATY ZADAŃ PROJEKTOWYCH PRZYKŁADOWE TEMATY ZADAŃ PROJEKTOWYCH Z PRZEDMIOTU SZTUCZNA INTELIGENCJA DLA ISD. Zrealzować uład terowaa w oparcu o logę rozytą dla jedego z atępujących odel obetów. Wyorzytać paet arzędzowy Fuzzy Logc

Bardziej szczegółowo

( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił

( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił 3.7.. Reducja dowolego uładu sił do sił i par sił Dowolm uładem sił będiem awać uład sił o liiach diałaia dowolie romiescoch w prestrei. tm pucie ajmiem się sprowadeiem (reducją) taiego uładu sił do ajprostsej

Bardziej szczegółowo

Regresja REGRESJA

Regresja REGRESJA Regresja 39. REGRESJA.. Regresja perwszego rodzaju Nech (, będze dwuwyarową zeą losową, dla które steje kowaracja. Nech E( y ozacza warukową wartość oczekwaą zdefowaą dla przypadku zeych losowych typu

Bardziej szczegółowo

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych dr Ewa Wycka Wyższa Szkoła Bakowa w Gdańsku Wtold Komorowsk, Rafał Gatowsk TZ SKOK S.A. Statystycza aalza mesęczych zma współczyka szkodowośc kredytów hpoteczych Wskaźk szkodowośc jest marą obcążea kwoty/lczby

Bardziej szczegółowo

TMM-2 Analiza kinematyki manipulatora metodą analityczną

TMM-2 Analiza kinematyki manipulatora metodą analityczną Opracował: dr ż. Przemysław Szumńsk Laboratorum Teor Mechazmów Automatyka Robotyka, Mechatroka TMM- Aalza kematyk mapulatora metodą aaltyczą Celem ćwczea jest zapozae sę ze sposobem aalzy kematyk mechazmu

Bardziej szczegółowo

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 3. Analiza obwodów RLC przy wymuszeniach sinusoidalnych w stanie ustalonym

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 3. Analiza obwodów RLC przy wymuszeniach sinusoidalnych w stanie ustalonym ĆWCZENE 3 Analza obwodów C przy wymszenach snsodalnych w stane stalonym 1. CE ĆWCZENA Celem ćwczena jest praktyczno-analtyczna ocena obwodów elektrycznych przy wymszenach snsodalne zmennych.. PODSAWY EOEYCZNE

Bardziej szczegółowo

A B - zawieranie słabe

A B - zawieranie słabe NAZEWNICTWO: : rówoważość defcj : rówość defcj dla każdego steje! ZBIORY steje dokłade jede {,,,...} - całkowte * - całkowte be era - wmere - ujeme plus ero - recwste - espoloe A B - awerae słabe A :

Bardziej szczegółowo

Wyznaczanie oporu naczyniowego kapilary w przepływie laminarnym.

Wyznaczanie oporu naczyniowego kapilary w przepływie laminarnym. Wyzaczae oporu aczyowego kaplary w przepływe lamarym. I. Przebeg ćwczea. 1. Zamkąć zawór odcający przewody elastycze a astępe otworzyć zawór otwerający dopływ wody do przewodu kaplarego. 2. Ustawć zawór

Bardziej szczegółowo

Matematyczne metody opracowywania wyników

Matematyczne metody opracowywania wyników Matematycze metody opracowywaa wyów Statystya rachue epewośc Paweł Ża Wydzał Odlewctwa AGH Katedra Iżyer Procesów Odlewczych Kraów, gruda 00 Opracowae rzywej stygęca 3 4 5 6 7 Formuły a przyblżae pochodej

Bardziej szczegółowo

7. OBLICZENIA WIELKOŚCI ZWARCIOWYCH ZA POMOCĄ KOMPUTERÓW

7. OBLICZENIA WIELKOŚCI ZWARCIOWYCH ZA POMOCĄ KOMPUTERÓW A. Kaici: warcia w sieciach eletroeergetyczych 7. OBCNA WKOŚC WARCOWCH A POOCĄ KOPUTRÓW 7.. astosowaie metody potecjałów węzłowych do obliczaia zwarć przy założeiu jedaowych sił eletromotoryczych geeratorów

