Metoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład):

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Metoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład):"

Transkrypt

1 może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): 1 Narysuj na płaszczyźnie zbiór dopuszczalnych rozwiazań. 2 Narysuj funkcję celu, np. dla z = 0, i przesuwaj ja równolegle, zgodnie ze wzrostem (max) lub spadkiem (min) wartości z, dopóki ma przynajmniej jeden punkt wspólny ze zbiorem rozwiazań dopuszczalnych.

2 Jedno rozwiazanie optymalne Problem może mieć dokładnie jedno rozwiazanie optymalne, znajdujace się w pewnym wierzchołku zbioru rozwiazań dopuszczalnych.

3 Nieskończona liczba rozwiazań Problem może mieć nieskończenie wiele rozwiazań optymalnych znajdujacych się na pewnym odcinku łacz acym dwa wierzchołki. max z = 2x 1 + 4x 2 6x 1 + 4x 2 24 x 1 + 2x 2 6 x 2 x 1 1 x 2 2 x 1, x 2 0

4 Nieograniczona funkcja celu Funkcja celu może być nieograniczona. Wówczas problem nie posiada rozwiazania optymalnego max z = 2x 1 + 2x 2 2x 1 x 2 40 x 2 10 x 1, x 2 0

5 Problem sprzeczny Problem może nie mieć rozwiazania dopuszczalnego. Ma to miejsce wówczas, gdy ograniczenia sa sprzeczne. max z = 3x 1 + 2x 2 6x 1 + 4x 2 12 x 1 3 x 2 2

6 Obserwacje (przypadek 2 zmiennych) 1 Zbiór rozwiazań dopuszczalnych jest wypukłym wielokatem (ograniczonym lub nieograniczonym) 2 Jeżeli problem ma optymalne rozwiazanie, to przynajmniej jedno rozwiazanie optymalne znajduje się w wierzchołku zbioru dopuszczalnych rozwiazań. Wierzchołek jest punktem przecięcia dwóch prostych (punktem w którym dwa ograniczenia sa spełnione jako równości).

7 Przypadek 3 zmiennych Optymalne rozwiazanie znajduje się w wierzchołku x 1 = 0, x 2 = 300, x 3 = 100, który jest punktem przecięcia trzech płaszczyzn (2,3 i 4).

8 Model w postaci kanonicznej Model jest w postaci kanonicznej jeżeli: 1 wszystkie ograniczenia maja postać równości (za wyjatkiem ograniczeń na nieujemność zmiennych), 2 wszystkie prawe strony ograniczeń sa nieujemne, 3 wszystkie zmienne przyjmuja wartości nieujemne. max (min) z = c 1 x 1 + c 2 x c nx n [f. celu] a 11 x 1 + a 12 x a 1n x n = b 1 [Ograniczenie 1] a 21 x 1 + a 22 x a 2n x n = b 2 [Ograniczenie 2] a m1 x 1 + a m2 x a mnx n = b m [Ograniczenie m] x i 0, i = 1,..., n [Nieujemność] Każdy model liniowy można sprowadzić do postaci kanonicznej.

9 Model w postaci kanonicznej Każdy model liniowy można sprowadzić do równoważnej postaci kanonicznej. 1 Jeżeli b i < 0, to mnożymy ograniczenie i-te przez a i1 x a in x n b i zastępujemy a i1 x a in x n + s i = b i, gdzie s i 0 jest nowa zmienna. 3 a i1 x a in x n b i zastępujemy a i1 x a in x n s i = b i, gdzie s i 0 jest nowa zmienna 4 Jeżeli x i może być ujemna, to zastępujemy x i wyrażeniem u i v i, gdzie u i 0, v i 0 sa nowymi zmiennymi.

10 Przykład Rozwiazywanie zadań programowania liniowego max z = 2x 1 + 3x 2 x 3 x 1 2x 2 5 x 2 3x 3 3 x 1 + x 2 2x 3 = 20 x 1, x : max z = 2x 1 + 3x 2 x 3 x 1 2x 2 5 x 2 + 3x 3 3 x 1 + x 2 2x 3 = 20 x 1, x : max z = 2x 1 + 3x 2 x 3 x 1 2x 2 + s 1 = 5 x 2 + 3x 3 s 2 = 3 x 1 + x 2 2x 3 = 20 x 1, x : max z = 2x 1 + 3x 2 u 3 + v 3 x 1 2x 2 + s 1 = 5 x 2 + 3u 3 3v 3 s 2 = 3 x 1 + x 2 2u 3 + 2v 3 = 20 x 1, x 2, s 1, s 2, u 3, v 3 0

11 Rozpatrzmy problem w postaci kanonicznej: Zapiszmy ten problem w postaci: max z = 2x 1 + 3x 2 2x 1 + x 2 + s 1 = 4 x 1 + 2x 2 + s 2 = 5 x 1, x 2, s 1, s 2 0 z 2x 1 3x 2 = 0 [Wiersz 0] 2x 1 +x 2 +s 1 = 4 [Ograniczenie 1] x 1 +2x 2 +s 2 = 5 [Ograniczenie 2] Powyższa postać nazywamy postacia bazowa problemu względem zmiennych bazowych {s 1, s 2 }. Układ równań jest rozwiazany względem zmiennych bazowych s 1, s 2 i z. Przyjmujac x 1 = x 2 = 0 otrzymamy natychmiast bazowe rozwiazanie dopuszczalne s 1 = 4, s 2 = 5 o wartości funkcji celu z = 0.

