5. METODY MONTE CARLO A SYMULACJA POTOKÓW RUCHU (wg Drew, 1968)

Wielkość: px
Rozpocząć pokaz od strony:

Download "5. METODY MONTE CARLO A SYMULACJA POTOKÓW RUCHU (wg Drew, 1968)"

Transkrypt

1 5. MEODY MONE CARLO A SYMULACJA POOKÓW RUCHU (wg Drew, 968) 5.. Wprowadzeie Moeta jest rzucaa aż do osiągięcia orła. Jeżeli to zdarzy się w pierwszym rzucie, gracz otrzymuje zł od baku. Jeżeli poraz pierwszy zdarzy się to w drugim rzucie, gracz otrzymuje zł, jeżeli w trzecim rzucie, 4 zł i tak dalej dublując za każdym razem. Ile gracz powiie zapłacić bakowi za możliwość gry, aby gra była fair. Gdy ktoś ma moetę w ręce, ajprostszym sposobem pewego aświetleia ile gracz powiie zapłacić za grę, jest gra powiedzmy 000 razy i określeie średiej wygraej a grę. Wygląda to a ieaukowe podejście do ruiy gracza czy paradoksu petersburskiego jak to rówież azywa się, a jest prostą ilustracją symulacji. W grucie rzeczy symulacja jest aalogiczą pracą. Powoduje to, że kostrukcja modelu roboczego prezetującego uproszczoe właściwości lub zależości jest aszym podstawowym problemem badań. Symulacja jest techiką, która pozwala badaie złożoych systemów ruchowych raczej w laboratorium, iż w rzeczywistości. W bardziej ogólym sesie, symulację moża zdefiiować jako dyamiczą reprezetację pewego rzeczywistego świata, osiągiętą przez budowę modelu komputerowego, jak to wyrazili Holstei i Soukup (96). ermi model komputerowy jest użyty dla ozaczeia specjalego rodzaju formalego modelu matematyczego, który ie zamierza się rozwiązywać aalityczie lecz raczej będzie symuloway przez elektroiczy komputer. ak więc, symulacja zawiera użycie cyfrowego lub aalogowego komputera do wytrasowaia ścieżki czasowej, z takim celem, że urządzeie cyfrowe liczy a aalogowe mierzy. aki cel jest dzisiaj podstawowy, będący istotą matematyczych celów, które dzielą się a dyskrete zmiee (cyfrowe) i ciągłe zmiee (aalogowe). Różice możliwości pomiędzy cyfrowymi a aalogowymi komputerami są maifestowae w matematyczych ujęciach: pomiędzy sumą a całką lub pomiędzy rówaiami różicowymi a rówaiami różiczkowymi. 5. Metody Mote Carlo Często w zagadieiach obliczeiowych model ie może być rozwiązay stadardową techiką umeryczą. W takich przypadkach może być bardziej efektywe skostruowaie odpowiediego modelu stochastyczego tego problemu. ak więc, w istocie, pewie eksperymet jest sposobem powtórzeia cech problemu dla badań. Proces obliczeiowy jest umeryczy i jest realizoway przez zastosowaie liczb losowych w tym systemie dla uzyskaia liczbowej odpowiedzi. Jedym z ajprostszych a ajmociejszych zastosowań tej idei jest estymacja całki. Rozważmy ajprostszy przypadek estymacji pola ograiczoego krzywą. Zbudujmy wokół tego pola jedostkowy kwadrat, ormalizujący obliczeia do jedostek długości. Losując pukt w kwadracie z prawdopodobieństwem A, że pukt wylosoway ależy do pola A. Jeżeli wylosujemy dużą liczbę puktów w kwadracie jedostkowym, to liczba puktów leżących a tym polu w proporcji do liczby wszystkich puktów jest estymatorem A (patrz Rys. 5.). PR5-7

2 Y b a Jed.pole f(x) Pole A b = a f ( x)dx a b X 4 Uwaga: A = = 0, 4 oparte a 0 parach liczb losowych Rys. 5. Estymacja całki metodą Mote - Carlo Ogóle rówaie dla estymacji całki jest a podstawie metody rozkładu puktowego astępujące gdzie a b ( x) dx = ( b a) y P[ Y < f ( x) ] f max, (5..) a ( b a) RN a X = +, (5..) Y = y RN. (5..3) max ak więc, metoda rozkładu puktowego zawiera wybór dwóch liczb losowych (za pomocą geeratora liczb losowych RN o rozkładzie jedostajym z przedziału (0, ) przyp.j.w.) pierwsza pomiędzy a i b, a druga pomiędzy 0 a pewą liczbą, która jest większa lub rówa od maksimum z f ( x) a (a, b) lub y max. Jeżeli pierwsza jest losowaa rzęda, a w druga odcięta, to prawdopodobieństwo, że pukt będzie leżał poiżej krzywej jest rówe stosukowi liczby puktów poiżej krzywej do liczby wszystkich puktów wylosowaych (patrz Rys. 5.). o prowadzi do defiicji całki jako (5..), która jest oczywiście polem pod d krzywą. Metoda ta daje pewą zgodość proporcjoalą z, gdzie jest liczbą puktów, a d liczbą wymiarów. Cała idea może być uogólioa a większą liczbę wymiarów, a wyiki pozostają prawdziwe. Schemat bazujący a twierdzeiu o wartości oczekiwaej okazuje się bardziej efektywy. x b a, b, taki że wierdzeie mówi, że jeżeli f ( ) jest ciągła a ( a, ), to istieje pukt a ( ) PR5-8

3 b a ( x) dx = ( b a) f ( ) f. (5..4) o moża uzyskać przez geerowaie ciągu liczb losowych X pomiędzy a i b i obliczeia f x : średiej ( ) f ( ) = f ( ) i= X i, (5..5) gdzie X jest dae przez powyższe (5..). Rzucając igły a podłogę zrobioą z wąskich klepek (Rys. 5.) mamy jakąś ilustrację metody Mote Carlo przedstawioą przez Bergamiego (963). Udział P igieł przeciających szczeliy podłogi prowadzi do estymacji π : ) L π =, (5..6) PW gdzie L jest długością igły, a W jest szerokością klepki. Oczywiście przez powtarzaie rzutów wielu igieł możliwa jest przewidywaie, jak często igła przetie szczelię. Atomiści przystosowali te model do ocey szas, że eutro produkoway fuzję atomowych ukleoów będzie zatrzymay lub odchyloe przez ie ukleoy a osłoie wokół ich. Było to istrumetem rozwoju właściwych osło atomowych reaktorów (patrz p. Ulam, 95). Rys. 5.. Obraz igieł a podłodze w zadaiu Buffoa. 5.3 Przypadkowe spacery Drugie źródło symulacji leży w żądaiach stosowaych matematyków do metod rozwiązaia problemów zawierających cząstkowe rówaia różiczkowe, jak to przedstawia ocher (963). ypowy problemem było rozwiązaia rówań dyfuzji pojawiających się w dyfuzji gazów, jak rówież w kierowaiu ciepłem w medium. Charakterystyką wielu takich PR5-9