Bardziej szczegółowo

BADANIE REZONANSU W SZEREGOWYM OBWODZIE LC

BADANIE REZONANSU W SZEREGOWYM OBWODZIE LC BADANE EZONANSU W SZEEGOWYM OBWODZE LC NALEŻY MEĆ ZE SOBĄ: kalkulator naukowy, ołówek, linijkę, papier milimetrowy. PYTANA KONTOLNE. ównanie różniczkowe drgań wymuszonych. Postać równania drgań wymuszonych

Bardziej szczegółowo

Analiza właściwości rezonansowych kaskad cewek ze względu na zwiększanie odległości przesyłu

Analiza właściwości rezonansowych kaskad cewek ze względu na zwiększanie odległości przesyłu Zbgew KACZMARCZYK 1, Krysta FRANIA 1, Krzysztof BODZEK 1, Adam RUSZCZYK Poltechka Śląska, Katedra Eergoelektrok, Napędu Elektryczego Robotyk (1), Korporacyje Cetrum Badawcze ABB () do:1015199/4801814 Aalza

Bardziej szczegółowo

R w =

R w = Laboratorium Eletrotechnii i eletronii LABORATORM 6 Temat ćwiczenia: BADANE ZASLACZY ELEKTRONCZNYCH - pomiary w obwodach prądu stałego Wyznaczanie charaterysty prądowo-napięciowych i charaterysty mocy.

Bardziej szczegółowo

DYNAMIKA UKŁADU PUNKTÓW MATERIALNYCH

DYNAMIKA UKŁADU PUNKTÓW MATERIALNYCH WYKŁAD 3 DYNAIKA UKŁADU PUNKTÓW ATERIALNYCH UKŁAD PUNKTÓW ATERIALNYCH zbór skończoej lczby puktów materalych o zadaej kofguracj przestrzeej. Obłok Oorta Pas Kupera Pluto Neptu Ura Satur Jowsz Plaetody

Bardziej szczegółowo

Przetwarzanie danych meteorologicznych

Przetwarzanie danych meteorologicznych Sps teśc I Rozważaa ogóle 5 Pzetwazae daych meteoologczych Notat z wyładu pokhamaa Wyoała: Alesada Kadaś I Iomacja odowae 5 I Poces pzetwazaa daych 5 I Aalza 6 I Syteza 7 I3 Edycja wzualzacja 7 I3 Dae

Bardziej szczegółowo

Układ sterowania górniczego wielosilnikowego przenośnika taśmowego

Układ sterowania górniczego wielosilnikowego przenośnika taśmowego dr ż. ARIAN HYLA Poltechka Śląska Katedra Eergoelektrok, Napędu Elektryczego Robotyk Układ sterowaa górczego weloslkowego przeośka taśmowego W artykule przedstawoo kocepcję realzację praktyczą układu sterowaa

Bardziej szczegółowo

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne XXX OLIMPIADA FIZYCZNA ETAP III Zadane dośwadczalne ZADANIE D Nazwa zadana: Maszyna analogowa. Dane są:. doda półprzewodnkowa (krzemowa) 2. opornk dekadowy (- 5 Ω ), 3. woltomerz cyfrowy, 4. źródło napęca

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8 Stasław Cchock Natala Nehreecka Zajęca 7-8 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartość oczekwaa eocążoość estymatora Waracja

Bardziej szczegółowo

Ćw. 5. Wyznaczanie współczynnika sprężystości przy pomocy wahadła sprężynowego

Ćw. 5. Wyznaczanie współczynnika sprężystości przy pomocy wahadła sprężynowego 5 KATEDRA FIZYKI STOSOWANEJ PRACOWNIA FIZYKI Ćw. 5. Wyznaczane współczynna sprężystośc przy pomocy wahadła sprężynowego Wprowadzene Ruch drgający należy do najbardzej rozpowszechnonych ruchów w przyrodze.

Bardziej szczegółowo

Pojęcie statystyki. Definicja. Wektorową funkcję mierzalną T: X T(X)=(T 1 (X),...,T k (X)) R k wymiarową statystyką. próby X nazywamy k

Pojęcie statystyki. Definicja. Wektorową funkcję mierzalną T: X T(X)=(T 1 (X),...,T k (X)) R k wymiarową statystyką. próby X nazywamy k Statystya Wyład Adam Ćmel A4 5 cmel@agh.edu.pl Pojęce statysty Pojęce statysty w statystyce matematyczej jest odpowedem pojęca zmeej losowej w rachuu prawdopodobeństwa. Nech X(X,...,X ) będze próbą z pewej

Bardziej szczegółowo

Reprezentacja krzywych...