12 Dla postaci bazowej: z 2x 1 3x 2 = 0 2x 1 +x 2 +s 1 = 4 x 1 +2x 2 +s 2 = 5 tworzymy poczatkow a tablicę sympleksowa: x 1 x 2 s 1 s 2 z s s

13 z 2x 1 3x 2 = 0 2x 1 +x 2 +s 1 = 4 x 1 +2x 2 +s 2 = 5 x 2 x 1 x 2 s 1 s 2 z s /1 = 4 s /2 = 2.5 W wierszu 0 występuja ujemne współczynniki. Możemy zatem zwiększyć wartość funkcji celu zwiększajac wartość zmiennej niebazowej, np x 2. Maksymalna wartość x 2 w ograniczeniu 1 wynosi 4 a w ograniczeniu wynosi 2.5. Zatem x 2 = 2.5 i s 2 = 0. Zmienna x 2 wchodzi do bazy a zmienna s 2 opuszcza bazę.

14 Wykonujemy eliminację Gaussa-Jordana operujac elementem centralnym 2 aby przedstawić problem w postaci bazowej względem {s 1, x 2 }. Możemy to wykonać bezpośrednio na tablicy sympleksowej x 2 x 1 x 2 s 1 s 2 z s s Postać bazowa względem {s 1, x 2 }: x 1 x 2 s 1 s 2 z s x z 0.5x s 2 = x 1 +s 1 0.5s 2 = x 1 +x s 2 = 2.5

15 z 0.5x s 2 = x 1 +s 1 0.5s 2 = x 1 +x s 2 = 2.5 x 1 x 1 x 2 s 1 s 2 z s 1 s /1.5=1 x /0.5=5 W wierszu 0 ponownie występuje ujemny współczynnik. Możemy zatem zwiększyć wartość funkcji celu zwiększajac wartość x 1. Maksymalna wartość zmiennej x 1 wynosi 1. Zatem x 1 = 1 i s 1 = 0. Zmienna x 1 wchodzi do bazy a zmienna s 1 opuszcza bazę.

16 Wykonujemy eliminację Gaussa - Jordana operujac elementem centralnym 1.5 aby przedstawić problem w postaci bazowej względem {x 1, x 2 }: x 1 x 1 x 2 s 1 s 2 z s 1 s x x 1 x 2 s 1 s 2 z 0 0 1/3 4/3 8 x /3-1/3 1 x /3 2/3 2 Postać bazowa względem {x 1, x 2 }: z +1/3s 1 +4/3s 2 = 8 2/3s 1 1/3s 2 +x 1 = 1 1/3s 1 +2/3s 2 +x 2 = 2

17 x 1 x 2 s 1 s 2 z 0 0 1/3 4/3 8 x /3-1/3 1 x /3 2/3 2 W wierszu 0 nie występuja ujemne współczynniki. Nie można już powiększyć funkcji celu. Zatem x 1 = 1, x 2 = 2 jest optymalnym rozwiazaniem o wartości funkcji celu z = 8. Kolejne iteracje sa pokazane na poniższym rysunku:

18 Rozwiaż za pomoca algorytmu sypleksowego problem firmy Reddy Mikks (pierwszy wykład). Postać standardowa modelu jest następujaca: z 5x 1 4x 2 = 0 6x 1 + 4x 2 +s 1 = 24 x 1 + 2x 2 +s 2 = 6 x 1 + x 2 +s 3 = 1 x 2 +s 4 = 2 x 1, x 2, s 1, s 2, s 3, s 4 0 Obliczenia przeprowadzimy tylko na tablicy sympleksowej.

19 x 1 x 1 x 2 s 1 s 2 s 3 s 4 z s 1 s /6 = 4 s /1 = 6 s s x 2 x 1 x 2 s 1 s 2 s 3 s 4 z 0-2/3 5/ x 1 1 2/3 1/ /( 2 ) = 6 3 s 2 s 2 0 4/3-1/ /( 4 ) = s 3 0 5/3 1/ /( 5 ) = 3 3 s /1 = 2

20 x 1 x 2 s 1 s 2 s 3 s 4 z 0 0 3/4 1/ x /4-1/ x /8 3/ /2 s /8-5/ /2 s /8-3/ /2 Przebieg algorytmu. Obok każdego wierzchołka podane sa odpowiednie zmienne bazowe.

21 Jeżeli funkcja celu ma być minimalizowana, to: 1 można pomnożyć ja przez -1 i zamienić na maksymalizację lub 2 wprowadzać do bazy zmienne o dodatnim współczynniku w wierszu 0; wówczas rozwiazanie jest optymalne jeżeli wszystkie współczynniki w wierszu 0 sa niedodatnie. Jeżeli wszystkie ograniczenia maja postać i prawe strony ograniczeń sa nieujemne (model jest w tzw. postaci standardowej), to pierwsza postać bazowa otrzymujemy przyjmujac za zmienne bazowe dodatkowe zmienne s 1,..., s m. Rozpoczynamy wówczas algorytm w wierzchołku x 1 = x 2 = = x n = 0 i z = 0.

22 Metoda dwóch faz Rozpatrzmy przykład: Równoważna postać kanoniczna: max z = 4x 1 + 3x 2 3x 1 + x 2 = 3 4x 1 + 3x 2 6 x 1 + 2x 2 4 x 1, x 2 0 max z = 4x 1 + 3x 2 3x 1 + x 2 = 3 4x 1 + 3x 2 s 1 = 6 x 1 + 2x 2 + s 2 = 4 x 1, x 2, s 1, s 2 0 Model nie jest w postaci bazowej. Nie można rozpoczać algorytmu sympleksowego.