4 systemów fizyczych był występujący mechaizm ruchu gazu lub ciepła wprowadzoy w wielkiej liczbie cząstek mających częściowo regulary a częściowo ieregulary sposób. Dla zakończeia średiowaia cząstki rozszerzao o elemet losowy, który elimiowao i dawao opis determiistyczy. Jak to dalej jest przedstawioe, techiki matematycze dla rozważań systemów ruchu cząsteczek, które są aalizowae częściowo regulary a częściowo losowy sposób, są modelowae jako błądzeie przypadkowe. Na przykład, dziewczya z zawiązaymi oczami chodząca wokół latari, zmieiając kieruek raz po raz, rusza się w sposób ieregulary, ilustrując ideę losowych spacerów (patrz Rys. 5.3). Jeżeli dziewczya rusza się a półoc, a połudie, a wschód lub a zachód i zakładamy, że każdy krok będzie jedostkowy, estymacja dystasu, jaki dziewczya przeszła od posteruku co krok jest day przez, gdzie jest liczbą kroków. Jedak matematycze prawo ieporządku przewiduje, że tak długo jak oa spaceruje, tak długo będzie powracać do latari. e prosty przykład ilustruje zasadę błądzeia przypadkowego w owoczesej fizyce swego czasu błyskotliwie wykorzystaa do opisu małych cząsteczek rozprzestrzeiających się w cieczach przez 6 letiego Alberta Eisteia (patrz p. Ulam, 95). Rys Błądzeie przypadkowe dziewczyy po chodiku. Pewe bardziej wyrafiowae przykłady ilustrują techikę błądzeia przypadkowego do rozwiązaia cząstkowych rówań różiczkowych o astępującej formie u u + = 0 x y (5.3.) 5.4 Symulowaa próbka (symulacja) Nie ma ogólie akceptowaej termiologii odróżiającej błądzeie przypadkowe Mote Carlo a symulację. Nie miej, metody Mote Carlo mają aturę probabilistyczą, atomiast symulacja może być probabilistycza (cyfrowa) lub determiistycza (aalogowa). W badaiach ruchu pojazdów użycie słowa symulacja bez dodatkowych kwalifikacji będzie zwykle implikowało użycie komputera cyfrowego. Metody Mote Carlo są często rezerwowae a procedury, w których próbki procesów mogą być modyfikowae dla zwiększeia precyzji, podczas gdy termi symulacja jest stosoway, kiedy próbka PR5-0

5 statystycza ograicza się do modelu rzeczywistego systemu. Jeżeli te ostatia subtelość jest przyjęta, to ktoś musi przyzać, że szczegółowe wyiki dają kieruek wrażeia jakości, gdzie zachowaie systemu wygląda a poiżej postulowaych waruków. Mimo że metody Mote Carlo i błądzeia przypadkowego mają określoy wkład do rozwoju sztuki symulacji a komputerze cyfrowym, ajwiększa ważość leży jedak w teorii statystyki matematyczej. W dzieciństwie, przedmiot statystyki zawierał kolekcje i obraz umeryczych i graficzych form o faktach i rysukach z zakresu ekoomii i auki. Jede z ajużytecziejszych form moitorowaia były histogram lub wykres frekwecji i przekształceie statystyki zaczęło się wtedy, kiedy to zrealizowae, tak że zgodość a takich diagramach moża było wyjaśić przez iwokację do teorii probabilistyki. Poieważ rozkład prawdopodobieństwa jest przez swą aturę, w większości przypadków skompooway przez ieskończoą liczbę puktów, podczas gdy wykres frekwecji, przez swoją aturę jest skompooway przez skończoą liczbę puktów, te ostati powiie być rozumiay jako próbka z odpowiediego teoretyczego rozkładu prawdopodobieństwa. ocher (963) wyjaśia te problem, że jak opisać rozkład prawdopodobieństwa, gdy dae są tylko ich obserwacje. Poieważ z wyglądających wewętrzych matematyczych trudości z tym związaych, powiy być podjęte takie kroki, które wymagają eksperymetalej weryfikacji, aby wcześie dać badaczom zaufaie. Stąd powstał eksperymet statystyczy. Została wykreowaa ścisła aproksymacja dystrybuaty, były zbierae próbki, które były astępie kombiowae i przekształcae a odpowiedie sposoby, a wyikowy wykres frekwecji obserwowaych wartości, porówyway był z teoretyczym odpowiedikiem. Nie trudo sobie wyobrazić powstającą sytuację, gdzie pewe metody obserwacji są wyzaczoe, ale gdzie obece sposoby wzięcia fizyczej próbki jest iemożliwe lub za drogie. W takiej sytuacji użyteczą iformację moża często uzyskać z pewego typu próbki symulacyjej. ypowe zagadieie to zastąpieie daego puktu przestrzei przez jego teoretyczy odpowiedik, a przestrzeń jest opisaa przez założoy rozkład prawdopodobieństwa a więc próbka z takiej teoretyczej populacji przez wartości oczekiwae tych liczb losowych. Wprowadzeie automatyczych komputerów cyfrowych dla przekształceia udych obliczeń związaych z tymi próbkami eksperymetów ma zaczeie odowieia tych jako możliwe podejście do rozwiązaia problemów wyikających z bogatych aaliz. aka metoda próbki azywaa jest symulacją; problemy decyzyje, które rzeczywiście utrudiają takie metody próbkowe, są często określae jako skutecziejszy poziom metod Mote Carlo (patrz p. Ulam, 95). 5.5 Liczby losowe Zobaczyliśmy że liczby losowe, jakie są wymagae do eksperymetów próbkowych związaych z symulacją. Ludzie są też pełi związku z myśleiem o prawdziwie losowych liczbach ikt ie byłby wybierał trzech 4 s w serii, mimo że taka sekwecja mogła by być częścią losowej serii. Idea użycia tablicy liczb losowych została wprowadzoa przez ippett (960), który skostruował tablicę z losowych cyfr przez zastosowaie termiala cyfrowego w wejściach a tablicę spisu ludości. RAND Corporatio użył elektroiczej ruletki dla utworzeia milio-cyfrowej książki tablicy liczb losowych (stąd azwa Mote Carlo). Obecie szeroka zmieość aturalych zjawisk została użyta do wyprodukowaia losowości, mimo że wielu filozofów argumetuje czy jakieś cyfry połączoe w formę tablic mogą być traktowae jak losowe, skoro ie były utworzoe w taki sposób. Dla praktyczych celów te argumety są iewłaściwe; jede zaleca akceptację jakiejś zjawiska jako losowe, których zachowaie jest ieprzewidywale przez jakieś obiektywe determiistycze prawa i których liczby satysfakcjoują róże stadardowe testy losowości dla zapewieia, a przykład, takiej zgodości cyfr dziesiętych z rówą frekwecją bez żadej korelacji w serii. PR5-