Reprezentacja krzywych... Reprezeacja rzywych... Reprezeacja przy pomocy fcj dwóch zmeych rzywe płase płase - jedej: albo z z f x y x [ x x2] y [ y y2] f x y g x x [ x x2] Wady: rzywe óre dla pewych x y mogą przyjmować wele warośc

Bardziej szczegółowo

O pewnej metodzie oceny jakości napędu przekształtnikowego

O pewnej metodzie oceny jakości napędu przekształtnikowego Jacek GROCHOWALSKI Poltechka Szczecńska, Istytut Elektrotechk O pewej metodze ocey jakośc apędu przeksztatkowego Streszczee. W artykule przedstawoo sposób wyzaczaa przestrzeej sy magetomotoryczej (SMM)

Bardziej szczegółowo

Pomiary napięć przemiennych

Pomiary napięć przemiennych LABORAORIUM Z MEROLOGII Ćwiczenie 7 Pomiary napięć przemiennych . Cel ćwiczenia Celem ćwiczenia jest poznanie sposobów pomiarów wielości charaterystycznych i współczynniów, stosowanych do opisu oresowych

Bardziej szczegółowo

ZAJĘCIA NR 3. loga. i nosi nazwę entropii informacyjnej źródła informacji. p. oznacza, Ŝe to co po im występuje naleŝy sumować biorąc za i

ZAJĘCIA NR 3. loga. i nosi nazwę entropii informacyjnej źródła informacji. p. oznacza, Ŝe to co po im występuje naleŝy sumować biorąc za i ZAJĘCIA NR Dzsaj omówmy o etro, redudacj, średej długośc słowa odowego o algorytme Huffmaa zajdowaa odu otymalego (od ewym względam; aby dowedzeć sę jam doczeaj do ońca). etro JeŜel źródło moŝe adawać

Bardziej szczegółowo

Rachunek różniczkowy funkcji wielu zmiennych

Rachunek różniczkowy funkcji wielu zmiennych Automatya i Robotya Aaliza Wyład dr Adam Ćmiel cmiel@agh.edu.pl Rachue różiczowy fucji wielu zmieych W olejych wyładach uogólimy pojęcia rachuu różiczowego i całowego fucji jedej zmieej a przypade fucji

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie Podstawowe

Bardziej szczegółowo

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki)

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki) Podstawy aalzy epewośc pomarowych (I Pracowa Fzyk) Potr Cygak Zakład Fzyk Naostruktur Naotecholog Istytut Fzyk UJ Pok. 47 Tel. 0-663-5838 e-mal: potr.cygak@uj.edu.pl Potr Cygak 008 Co to jest błąd pomarowy?

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTUT EKSPLOATACJI MASZYN I TRANSPORTU ZAKŁAD STEROWANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆWICZENIE: E20 BADANIE UKŁADU

Bardziej szczegółowo

Elementy arytmetyki komputerowej

Elementy arytmetyki komputerowej Elemety arytmetyk komputerowej cz. I Elemety systemów lczbowych /materał pomocczy do wykładu Iformatyka sem II/ Sps treśc. Wprowadzee.... Wstępe uwag o systemach lczbowych... 3. Przegląd wybraych systemów

Bardziej szczegółowo

Propagacja wielodrogowa. Paweł Kułakowski

Propagacja wielodrogowa. Paweł Kułakowski Propagacja welodrogowa Paweł Kułakowsk Pla wykładu. Propagacja welodrogowa ops zjawska w dzedze czasu częstotlwośc przypadek propagacj przyzemej. Zak sygału radowego 3. Iterferecje mędzysymbolowe . Propagacja

Bardziej szczegółowo

Wykład 11. a, b G a b = b a,

Wykład 11. a, b G a b = b a, Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada

Bardziej szczegółowo

Elementy i Obwody Elektryczne

Elementy i Obwody Elektryczne Elemeny Obwody Elekryczne Elemen ( elemen obwodowy ) jedno z podsawowych pojęć eor obwodów. Elemen jes modelem pewnego zjawska lb cechy fzycznej zwązanej z obwodem. Elemeny ( jako modele ) mogą meć róŝny

Bardziej szczegółowo