23 Metoda dwóch faz Dodajemy sztuczne zmienne r 1 i r 2 do pierwszego i drugiego ograniczenia i tworzymy funkcję celu min z 0 = r 1 + r 2 lub równoważnie max z 0 = r 1 r 2. Zapisujemy problem z nowa i oryginalna funkcja celu w następujacy sposób: z 0 +r 1 +r 2 = 0 z 4x 1 3x 2 = 0 3x 1 +x 2 +r 1 = 3 4x 1 +3x 2 s 1 +r 2 = 6 x 1 +2x 2 +s 2 = 4 x 1 x 2 s 1 r 1 r 2 s 2 z z r r s

24 Metoda dwóch faz Po odjęciu wierszy 3 i 4 od 1 otrzymujemy pierwsza tablicę sympleksowa: x 1 x 1 x 2 s 1 r 1 r 2 s 2 z z r 1 r r s Faza 1. Maksymalizujemy z 0 przekształcajac też wiersz odpowiadajacy oryginalnej funkcji celu. x 2 x 1 x 2 s 1 r 1 r 2 s 2 z z x r s

25 Metoda dwóch faz x 1 x 2 s 1 r 1 r 2 s 2 z z x x s W optymalnym rozwiazaniu z 0 = 0 i zmienne sztuczne r 1 i r 2 nie sa zmiennymi bazowymi (przypadek, w którym to nie wystapi zostanie omówiony dalej). Przechodzimy do fazy 2. Faza 2. Usuwamy wiersz odpowiadajacy z 0 i maksymalizujemy oryginalna funkcję celu z. Zmienne sztuczne można również usunać lub utrzymywać w tablicy (dostarczaja one użytecznej informacji omówionej dalej). W tym drugim przypadku ewentualne ujemne wartości zmiennych sztucznych w wierszu odpowiadajacym z należy ignorować 3 3

26 Metoda dwóch faz Po wykonaniu jednej iteracji w fazie 2 otrzymujemy optymalne rozwiazanie znajdujace się w tablicy: x 1 x 2 s 1 r 1 r 2 s 2 z x x s

27 Metoda dwóch faz Jeżeli w optymalnym rozwiazaniu fazy 1 pewna zmienna sztuczna jest zmienna bazowa o wartości równej 0, to wykonujemy dodatkowa iterację usuwajac a ta zmienna z bazy. x 2 x 1 x 2 s 1 r 1 r 2 s 2 z x r 2 r s Wykonujemy dodatkowa iterację usuwajac a zmienna r 2 z bazy i dodajac a zmienna x 2 lub s 1 (po przemnożeniu wiersza odpowiadajacego r 2 przez -1). Operacja ta nie narusza dopuszczalności rozwiazania.

28 Wykrywanie modelu sprzecznego Jeżeli w optymalnym rozwiazaniu fazy 1 otrzymamy z 0 < 0 (co oznacza, że pewna zmienna sztuczna jest dodatnia), to wyjściowy model jest sprzeczny. max z = 2x 1 + 5x 2 3x 1 + 2x 2 6 2x 1 + x 2 2 x 1, x 2 0 z 0 +r 1 = 0 z 2x 1 5x 2 = 0 3x 1 +2x 2 s 1 +r 1 = 6 2x 1 +x 2 +s 2 = 2 x 1 x 2 s 1 r 1 s 2 z z r s x 1 x 2 s 1 r 1 s 2 z z r s Model jest sprzeczny.

29 Alternatywne rozwiazania optymalne s 2 x 1 x 2 s 1 s 2 z x x x 1 x 2 s 1 s 2 z x 2 1/2 1 1/ s 2 1/2 0-1/

30 Alternatywne rozwiazania optymalne Jeżeli w ostatniej tablicy sympleksowej, wartość współczynnika w wierszu zerowym dla pewnej zmiennej niebazowej wynosi 0, to może istnieć alternatywne rozwiazanie optymalne. Rozwiazanie to można otrzymać wprowadzajac ta zmienna do bazy. Jeżeli (x 1,..., x n) i (y 1,..., y n) sa dwoma rozwiazaniami optymalnymi, to każde rozwiazanie postaci: (λx 1 + (1 λ)y 1,..., λx n + (1 λ)y n), λ [0, 1] jest również optymalne. Zatem jeżeli problem ma dwa różne rozwiazania optymalne, to ma nieskończenie wiele rozwiazań optymalnych.

31 Nieograniczona funkcja celu x 2 Wartość x 2 może być dowolnie duża. x 1 x 2 s 1 s 2 z s (-) s (-)

32 Nieograniczona funkcja celu Jeżeli (dla problemu maksymalizacji) w bieżacej tablicy sympleksowej, istnieje zmienna z ujemnym współczynnikiem w wierszu 0 i wszystkie współczynniki w kolumnie odpowiadajacej tej zmiennej sa niedodatnie, to funkcja celu jest nieograniczona.

33 Problem degeneracji Rozpatrzmy problem: max z = 3x 1 + 9x 2 x 1 + 4x 2 8 x 1 + 2x 2 4 x 1, x 2 0 Druga i trzecia tablica sympleksowa ma postać: x 1 x 1 x 2 s 1 s 2 z -3/4 0 9/ x 2 1/4 1 1/4 0 2 s 2 1/2 0-1/2 1 0 x 1 x 2 s 1 s 2 z 0 0 3/2 3/2 18 x /2-1/2 2 x Wartość zmiennej bazowej s 2 = 0. Po wykonaniu iteracji sypleksowej otrzymamy dokładnie takie samo rozwiazanie. Zmienia się tylko zmienne bazowe. Rozwiazanie, w którym pewna zmienna bazowa przyjmuje wartość 0 nazywany zdegenerowanymi.