6 Z puktu widzeia sprawdzaia komputerowych programów to są korzyści w zastosowaiu rekurecyjego ciągu liczb, zamiast czysto losowe liczby. Programy komputerowe mogą być apisae, kiedy będą ciągi liczb odpowiadające wielu różym testom statystyczym losowości, które były wyalezioe. Liczby losowe takie jak te, które są geerowae w sposób ielosowy, azywae są liczbami pseudolosowymi. W obliczeiach automatyczych magazyowaie dużej wielkości liczb losowych staje się prawdziwym problemem. e problem magazyowaia prowadzi as do odrzuceia stosowaia tablic losowych w komputerach. Odpowiedi program komputerowy dla geerowaia liczb pseudolosowych powiie () wymagać mało miejsca w komputerze () być relatywie szybkim w działaiu i (3) geerować ciągi liczb satysfakcjoujące testy losowości. Następy rozdział opisuje jak takie programy powiy być apisae. Poiższy kometarz apisao w roku 00. Metody Mote Carlo powstały w latach 40. do rozwiązaia układu rówań różiczkowych w ośrodku badań jądrowych w USA i związae są z azwiskiem matematyka polskiego pochodzeia S. Ulama, który w latach trzydziestych 0. wieku wyemigrował ze Lwowa do USA a zaproszeie matematyka węgierskiego pochodzeia J. vo Neumaa, (patrz p. Ulam, 95). Na fatastyczą karierę tych metod wpłyęły trzy czyiki: - rozwój techiki komputerowej, który pozwolił a zastąpieie kłopotliwych modeli fizyczych p. rzucaia igły a podłogę, odpowiedim programem komputerowym, - bardzo duże pole problemów zastosowań matematyki, które moża rozwiązać za pomocą metod Mote Carlo, - klauzula tajości pioierskich prac vo Neumaa i Ulama, spowodowała, że brak było tych prac w literaturze, a metody lasowao bez iformacji o tych sesacyjych początkach tych metod. Dopiero w latach 50. przestało to być taje, co pozwoliło a podawaie właściwych źródeł metod Mote Carlo przez Ulama (95). 5.6 Geerator liczb pseudolosowych Geeratory liczb pseudolosowych mogą być podzieloe a dwie grupy: te w których rezultaty sekwecji mogą być teoretyczie przewidywae oraz te których teoretycze przewidywaie jest iemożliwe. Na przykład, ostatia grupa jest geerowaa przez techikę średiokwadratową, jak podaje ocher (963). O - cyfrowej liczbie R 0 jest podoszoa do kwadratu z wyikiem cyfrowym, liczba pośredich cyfr jest wzięta jako astępa liczba losowa R, która jest podoszoa do kwadratu i proces jest powtórzoy. a techika, tak jak to są ie praktycze techiki, jest cyklicza to zaczy, że sekwecja powtarza się. Jedak jede mius takiej szczególej metody polega a możliwości uzyskaia zera podczas tego cyklu. W celu uzyskaia bardziej wyrafiowaego podejścia do geerowaia liczb losowych, wprowadzającego techikę, w której teoretycze rezultaty mogą być przewidywale teoretyczie, ależy przedtem zgłębić podstawy systemów liczbowych, działaia komputera i teorii liczb. 5.7 Systemy liczbowe W różych aspektach systemów wielkiej skali w komputerach cyfrowych liczby są reprezetowae w systemie biarym, iż zaym systemie dziesiętym. Bazą systemu liczbowego (a przykład 0, w zaym systemie dziesiętym) jest azywaa radix i ozaczoa b. utaj musi być dokładie b różych symboli, każdy do określeia symboliczie jedej z wartości 0 do b. Liczba jest reprezetowaa przez pisaie rzędu cyfr, każda będąca jedym z b symboli. Zaczeie rzędu cyfr, uporządkowaych od prawej do lewej, jest wartością R daą wzorem PR5-

7 i= j R i = a b, (5.7.) i gdzie a i jest jedym z b symboli. Jeżeli dola graica jest 0, to jest to liczba całkowita; jeżeli dola graica jest ujema, R jest ułamkiem zależym od cyfr zajdujących się a prawo od kropki systemowej (kropka dziesięta w systemie dziesiętym). Na przykład, liczba w systemie dziesiętym ozacza a i i= i R = 0, gdzie a = 3, a = 7, a = 0 4, a 5 =, a = 6 lub 0 R = Używając iego przykładu liczby dwójkowej 00, która a podstawie (5.7.) ozacza R = Dziesięty rówoważik jest R = = 45 Bazą arytmetyczą jakiegoś systemu liczbowego musi być rozpoczęta w termiach tablic dodawaia i możeia.. Dla systemu dwójkowego tabliczkę dodawaia jest = 0, 0 + =, + = 0 itd. Dla możeia mamy 0 0 = 0, 0 = 0, =, 0 0 = 00, = 00 itd. Odpowiedie dzieleie dla przedstawiaego systemu liczbowego jest szczególie waże w geerowaiu liczb losowych, jako to powio wyglądać, kiedy rozważaa jest teoria liczb. Dla prezetacji wystarczy pokazać, że w systemie dziesiętym, jeżeli liczba jest 3 dzieloa przez 0, to otrzymujemy 473. Podobie w systemie dwójkowym liczba dzieloa przez daje wyik 0. W obydwu przypadkach wyik dzieleia jest prostszy o trzy zaczące cyfry. I tak, długość słowa w komputerze cyfrowym jest maksymalą liczbą cyfr, które mogą być pamiętae w ormalej lokalizacji pamięci. Na przykład, = 0 dziesiętych cyfr dla IBM 650; = 3 dwójkowych dla IBM 709, 7090 i 7094; = 3 dla IBM 360 i = 48 dla CDC Iloczy dwóch liczb ormalie zapisaych wymaga do zapisaia cyfr (azywaych górym i dolym akumulatorami, w IBM 650, a MQ jedostek w IBM 7094). Ostatie zaczące cyfr (doly akumulator IBM 650 lub MQ jedostek dla IBM 7094) możeia jest dokładie rówe wyikowi dzieleia otrzymay iloczy przez b, gdzie b jest 35 bazą komputera. ak więc dla IBM 7094 b =. 5.8 Metoda potęgi rezydualej Dwie liczby A i B, z których każda jest dzieloa przez daą liczbę C (azywaą modułem), dające te sam wyik są azywae liczbami kogruetymi. Kogruecja pomiędzy A i B z modułem C jest zapisaa: PR5-3