34 Problem degeneracji Wierzchołek odpowiadajacy optymalnemu rozwiazaniu jest zdegenerowany, ponieważ przecinaja się w nim więcej niż dwie proste (x 1 = 0, x 1 + 4x 2 = 8, x 1 + 2x 2 = 4). Zatem temu wierzchołkowi odpowiada więcej niż jedno bazowe rozwiazanie dopuszczalne (może on być wyznaczony na trzy sposoby).

35 Problem degeneracji Istnieje możliwość (w rzadkich przypadkach), że algorytm wpadnie w cykl, tj. będzie powtarzał taka sama sekwencję rozwiazań bez poprawy wartości funkcji celu i bez spełnienia warunków optymalności. [Reguła antycyklowa Blanda]. W każdej iteracji: 1 Do bazy wchodzi zmienna o ujemnym współczynniku w wierszu 0 i najmniejszym indeksie. 2 Jeżeli więcej niż jedna zmienna może opuścić bazę (test współczynników nie jest jednoznaczny), to usuń z bazy zmienna o najmniejszym indeksie spośród tych zmiennych. z reguła Blanda jest zbieżny, tj. zawsze kończy pracę zwracajac optymalne rozwiazanie.

Rozdział 1 PROGRAMOWANIE LINIOWE

Rozdział 1 PROGRAMOWANIE LINIOWE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.2 Ćwiczenia komputerowe Ćwiczenie 1.1 Wykorzystując

Bardziej szczegółowo

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,

Bardziej szczegółowo

Programowanie liniowe metoda sympleks

Programowanie liniowe metoda sympleks Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2009 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 13

Bardziej szczegółowo

Programowanie liniowe metoda sympleks

Programowanie liniowe metoda sympleks Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2012 Mirosław Sobolewski (UW) Warszawa, 2012 1 / 12

Bardziej szczegółowo

Algorytm simplex i dualność

Algorytm simplex i dualność Algorytm simplex i dualność Łukasz Kowalik Instytut Informatyki, Uniwersytet Warszawski April 15, 2016 Łukasz Kowalik (UW) LP April 15, 2016 1 / 35 Przypomnienie 1 Wierzchołkiem wielościanu P nazywamy

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE(ZT)

ZAGADNIENIE TRANSPORTOWE(ZT) A. Kasperski, M. Kulej BO Zagadnienie transportowe 1 ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a 1, a 2,...,a p i q odbiorców,którychpopytwynosi b 1, b 2,...,b q.zakładamy,że

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2015 Mirosław Sobolewski (UW) Warszawa, 2015 1 / 16 Homo oeconomicus=

Bardziej szczegółowo

Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE

Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE 6. Ćwiczenia komputerowe Ćwiczenie 6.1

Bardziej szczegółowo

zadaniem programowania liniowego całkowitoliczbowego. nazywamy zadaniem programowania liniowego 0-1. Zatem, w

zadaniem programowania liniowego całkowitoliczbowego. nazywamy zadaniem programowania liniowego 0-1. Zatem, w Sformułowanie problemu Zastosowania Programowanie liniowe całkowitoliczbowe Jeżeli w zadaniu programowania liniowego pewne (lub wszystkie) zmienne musza przyjmować wartości całkowite, to takie zadanie

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA I WSPOMAGANIA DECYZJI Rozproszone programowanie produkcji z wykorzystaniem

Bardziej szczegółowo

Programowanie liniowe całkowitoliczbowe

Programowanie liniowe całkowitoliczbowe Programowanie liniowe całkowitoliczbowe Jeżeli w zadaniu programowania liniowego pewne (lub wszystkie) zmienne musza przyjmować wartości całkowite, to takie zadanie nazywamy zadaniem programowania liniowego

Bardziej szczegółowo

A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe1

A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe1 A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a,a 2,...,a p i qodbiorców, którychpopytwynosi b,b 2,...,b

Bardziej szczegółowo

A. Kasperski, M. Kulej Badania Operacyjne- metoda sympleks 1

A. Kasperski, M. Kulej Badania Operacyjne- metoda sympleks 1 A. Kasperski, M. Kulej Badania Operacyjne- metoda sympleks 1 ALGORYTM SYMPLEKS Model liniowy nazywamy modelem w postaci standardowej jeżeli wszystkie ograniczenia s a w postaci równości i wszystkie zmienne

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Rozdział 1 PROGRAMOWANIE LINIOWE

Rozdział 1 PROGRAMOWANIE LINIOWE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.1 Opis programów Do rozwiązania zadań programowania

Bardziej szczegółowo

Zagadnienie transportowe

Zagadnienie transportowe 9//9 Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 1. wykład z algebry liniowej Warszawa, październik 2015 Mirosław Sobolewski (UW) Warszawa, wrzesień 2015 1 / 1

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.

Bardziej szczegółowo

1 Układy równań liniowych

1 Układy równań liniowych II Metoda Gaussa-Jordana Na wykładzie zajmujemy się układami równań liniowych, pojawi się też po raz pierwszy macierz Formalną (i porządną) teorią macierzy zajmiemy się na kolejnych wykładach Na razie

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO ZAGADNIENIA PROGRAMOWANIA LINIOWEGO Maciej Patan Uniwersytet Zielonogórski WSTĘP często spotykane w życiu codziennym wybór asortymentu produkcji jakie wyroby i w jakich ilościach powinno produkować przedsiębiorstwo

Bardziej szczegółowo

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE]

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE] Spis treści 1 Metoda geometryczna... 2 1.1 Wstęp... 2 1.2 Przykładowe zadanie... 2 2 Metoda simpleks... 6 2.1 Wstęp... 6 2.2 Przykładowe zadanie... 6 1 Metoda geometryczna Anna Tomkowska 1 Metoda geometryczna

Bardziej szczegółowo

Wprowadzenie do badań operacyjnych - wykład 2 i 3

Wprowadzenie do badań operacyjnych - wykład 2 i 3 Wprowadzenie do badań operacyjnych - wykład 2 i 3 Hanna Furmańczyk 14 listopada 2008 Programowanie liniowe (PL) - wszystkie ograniczenia muszą być liniowe - wszystkie zmienne muszą być ciągłe n j=1 c j

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

Ekonometria - ćwiczenia 10

Ekonometria - ćwiczenia 10 Ekonometria - ćwiczenia 10 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 14 grudnia 2012 Wprowadzenie Optymalizacja liniowa Na

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,

Bardziej szczegółowo

Programowanie liniowe całkowitoliczbowe

Programowanie liniowe całkowitoliczbowe Programowanie liniowe całkowitoliczbowe Jeżeli w zadaniu programowania liniowego pewne (lub wszystkie) zmienne musza przyjmować wartości całkowite, to takie zadanie nazywamy zadaniem programowania liniowego

Bardziej szczegółowo

Document: Exercise*02*-*manual /11/ :31---page1of8 INSTRUKCJA DO ĆWICZENIA NR 2

Document: Exercise*02*-*manual /11/ :31---page1of8 INSTRUKCJA DO ĆWICZENIA NR 2 Document: Exercise*02*-*manual ---2014/11/12 ---8:31---page1of8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 2 Wybrane zagadnienia z

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych

Rozwiązywanie układów równań liniowych Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy

Bardziej szczegółowo

Laboratorium Metod Optymalizacji

Laboratorium Metod Optymalizacji Laboratorium Metod Optymalizacji Grupa nr... Sekcja nr... Ćwiczenie nr 4 Temat: Programowanie liniowe (dwufazowa metoda sympleksu). Lp. 1 Nazwisko i imię Leszek Zaczyński Obecność ocena Sprawozdani e ocena

Bardziej szczegółowo

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele

Bardziej szczegółowo

A. Kasperski, M. Kulej Badania Operacyjne- programowanie liniowe 1

A. Kasperski, M. Kulej Badania Operacyjne- programowanie liniowe 1 A. Kasperski, M. Kulej Badania Operacyjne- programowanie liniowe ZAGADNIENIE DUALNE Z każdym zagadnieniem liniowym związane jest inne zagadnienie nazywane dualnym. Podamy teraz teraz jak budować zagadnienie

Bardziej szczegółowo

Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie

Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie OPIS ZAGADNIENIA Zagadnienie transportowe służy głównie do obliczania najkorzystniejszego

Bardziej szczegółowo

PROGRAMOWANIE KWADRATOWE

PROGRAMOWANIE KWADRATOWE PROGRAMOWANIE KWADRATOWE Programowanie kwadratowe Zadanie programowania kwadratowego: Funkcja celu lub/i co najmniej jedno z ograniczeń jest funkcją kwadratową. 2 Programowanie kwadratowe Nie ma uniwersalnej

Bardziej szczegółowo

3. Wykład Układy równań liniowych.

3. Wykład Układy równań liniowych. 31 Układy równań liniowych 3 Wykład 3 Definicja 31 Niech F będzie ciałem Układem m równań liniowych o niewiadomych x 1,, x n, m, n N, o współczynnikach z ciała F nazywamy układ równań postaci: x 1 + +

Bardziej szczegółowo

doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505.

doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. doc. dr Beata Pułska-Turyna Zakład Badań Operacyjnych Zarządzanie B506 mail: turynab@wz.uw.edu.pl mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. Tel.: (22)55 34 144 Mail: student@pgadecki.pl

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można

Bardziej szczegółowo

Optymalizacja liniowa w liczbach całkowitych (PLC)

Optymalizacja liniowa w liczbach całkowitych (PLC) * ) && &&& % ( - &&(() n && - n% ( ' n!"#$ Optymalizacja liniowa w liczbach całkowitych (PLC) (( & ' nn nn Zadanie (-) nazywamy zadaniem regularnym Zadanie (-) nazywamy zadaniem PLC Stosownie do tego podziału

Bardziej szczegółowo

c j x x

c j x x ZESTAW 1 Numer indeksu Test jest wielokrotnego wyboru We wszystkich mają być nieujemne 1 Pewien towar jest zmagazynowany w miejscowości A 1 w ilości 700 ton, w miejscowości 900 ton Ma być on przewieziony

Bardziej szczegółowo

Zadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby

Zadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby Zadania 1 Przedsiębiorstwo wytwarza cztery rodzaje wyrobów: A, B, C, D, które są obrabiane na dwóch maszynach M 1 i M 2. Czas pracy maszyn przypadający na obróbkę jednostki poszczególnych wyrobów podany

Bardziej szczegółowo

Rozwiązanie Powyższe zadanie możemy przedstawić jako następujące zagadnienie programowania liniowego:

Rozwiązanie Powyższe zadanie możemy przedstawić jako następujące zagadnienie programowania liniowego: Zadanie Rafineria naftowa otrzymała zamówienie na dwa rodzaje specjalnych paliw węglowodorowych X oraz Y. Zamówienie opiewa na minimum 4 000 galonów paliwa X i minimum 2 400 galonów paliwa Y. Paliwa te

Bardziej szczegółowo

( 1) ( ) 16 Warunki brzegowe [WB] Funkcja celu [FC] Ograniczenia [O] b i ( 2) ( ) ( ) 14. FC max. Kompletna postać bazowa