8 A = B mod C (5.8.) co jest czytae, A jest kogrueta z B z modułem C. Z (5.8.) i co moża powiedzieć jest oczywiste, że różica pomiędzy dwoma liczbami musi być podziela przez moduł A B C = D, (5.8.) gdzie C musi być całkowite. o sugeruje astępującą metodę geerowaia liczb pseudolosowych przez komputer. Założoą liczbę początkową R 0 możymy przez przyjęty możik k. Z iloczyu bierzemy połowę miej zaczących cyfr jako liczbę losową R. Druga liczba losowa R jest utworzoa poprzez użycie pierwszej jako startowej i tego samego możika. a metoda może być wyrażoa astępującym wzorem R m = krm mod b, (5.8.3) gdzie R m jest m tą liczbą losową, b jest liczbą bazową komputera, a długością słowa w ormalej lokalizacji pamięci. Efekt dzieleia modulo b jest stosoway tylko dla iższej połowy słowa iloczyu cyfrowego. Na przykład, jeżeli k = 5, b =, = 4 oraz 5 jest używae jako liczba początkowa, to mod mod 5 3 mod 5 mod 5 5 mod = 9 = 3 = = 5 = (5.8.4) Moża pokazać, że długość cyklu jest daa przez b lub dla powyższego przykładu, ak więc, a IBM 7094 moża geerować różych liczb losowych azywaych potęgą 5 rezydualą, bez cyklu. W praktyce, liczba początkowa jest wybieraa jako 5 i możik jako 5 5 stąd 5 jest ajmiejszą potęgą 5, która wypełia wszystkie 35 bitów w pamięci. Stosując metodę potęgi rezydualej, jak to jest azywae, będzie geerowae , aż osiągie się powtórzeie liczby startowej Ciągi losowe odpowiadające założoym rozkładom Liczby uzyskiwae metodą potęgi rezydualej są jedostajie rozłożoym ciągiem liczb pseudolosowych, który jest, że prawdopodobieństwo że liczba wpadie w day przedział jest proporcjoale do szerokości tego przedziału i ie zależy od położeia tego przedziału. ak geerowae liczby losowe mogą być iterpretowae jako liczby całkowite lub jako losowe ułamki. e późiejsze są bardziej właściwe, poieważ, jak to będzie moża zauważyć w astępym rozdziale, podstawowy problem symulacji zawiera w próbkach rozkładów statystyczych, dla których żade prawdopodobieństwo musi być, z defiicji, częścią jedości. PR5-4

9 utaj są dwie zasadicze metody wykorzystywae do kowersji losowych ułamków a zakłóceia losowe odpowiadające wymagaemu rozkładowi częstości: metoda iwersji oraz metoda rozkładu puktowego. eoria powyższych metod i ich zastosowaia do wspólego rozkładu używaego w symulacji ruchu będzie detaliczie dyskutowaa Metoda odwrotej fukcji dystrybuaty Rozkład zmieej losowej może być opisay przez fukcję gęstości ( t) f w przypadku ciągłym lub przez zbiór frekwecji w przypadku dyskretym, ale w obydwu przypadkach może być opisay przez wartości odpowiediej dystrybuaty P ( t < ), która określa prawdopodobieństwo uzyskaia daej wartości miejszej od. Dlatego to polega a możliwość uzyskaia fukcji odwrotej dystrybuaty dla zadaej wartości losowej frakcji. W ujęciu symboliczym jest ( < ) = f ( t) P t 0 dt (5.0.) Rówaie (5.0.) musi być rozwiązae dla losowych zmieych przez odwrotą fukcję dystrybuaty. Poieważ lewa stroa tego rówaia jest rówoważa rozkładowi jedostajemu pomiędzy 0 i otrzymujemy R = 0 f ( t) dt, (5.0.) gdzie R jest losowym ułamkiem, geerowaym tak, jak to wyjaśioo w poprzedich rozdziałach. Jest oczywiste, że sukces tej metody zależy od () możliwości całkowaia fukcji gęstości f ( t) oraz od () możliwości odwróceia dystrybuaty (5.0.). o są bardzo proste ale bardzo waże waruki stosowalości tej metody. 5.. Metoda rozkładu puktowego Rozważmy ograiczoą fukcję prawdopodobieństwa (jeżeli ie jest ograiczoa, wybieramy pukt t max wystarczająco duży, aby prawdopodobieństwo wypadięcia t a prawo od t max było ieistote) taką, że 0 t < tmi f ( t) = f ( t) tmi t tmax (5..) 0 t > tmax Kroki tej metody zawierają () geerowaie dwóch liczb i spełiających waruki = = ( tmax t mi ) f ( t max ) R R + t mi (5..) i () sprawdzeie czy ma wymagay losowy błąd przez sprawdzeie PR5-5