( 1) ( ) 16 Warunki brzegowe [WB] Funkcja celu [FC] Ograniczenia [O] b i ( 2) ( ) ( ) 14. FC max. Kompletna postać bazowa Standardowe zadanie PL () Należy zaplanować produkcję zakładu w pewnym tygodniu w taki sposób, aby osiągnięty zysk był maksymalny. akład może wytwarzać dwa wyroby: P i P. Ich produkcja jest limitowana

Bardziej szczegółowo

Wybrane elementy badań operacyjnych

Wybrane elementy badań operacyjnych Wybrane elementy badań operacyjnych 1 Przykład 1. GWOŹDZIE. Pewna fabryczka może produkować dwa gatunki gwoździ II i I. Do wyprodukowania tony gwoździ II gatunku potrzeba 1,2 tony stali oraz 1 roboczogodzinę

Bardziej szczegółowo

BADANIA OPERACYJNE Zagadnienie transportowe. dr Adam Sojda

BADANIA OPERACYJNE Zagadnienie transportowe. dr Adam Sojda BADANIA OPERACYJNE Zagadnienie transportowe dr Adam Sojda adam.sojda@polsl.pl http://dydaktyka.polsl.pl/roz6/asojda/default.aspx Pokój A405 Zagadnienie transportowe Założenia: Pewien jednorodny towar należy

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ... Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x

Bardziej szczegółowo

TOZ -Techniki optymalizacji w zarządzaniu

TOZ -Techniki optymalizacji w zarządzaniu TOZ -Techniki optymalizacji w zarządzaniu Wykład dla studentów II roku studiów II stopnia na kierunku Zarządzanie Semestr zimowy 2009/2010 Wykładowca: prof. dr hab. inż. Michał Inkielman Wykład 2 Optymalizacja

Bardziej szczegółowo

Firma JCo wytwarza dwa wyroby na dwóch maszynach. Jednostka wyrobu 1 wymaga 2 godzin pracy na maszynie 1 i 1 godziny pracy na maszynie 2.

Firma JCo wytwarza dwa wyroby na dwóch maszynach. Jednostka wyrobu 1 wymaga 2 godzin pracy na maszynie 1 i 1 godziny pracy na maszynie 2. Przykład Elementy analizy wrażliwości Firma JCo wytwarza dwa wyroby na dwóch maszynach. Jednostka wyrobu 1 wymaga 2 godzin pracy na maszynie 1 i 1 godziny pracy na maszynie 2. Dla wyrobu 2 czasy te wynosza

Bardziej szczegółowo

celu przyjmijmy: min x 0 = n t Zadanie transportowe nazywamy zbilansowanym gdy podaż = popyt, czyli n

celu przyjmijmy: min x 0 = n t Zadanie transportowe nazywamy zbilansowanym gdy podaż = popyt, czyli n 123456789 wyk lad 9 Zagadnienie transportowe Mamy n punktów wysy lajacych towar i t punktów odbierajacych. Istnieje droga od każdego dostawcy do każdego odbiorcy i znany jest koszt transportu jednostki

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

3. FUNKCJA LINIOWA. gdzie ; ół,.

3. FUNKCJA LINIOWA. gdzie ; ół,. 1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta

Bardziej szczegółowo

Wykład z modelowania matematycznego. Zagadnienie transportowe.

Wykład z modelowania matematycznego. Zagadnienie transportowe. Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy VII

Wymagania edukacyjne z matematyki dla klasy VII Wymagania edukacyjne z matematyki dla klasy VII Szkoły Podstawowej nr 100 w Krakowie Na podstawie programu Matematyka z plusem Na ocenę dopuszczającą Uczeń: rozumie rozszerzenie osi liczbowej na liczby

Bardziej szczegółowo

Wykład z modelowania matematycznego. Algorytm sympleks.

Wykład z modelowania matematycznego. Algorytm sympleks. Wykład z modelowania matematycznego. Algorytm sympleks. 1 Programowanie matematyczne jest to zbiór metod poszukiwania punktu optymalizującego (minimalizującego lub maksymalizującego) wartość funkcji rzeczywistej

Bardziej szczegółowo

1.2. Rozwiązywanie zadań programowania liniowego metodą geometryczną

1.2. Rozwiązywanie zadań programowania liniowego metodą geometryczną binarną są określane mianem zadania programowania binarnego. W stosunku do dyskretnych modeli decyzyjnych stosuje się odrębną klasę metod ich rozwiązywania. W dalszych częściach niniejszego rozdziału zostaną

Bardziej szczegółowo

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego. . Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21

Bardziej szczegółowo

Badania Operacyjne Ćwiczenia nr 1 (Materiały)

Badania Operacyjne Ćwiczenia nr 1 (Materiały) Wprowadzenie Badania operacyjne (BO) to stosunkowo młoda dyscyplina naukowa, która powstała w czasie II Wojny Światowej, w związku z utworzeniem przy niektórych sztabach sił zbrojnych specjalnych grup

Bardziej szczegółowo

Układy równań. Kinga Kolczyńska - Przybycień 22 marca Układ dwóch równań liniowych z dwiema niewiadomymi

Układy równań. Kinga Kolczyńska - Przybycień 22 marca Układ dwóch równań liniowych z dwiema niewiadomymi Układy równań Kinga Kolczyńska - Przybycień 22 marca 2014 1 Układ dwóch równań liniowych z dwiema niewiadomymi 1.1 Pojęcie układu i rozwiązania układu Układem dwóch równań liniowych z dwiema niewiadomymi

Bardziej szczegółowo

Badania Operacyjne Ćwiczenia nr 4 (Materiały)