10 ( ) f ( ) f (5..3) Jeżeli (5..3) jest spełioy, to jest akceptowae jako zgode z wymagaym rozkładem; jeżeli (5..3) ie jest spełioy, to jest odrzucoe i powtórzoe są dwa kroki. 5.. Dyskrete zakłóceia losowe Występują te tu dwa główe typy rozkładów, które wymaga symulowaa próbka. Rozważae były ciągłe zmiee statystycze wymagające ciągłych fukcji frekwecji. Drugi typ, które teraz są rozważae, to zmiee statystycze ograiczoe do liczb dyskretych. Moża pokazać, że pewy seria stałych dodatich może być użyta jako baza dla sformułowaia dyskretych rozkładów prawdopodobieństwa. a własość dyskretych rozkładów ozacza że moża uzyskać prawdopodobieństwo x + zdarzeń w termiach prawdopodobieństwa x zdarzeń. W ujęciu aalityczym gdzie k ( x) jest pewą fukcją x, a P ( x) i ( x + ) i x +. Dystrybuata jest daa przez ( x ) k( x) P( x) P + =, (5..) P są prawdopodobieństwami odpowiedio x P ( x) = P( i) x i= 0, (5..) gdzie ( i) P jest prawdopodobieństwem zdarzeia x lub iych zdarzeń, podczas pewego arbitralego iterwału. Rozważmy komputerowe geerowaie przybyć pojazdów, odpowiadające pewemu zaemu rozkładowi dyskretemu. Losowa frakcja R geerowaa jest i porówywaa z P( x) dla x = 0. Jeżeli R P( 0), to ie było żadych przybyć. Jeżeli > P( 0) R, to wiadomo, że tam było więcej iż zero przybyć. eraz x w (5..) wzrasta o i sprawdza ( x) x = R P (5..3) jest powtarzaa. Jeżeli (5..3) jest spełioy, to okazuje się, że poieważ było to ajwcześiejsze przybycie i ie było to zero przybyć, to musi być dokładie przybycie. ak więc, proces wzrasta x o i powtarza zgodie z (5..), aż do spełieia (5..3); więc ta wartość x jest wybieraa, jak liczba przybyć odpowiadająca wymagaemu rozkładowi. Geerowaie losowych zakłóceń odpowiada rozkładowi Poissoa zgodie z podstawieiem odpowiediej formy wzoru (5..): i P k ( x) ( x) m = x + x m m e =. x! PR5-6

11 Dla dwumiaowego rozkładu 5. Metody Mote Carlo a symulacja potoków ruchu i k ( x) x = x + p p P x x ( x) p x q = 5.3. Specjale metody kowersji Dyskutowae będą metody przekształceia losowych ułamków a losowe zakłóceia dyskutowae w (5.0) do (5.), które są ogólie stosowae dla rozkładów ciągłych i dyskretych. Jedak wiele specjalych teoretyczych rozkładów ma pewe charakterystyki, które dają się wszystkie wykorzystać do iych metod kowersji. Jeda taka metoda kowersji bazuje a idei cetralej-graiczej. ermi cetralegraicze twierdzeie jest zastosoway do pewych twierdzeń, które pokazują, że suma iezależych zmieych losowych o daym, arbitralym rozkładzie ma w graicy rozkład ormaly. Szybkość z jaką ta graica jest osiągaa powoduje, że w praktyce geeruje się losowe zakłóceia, odpowiadające rozkładowi ormalemu. Na przykład, jeda obserwacja z rozkładu jedostajego ma oczywiście rozkład jedostajy; suma dwóch obserwacji rozkładu jedostajego ma rozkład trójkąty; suma trzech obserwacji ma rozkład paraboliczy, bardzo zbliżoy optyczie do rozkładu ormalego. ak więc, jeżeli są sumowae losowych frakcji R, to zmiea t ma rozkład ormaly i µ i= t = σ R i, (5.3.) z wartością oczekiwaą µ = i odchyleiem stadardowym σ =. Połowa przedziału pomiędzy t mi a t max jest używaa przez podstawieie form za µ i σ w (5.3.) i wyborze R i i= = 0 lub t = 3. (5.3.) W praktyce liczba wybieraych losowych frakcji waha się od 6 do w zależości ragi symulowaych zjawisk i wymagaej precyzji. Drugą specjalą metodą kowersji losowe frakcje a losowe zakłóceia bazuje a teorii splotów. Moża pokazać, że rozkład Erlaga reprezetuje a-ty splot rozkładów wykładiczych. e związek sugeruje, że losowe zakłóceie l mające rozkład Erlaga może być geeroway astępująco ( R R ) l = q l... R a (5.3.3) ocher (963) dyskutuje róże specjale metody próbkowe dla wielu wspólych rozkładów prawdopodobieństwa. Jego książka Sztuka symulacji jest być może ajlepszą opublikowaą książką a te temat i jest wysoce rekomedowaa. PR5-7

12 5.4. echiki skaigowe Jakikolwiek wybór wielkości i skali dla modelu symulacyjego ma pewy wpływ a bazową strukturę. Są tu dwie skraje możliwości, które mogą być azwae jako metody kwatowaia czasu lub od zdarzeia do zdarzeia, obydwie pozwalają a symulację losowości skierowaej a zdarzeia (patrz Gerlough, 964). W metodzie kwatowaia czasu rozważae jest trwaie symulowaych zjawisk, aż do osiągięcia zadaej liczby kolejych symulowaych przedziałów czasu rozmieszczoych w całym okresie czasu. W metodzie od zdarzeia do zdarzeia, z drugiej stroy, po daym zdarzeiu jakie się zdarzyło, co determiuje i magazyuje zbiór własych ważych zdarzeń i czasów, w których oe będą zdarzać się, i wyboru ajwcześiejszego. Zdarzaie się astępych ważych zdarzeń może zamiast możliwości lub wykoaia iych zdarzeń, które były a liście, tak więc owy zbiór zdarzeń i czasów może być obliczoy. ak więc, program od zdarzeia do zdarzeia, w grucie rzeczy pyta, co zdarzy się późiej, podczas gdy program kwatowaia czasu pyta, jaka będzie sytuacja po upływie jedostki czasu, od teraz? echika od zdarzeia do zdarzeia jest dużo szybsza, może dawać wyiki z dużą prędkością działaia komputera czasem dziesięciokrotie, ale zwykle wymaga większej złożoości programu. Metoda kwatowaia czasu jest bardzo prosta i zwykle dużo łatwiejsza w programowaiu. W praktyce, zarówo od zdarzeia do zdarzeia, jak i kwatowaie czasu mogą być wykorzystywae oddzielie, jak i łączoe razem dla rozwiązaia problemu. Ważym aspektem kwatowaia czasu jest geerowaie przybyć Poissoowskich. echika często używa porówaia losowej frakcji R z potokiem a sekudę strumieia ruchu dla kwatu czasu t, co moża zapisać R q t. (5.4.) ak więc dla pasa ruchu z obciążeiem 900 poj/h w kwacie czasu s, jeżeli losowa frakcja jest miejsza iż 0.5, to będzie geerowae przybycie. Dowód, że w te sposób geerowae przybycia są poissoowskie, wyika z samych własości rozkładu Poissoa. W rozważaiu geerowaych pojazdów pasa ruchu w pewym pukcie drogi moża wykluczyć możliwość dwóch lub więcej przybyć do puktu w tym samym czasie. Rówież rozsąde jest założeie, że prawdopodobieństwo przybycia pojazdów jest proporcjoale do długości przedziału, stąd prawdopodobieństwo geerowaia przybycia jest proporcjoale do kwatu czasu t. Wreszcie, liczba przybyć geerowaych w iterwale czasu t, ie zależy od liczby przybyć geerowaych przed t. Kiedy te trzy waruki są spełioe, dowiedliśmy, że geerujemy proces Poissoa. Matematyczie, waruki losowości moża wyrazić astępująco: ( t) = q t P ( t) = q t ( t) = ( q t) = 0 P0 (Prawdopodobieństwo 0 przybyć w t ) (Prawdopodobieństwo przybycia w t ) 0 P (Prawdopodobieństwo > przybycie w t ) gdzie q jest itesywością potoku. Niech P ( t) będzie prawdopodobieństwem geerowaia przybyć w przedziale czasu zgodie z (5.4.). W przedziale o długości t + t przybyć może być geerowae a dwa sposoby, przybyć w przedziale t i zero przybyć w t lub przybyć w przedziale t i przybycie w przedziale t. ak więc P ( t t) = P ( t)( q t) + P ( t) q t + (5.4.) PR5-8

13 o może być apisae w formie i przechodząc do graicy 5. Metody Mote Carlo a symulacja potoków ruchu P ( t + t) P ( t) t t moża otrzymać ( t) qp ( t) = qp (5.4.3) P ' ( t) qp ( t) qp ( t) = =,,... (5.4.4) Dla przypadku = 0 ' P o ( t + t) = P ( t)( q t) 0, (5.4.5) co daje ( t) qp ( t) =. (5.4.6) ' P0 0 Rozwiązaiem tego rówaia różiczkowego jest qt ( t) = e i przez idukcję moża pokazać, że ogóle rozwiązaie jest co okazuje się rozkładem Poissoa Kroki w symulacji P0 (5.4.7) P ( t) ( qt) qt e = (5.4.8)! Przedstawiając symulację systemu, ormala sekwecja zdarzeń ewoluuje. Moża to w przeośi tak wyrazić, że kroki w symulacji ie są igdy święte ai chroologicze. e kroki wyzaczają fazy, które są wykoywae jak aproksymacja (jak koleje przybliżeia szukaych rozwiązań przyp. JW.):. Defiicja problemu, specyfikacja w pokrewych termiach i symbolach wraz z miejscem a iezbęde ograiczeia. Sformułowaie modelu, zawierające określeie założeń, wybór kryteriów optymalizacji i selekcja procedur lub zasad a drodze 3. Kostrukcja schematu blokowego pokazująca powiązaia fukcjoale kompoetami systemu symulowaego 4. Określeie wejść programu symulacyjego 5. Budowa programu symulacyjego 6. Kierowaie przebiegami eksperymetów symulowaego systemu zawierające projektowaie eksperymetów mające a celu określeie liczby przebiegów i wartości parametryczych, które będą używae do wyzaczeia graic ufości 7. Ocea i testowaie symulowaego systemu PR5-9

14 Najważiejszym krokiem w komputerowej symulacji systemu ruchu jest sformułowaie modelu. Komputer jest waży w tym, że to daje rozwiązaie modelu praktyczego, i w programowaiu jedyie wyrażając zaczeia komuikacyje pomiędzy badaczem a komputerem. Jedakże, zawsze musi to być pamiętae, że żade model symulacyjy ai program komputerowy ie będzie reprezetoway do końca sam ale jedyie jako pewe zaczeie do rozwiązaia złożoych problemów za pomocą operacji w rzeczywistym systemie ruchowym lub projektowaym dla przyszłości. Waże podczas formułowaia modelu są uproszczeia założeń. Mimo że dodawaie kolorów pojazdów dodaje realizmu modelowi symulacyjemu, efekt kolorów pojazdów w procesie ruchu ie jest dokumetoway dla rozwiązaia jakiegoś problemu praktyczego. W symulacji skrzyżowań wysokiego poziomu, w których koflikty pojazd-pojazd i pojazdpieszy są elimiowae, to może być właściwe pojedycze ujęcie. o ie jest powszeche dla owych wpływów dodawaie owych zmieych w symulacji dla uwzględieia tego, że gra Bóg. Drugim ważym aspektem formułowaia modelu jest ustaowieie bazowych reguł, jakie będą projektowae lub stosowae w systemie, które mogą być mierzoe. Najlepszym przygotowaiem jest sformułowaie symulacyjego modelu, w taki sposób, w którym rysuki merytorycze są wyrażoe jako fukcje zmieych systemu badaego. Ią taką miarą efektywości wartości rozważań są () czas podróży i prędkość (średie), wariacje i rozkłady; () udział procetowy pojazdów przejeżdżający pewie odciek z prędkością zamierzoą; (3) szum przyśpieszeia w aalizie systemów; (4) liczba zmia pasa przez pojazd podczas sekudy; (5) średia długość platformy; (6) poziom jakości opisay w modelu eergia-momety. e róże kryteria, które mogą być waże lub mogą być pożądae do użycia róże kryteria w różych czasach. utaj leży jeda korzyść symulacji. W aalizie moża użyć tylko te kryteria, które są matematyczie dopuszczale (a przykład, moża użyć ajmiejszy kwadrat ale ie maksymale absolute odchyleie; moża użyć wartości oczekiwaej, bez zajomości faktyczego rozkładu itp.). W symulacji, moża użyć jakieś kryterium, mierzące w sposób ciągły, jeżeli jest to iezbęde. Nieodłączym fragmetem formułowaia modelu są określeie ważych zmieych wejściowych i wyjściowych. Wejścia mogą być rozważae w czterech kategoriach: geometrie, charakterystyki ruchowe, polityka kierowców i waruki pojazdów. Ważymi geometryczymi zmieymi są krzywiza, pochyleie, liczba pasów, kąt zbieżości pasów wjazdowych, lokalizacja pasów wjazdowych, odległości miejsc, długość pasa przyśpieszeń, itp. aki system rozważań jak typ wymiay, kofiguracja pasów wjazdowych, drogi frotowe oraz wąskie gardło wzrostu lub spadku ruchu mogą być bardzo waże, jak rówież, występowaie zaków i sygalizacji ruchowej i iych urządzeń sterowaia. rzy fudametale charakterystyki potoków ruchu prędkość, itesywość i gęstość określają waruki operacyje strumieia ruchu. Prędkość maewrowa pojazdu ma waże zaczeie a takie szczególe maewry jak krzyżowaie, włączaie, przeplataie lub zmiaa pasa. Z drugiej stroy, wielkość odstępu wymagaego dla maewru ściśle zależy od względej prędkości pomiędzy maewrującym pojazdem a potokiem krzyżującym lub włączającym, do którego wymagay jest maewr. Rozkład przejścia i długookresowy musi być określoy dla symulowaego systemu w termiach itesywości lub gęstości. Długookresowe położeie pojazdów w strumieiu ruchu wpływa a wybór prędkości przez kierowców. Odwrotość takiej długookresowego położeia daje itesywość, jeżeli mierzeie jest zrobioe w czasie oraz gęstości, jeżeli dystas jest mierzoym parametrem. Rówież waże dla możliwości idywidualego maewrowaia kierowcy, aby symuloway system jest przekształcoym lub stosowaym rozkładem pasa, gdzie tam są więcej iż jede pas w daym kieruku. Zasadicze charakterystyki ruchu zawierają możliwości, wymagaia i waruki kierowcy i pojazdu, który razem formułuje dyskrety czas modelu symulacyjego. Cele kierowcy muszą PR5-30