Badania Operacyjne Ćwiczenia nr 4 (Materiały) Analiza wrażliwości Rozwiązanie programu liniowego jest dopiero początkiem analizy. Z punktu widzenia decydenta (menadżera) jest istotne, żeby wiedzieć jak na rozwiązanie optymalne wpływają zmiany parametrów

Bardziej szczegółowo

ZAGADNIENIE DUALNE Rozważmy zagadnienie liniowe(zagadnienie to nazywamy prymalnym) o postaci kanonicznej:

ZAGADNIENIE DUALNE Rozważmy zagadnienie liniowe(zagadnienie to nazywamy prymalnym) o postaci kanonicznej: A Kasperski, M Kulej Badania Operacyjne- programowanie liniowe 1 ZAGADNIENIE DUALNE Rozważmy zagadnienie liniowe(zagadnienie to nazywamy prymalnym) o postaci kanonicznej: max z = c 1 x 1 + c 2 x 2 + +

Bardziej szczegółowo

Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO

Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO Dział programowy. Zakres realizacji 1. Liczby, działania i procenty Liczby wymierne i liczby niewymierne-działania, kolejność

Bardziej szczegółowo

wszystkich kombinacji liniowych wektorów układu, nazywa się powłoką liniową uk ładu wektorów

wszystkich kombinacji liniowych wektorów układu, nazywa się powłoką liniową uk ładu wektorów KOINACJA LINIOWA UKŁADU WEKTORÓW Definicja 1 Niech będzie przestrzenią liniową (wektorową) nad,,,, układem wektorów z przestrzeni, a,, współczynnikami ze zbioru (skalarami). Wektor, nazywamy kombinacją

Bardziej szczegółowo

O MACIERZACH I UKŁADACH RÓWNAŃ

O MACIERZACH I UKŁADACH RÓWNAŃ O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Modele liniowe.......................... 5 1.1.

Bardziej szczegółowo

Układy liniowo niezależne

Układy liniowo niezależne Układy liniowo niezależne Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 3.wykład z algebry liniowej Warszawa, październik 2016 Mirosław Sobolewski (UW) Warszawa, październik 2016 1

Bardziej szczegółowo

Układy równań liniowych i metody ich rozwiązywania

Układy równań liniowych i metody ich rozwiązywania Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +

Bardziej szczegółowo

Rozwiązanie Ad 1. Model zadania jest następujący:

Rozwiązanie Ad 1. Model zadania jest następujący: Przykład. Hodowca drobiu musi uzupełnić zawartość dwóch składników odżywczych (A i B) w produktach, które kupuje. Rozważa cztery mieszanki: M : M, M i M. Zawartość składników odżywczych w poszczególnych

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elementy modelowania matematycznego Programowanie liniowe. Metoda Simplex. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ ZADANIE LINIOWE Tortilla z ziemniaków i cebuli (4 porcje) 300

Bardziej szczegółowo

Elementy Modelowania Matematycznego Wykład 7 Programowanie nieliniowe i całkowitoliczbowe

Elementy Modelowania Matematycznego Wykład 7 Programowanie nieliniowe i całkowitoliczbowe Spis treści Elementy Modelowania Matematycznego Wykład 7 i całkowitoliczbowe Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 Spis treści Spis treści 1 Wstęp

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej. rozumie rozszerzenie

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne na poszczególne oceny dla klasy I gimnazjum

Szczegółowe wymagania edukacyjne na poszczególne oceny dla klasy I gimnazjum Szczegółowe wymagania edukacyjne na poszczególne oceny dla klasy I gimnazjum POZIOMY WYMAGAŃ EDUKACYJNYCH: K konieczny ocena dopuszczająca DZIAŁ 1. LICZBY I DZIAŁANIA pojęcie liczby naturalnej, całkowitej,

Bardziej szczegółowo

Ekonometria - ćwiczenia 11

Ekonometria - ćwiczenia 11 Ekonometria - ćwiczenia 11 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 21 grudnia 2012 Na poprzednich zajęciach zajmowaliśmy

Bardziej szczegółowo

KRYTERIA OCEN Z MATEMATYKI DLA KLASY I GIMNAZJUM

KRYTERIA OCEN Z MATEMATYKI DLA KLASY I GIMNAZJUM KRYTERIA OCEN Z MATEMATYKI DLA KLASY I GIMNAZJUM DZIAŁ: LICZBY WYMIERNE (DODATNIE I UJEMNE) Otrzymuje uczeń, który nie spełnia kryteriów oceny dopuszczającej, nie jest w stanie na pojęcie liczby naturalnej,

Bardziej szczegółowo

FUNKCJE I RÓWNANIA KWADRATOWE. Lekcja 78. Pojęcie i wykres funkcji kwadratowej str

FUNKCJE I RÓWNANIA KWADRATOWE. Lekcja 78. Pojęcie i wykres funkcji kwadratowej str FUNKCJE I RÓWNANIA KWADRATOWE Lekcja 78. Pojęcie i wykres funkcji kwadratowej str. 178-180. Funkcja kwadratowa to taka, której wykresem jest parabola. Definicja Funkcją kwadratową nazywamy funkcje postaci

Bardziej szczegółowo

ALGORYTM SIMPLEX. B.Gładysz Badania operacyjne 2007

ALGORYTM SIMPLEX. B.Gładysz Badania operacyjne 2007 ALGORYTM SIMPLEX 7 Zagadnienie asortymentu produkcji Firma produkuje dwa wyroby P, P. Ograniczeniem dla produkcji są trzy surowce S, S i S.Nakłady jednostkowe surowców są następujące: S S S Zysk jednostkowy

Bardziej szczegółowo

Układy równań liniowych. Ax = b (1)