15 być wbudowae w model. Może to być miimalizacja jego opóźieia lub maksymalizacja jego bezpieczeństwa. Dla skomplikowaia sprawy polityka kierowców może ie być zawarta w przepustowości jego pojazdu. Pojazd, który ma wlec się za wolo jadącym pojazdem jest zmuszoy do zredukowaia jego prędkości. Kiedy przyczya zakłóceń przechodzi, to ruch wraca do prędkości założoej w modelu. Potęga symulacji jako arzędzia leży w możliwości zawarcia w modelu losowej atury ruchu. Moża było zobaczyć, że liczba zmieych w pewie sposób związaa z charakterystykami drogi, w pewie sposób związaa z charakterystykami kierowcy, a w pewie sposób z charakterystykami pojazdu jest bardzo duży dla systemów ruchowych. e zmiee są wyrażoe jako frekwecje rozkładów i wejścia do symulacyjego modelu, za pomocą przedstawioych techik symulacyjych Program symulacyjy Logika symulacji dla przejścia pojazdu przez system, jak rówież wejścia są zae i mogą być podzieloe a trzy kategorie: () logika potoku dla pojazdów iezakłócoych; () logika pojazdu podążającego dla pojazdów włączających z platformy; (3) logika pojazdów maewrujących zawierająca więcej iż jede strumień ruchu. Obecie wszyscy kierowcy w swych pojazdach w systemie drogowym ciągle podejmują decyzje i modyfikują swoje zachowaie. Podczas symulacji klasyfikacja większości pojazdów jest iezależa, podążając, maewrując będzie się zmieiać wiele razy. W komputerze jedak może robić tylko jede prosty logiczy wybór w jakiejś chwili. Sterowaie wszystkimi zachowaiami w daej chwili, to musi być proces sekwecyjy. Iymi słowy, to musi być proces dla każdego pojazdu, dla każdego pojazdu a pasie, dla każdego pasa w systemie. o musi być zgode z wcześiej opisaą sekwecją dla każdej chwili czasu, jaki będzie rozważay. Sukces komputera cyfrowego leży w fakcie, że obszere obliczeia mogą być opisae jako powtarzae cykle. ak więc, program komputerowy zawiera bloki istrukcji, których efektem są wymagae obliczeia, każda wykoaa przez testy, które komputer wykouje sekwecyjie. Dla opisu problemu symulacyjego stosuje schemat blokowy. Rys. 5.4 przedstawia schemat blokowy dla ilustracji powiązań pomiędzy geerowaie wejścia, logiki iezakłócoego potoku, logiki pojazdu adążego i logiki maewrowaia. PR5-3

16 Iput Pojazd X w systemie N Ograiczoy pojazd? N Zawołaj logikę potoku płyego - flow N Dopuszczaly odstęp z lewej? Wyprzedź z lewej N Dopuszczaly odstęp z prawej? Wyprzedź z prawej Zawołaj logikę ruchu adążego fallowig X = X + Output Rys Logika strumieia ruchu Symulacja złożoego systemu ruchowego pozwala a dobre rozumieie programowaia komputerowego. Po wielu ruchowych przedstawieiach problemu powiie być zbudoway model, dla apisaia programu komputerowego dla przeiesieia a symulację. Ideala symulacja ruchu powia reprezetować kooperatywy wysiłek pomiędzy teoretykami ruchu a programistami komputerowymi. Bazując a tym, dobry program symulacyjy powiie spełić astępujące wymagaia.. Powiie pozwalać a łatwą, iedrogą metodę symulacji dróg.. Powiie być dosyć ogóly, aby każda kofiguracja dróg może być symulowaa zadawaa za pomocą wejścia dla odpowiedich parametrów geometryczych. 3. Wejście do takiego systemu powio być łatwo zrozumiałe i możliwe do wykoaia przez persoel iewtajemiczoy w wiedzę komputerową. PR5-3