Układy równań liniowych. Ax = b (1) Układy równań liniowych Dany jest układ m równań z n niewiadomymi. Liczba równań m nie musi być równa liczbie niewiadomych n, tj. mn. a a... a b n n a a... a b n n... a a... a b m m mn n m

Bardziej szczegółowo

1) 2) 3) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25)

1) 2) 3)  5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25) 1) Wykresem funkcji kwadratowej f jest parabola o wierzchołku w początku układu współrzędnych i przechodząca przez punkt. Wobec tego funkcja f określona wzorem 2) Punkt należy do paraboli o równaniu. Wobec

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę

Bardziej szczegółowo

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH PROPORCJONALNOŚĆ PROSTA Proporcjonalnością prostą nazywamy zależność między dwoma wielkościami zmiennymi x i y, określoną wzorem: y = a x Gdzie a jest

Bardziej szczegółowo

Metody Optymalizacji. Wstęp. Programowanie matematyczne. Dr hab. inż. Maciej Komosiński, mgr Agnieszka Mensfelt

Metody Optymalizacji. Wstęp. Programowanie matematyczne. Dr hab. inż. Maciej Komosiński, mgr Agnieszka Mensfelt Metody Optymalizacji Dr hab. inż. Maciej Komosiński, mgr Agnieszka Mensfelt Wstęp W ogólności optymalizacja związana jest z maksymalizowaniem lub minimalizowaniem pewnej wielkości np. maksymalizacja zysku

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5

Bardziej szczegółowo

ALGORYTMY OPTYMALIZACJI wyklad 1.nb 1. Wykład 1

ALGORYTMY OPTYMALIZACJI wyklad 1.nb 1. Wykład 1 ALGORYTMY OPTYMALIZACJI wyklad.nb Wykład. Sformułowanie problemu optymalizacyjnego Z ksiąŝki Practical Optimization Methods: With Mathematica Applications by: M.A.Bhatti, M.Asghar Bhatti ü Przykład. (Zagadnienie

Bardziej szczegółowo

Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010

Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010 R. Rȩbowski 1 WPROWADZENIE Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010 1 Wprowadzenie Powszechnie uważa siȩ, że metoda simplex, jako uniwersalny algorytm pozwalaj acyznaleźć rozwi azanie optymalne

Bardziej szczegółowo

Programowanie matematyczne

Programowanie matematyczne dr Adam Sojda Badania Operacyjne Wykład Politechnika Śląska Programowanie matematyczne Programowanie matematyczne, to problem optymalizacyjny w postaci: f ( x) max przy warunkach g( x) 0 h( x) = 0 x X

Bardziej szczegółowo

Wykłady z programowania liniowego

Wykłady z programowania liniowego Wykłady z programowania liniowego A. Paweł Wojda Wydział Matematyki Stosowanej AGH 2 Spis treści 1 Wstęp 5 2 Problem programowania liniowego 7 2.1 PPL.................................. 7 2.2 Definicje................................

Bardziej szczegółowo

Zakres Dopuszczający Dostateczny Dobry Bardzo dobry

Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Kryteria oceniania z matematyki poziom podstawowy klasa 2 Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Funkcja liniowa Uczeń: wie, jaką zależność między dwiema wielkościami zmiennymi nazywamy proporcjonalnością

Bardziej szczegółowo

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu 1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM NA OCENĘ DOPUSZCZJĄCĄ UCZEN: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie

Bardziej szczegółowo

Lekcja 2. Pojęcie równania kwadratowego. Str Teoria 1. Równaniem wielomianowym nazywamy równanie postaci: n

Lekcja 2. Pojęcie równania kwadratowego. Str Teoria 1. Równaniem wielomianowym nazywamy równanie postaci: n Lekcja 1. Lekcja organizacyjna kontrakt. Podręcznik: A. Ceve, M. Krawczyk, M. Kruk, A. Magryś-Walczak, H. Nahorska Matematyka w zasadniczej szkole zawodowej. Wydawnictwo Podkowa. Zakres materiału: Równania

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy I gimnazjum opracowane na podstawie programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy I gimnazjum opracowane na podstawie programu Matematyka z plusem mgr Mariola Jurkowska mgr Barbara Pierzchała Gimnazjum Zgromadzenia Sióstr Najświętszej Rodziny z Nazaretu w Krakowie Wymagania edukacyjne z matematyki dla klasy I gimnazjum opracowane na podstawie programu

Bardziej szczegółowo

KADD Minimalizacja funkcji

KADD Minimalizacja funkcji Minimalizacja funkcji Poszukiwanie minimum funkcji Foma kwadratowa Metody przybliżania minimum minimalizacja Minimalizacja w n wymiarach Metody poszukiwania minimum Otaczanie minimum Podział obszaru zawierającego

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem pojęcie liczby naturalnej, całkowitej, wymiernej rozszerzenie osi liczbowej na liczby ujemne sposób i potrzebę zaokrąglania

Bardziej szczegółowo

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (postać kierunkowa) Funkcja liniowa to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości liczbowe Szczególnie ważny w postaci

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM

WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM na rok szkolny 2014/2015 Wymagania edukacyjne na poszczególne oceny: (na każdą wyższą ocenę obowiązują również wiadomości na oceny niższe oraz wiadomości

Bardziej szczegółowo

I. Liczby i działania

I. Liczby i działania I. Liczby i działania porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na dziesiętne i odwrotnie, zaokrąglać liczby do danego rzędu, szacować wyniki działań,

Bardziej szczegółowo

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY 1 KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA I LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016 SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016 Ocenę dopuszczającą otrzymuje uczeń, który: (Liczby i działania) zna pojęcie liczby naturalnej, całkowitej, wymiernej

Bardziej szczegółowo