17 4. Wyikowe wyjście powio być łatwe do czytaia i zawierać wszystkie iezbęde parametry dla iżyiera ruchu dla zastosowań w projektowaiu lub moderizacji systemu dróg. 5. Powiie być apisay w modularej strukturze takiej, aby moża było zmieiać pewe moduły, bez psucia reszty programu. (ak więc, proces adążaia pojazdu powiie być kompletie iezależy od procesu geerowaia wejścia, itp.). 6. Powiie być apisay tak, aby owe moduły, takie jak losowaie ruchu, krzywe itp. mogły być dodawae bez kosztowych zmia programowych. 7. Powiie być maszyowo iezależy, apisay w jedym z wysokiego poziomu języków programowaia, takich jak FORRAN IV, w taki sposób, aby owi programiści mogli modyfikować. Główe składiki programu symulacyjego przedstawioe są a Rys Dae wejściowe, geerowaie wejścia, i logika programu była już dyskutowaa. W ruchu, są tu dwa bazowe wyjścia. Jedo to ormalie zawiera jedo lub dwustroicowe raporty, dające wejściową geometrię i ogóle przedstawieie wyików systemu dla celów badawczych systemu. Druga forma wyjścia jest wykresem ruchu, który pozwala a wizualą oceę systemu. Oczywiście, mogą być dołożoe jakieś rysuki, taki jak udział procetowy odstępów zaakceptowaych, mapy koturowe, mapy profilowe. Nie będą dyskutowae wewętrze procedury archiwowaia. Jest to waże i iezbęde dla sukcesywego operowaia programu. Wykorzystaie w praktyce programu symulacyjego metod archiwowaia pozwala utrzymać wykorzystaie pamięci a miimum i pozwala a szybkie sekwecyje przetwarzaie. Pocz Defiicja problemu Sformułowaie modelu Wej. Symulacja ru Wyj. Ocea Wszystkie projekty No Zmień proj. Wybierz ajlep. Rys Symulacja w projektowaiu systemu. PR5-33

18 Róże procedury mogą być użyte do reprezetowaia potoku ruchu przez komputer. W zaej otacji wprowadzoej przez Gerlough (964) używa wstępych wyrazów dla reprezetowaia pojazdu. Róże części tego słowa są używae jako idywiduale charakterystyki jego czasu wejścia do systemu i prędkości zamierzoej. Charakterystyki każdego pojazdu są idetyfikowae jako jego ruch przez system, mogący obliczyć opóźieie związae z idywidualym pojazdem. Dystas wzdłuż drogi, używay w tej metodzie jako kwatyfikator używaego bloku jedostkowego, który jest szerokością pasa i ma ekwiwalet długości dla pewego udziału długości średiego pojazdu. ak więc pojazd może okupować tylko ograiczoą liczbę dyskretych pozycji. Każdy pojazd może być posuway do przodu przez zmiaę rekordu pokazującego pozycję w kwacie czasu (kwatowaie czasu). o jest wykoae przez możeie prędkości pojazdu przez przyrost czasu i dodawae przesuięcie w obecej pozycji. ak więc, pojazdy przejeżdżają przez system w większości w te sam sposób, jak gracz rusza w grze moopolowej. W iej procedurze przedstawioej przez Lewisa i Michalaela (964), wejściowy system drogowy jest reprezetoway przez trójwymiarową macierz (Rys.5.6) Pas 6 Pas 5 Pas 4 Pas 3 Pas Pas Spowolieia atężeie Prędkość Positio ur ime of arrival Kieruek ruchu traffic flow PR5-34

19 Rys Komputerowe przedstawieie ruchu Liczba wymiarów odpowiada względej pozycji wzdłuż drogi; to jest, dae o pojeździe są przechowywae w rozbudowaej o elemety tablicy w tym samym porządku, jakim pojazdu zajmują poszczególy pas. Wymiar wertykaly tablicy zawiera wszystkie charakterystyki iformacyje każdego szczególego pojazdu oraz liczbę wymiarów reprezetującą róże pasy ruchu. Dla kotrastu w ujęciu memoradowym, ta matematycza procedura pozwala a powiązaie każdego pojazdu z jego własym wskaźikiem pozycji. Dlatego pozycja pojazdów jest istotie ciągła, a prędkość i przyśpieszeie ie są fukcjami schodkowymi. W dodatku tablica cyrkulacyja używa w procedurze dwóch specjalych rejestrów dla każdego pasa ruchu ideks pozycji pojazdu lidera i liczba pojazdów a pasie. Sadefur (964) rozwiął metodę archiwowaia symulacji zaą jako procesowaie i łańcuchowaie. W założeiu zrobioym w łańcuchowaiu jest takie, że każdy zbiór iformacyjy jest macierzą C, zrobioą z wektorów iformacyjych X. W każdym i Ideks p. prowadząc Liczba pojazdów w wektorze iformacyjym są pukty wyzaczające wektor iformacyjy X i i astępy wektor X i+. Wziąć, a przykład, macierz iformacyją C, zrobioą z czterech wektorów X i, gdzie x i, i x i, są puktami łańcucha, a x i, j, gdzie j = 3, 4,..., 8 jest iformacją związaą z wektorem X i. Macierz powstaje w astępujący sposób: X X X 3 X 4 Pozycja poj Ostati Następy poz A poz C poz C poz A poz Z poz Z poz C poz B poz B poz Z I, j I, j I 3, j I 4, j j = 3, 4,...,8 j = 3, 4,...,8 j = 3, 4,...,8 j = 3, 4,...,8 gdzie poz A jest komputerową lokalizacją (adresem) wektora X i. W powyższy sposób, wektory iformacyje mogą być dodawae do, lub usuwae z, a łańcuch iformacyjy po tych operacjach pozwala a miimalizację czasu komputerowego. o rówież zmiejsza pamięć wymagaą, poieważ wiele łańcuchów mieści się a tym samym polu Kalibracja modelu Jeżeli program właściwy, realizm daych wyjściowych tylko jest fukcją realizmu modelu systemu daych wejściowych modelu. Model symulacyjy musi być istotie testoway, traktoway jako hipoteza, im zostaie przyjęty. akie testy zawierają koieczy realizm i ważość. Poieważ aalityk jest geeralie zaiteresoway warukami stacjoarymi, ależy pewą uwagę poświęcić etapowi wstępemu systemu. o może być uzyskae przez pozwoleie aby symulację zacząć od etapu idetyfikacji aż do uzyskaia waruków stacjoarych. Ie podejście zawiera gorące okresy lub gorące odciki pozwalające a PR5-35

20 załadowaie systemu ruchem ormalym dopiero po próbych przebiegach zrobioych a próbkach. Symulacja oczywiście jest techiką próbki (która czasem jest azywaa jako próbka symulacyja). Mimo że symulacja a komputerach cyfrowych jest szybka, jest iepraktycze zakładaie użycie całej gamy z każdej zmieej, poieważ róże tysiące przebiegów symulacyjych jest wymagae. Statystyczy projekt powiie być przyjęty dla uzyskaia pewej skończoej liczby próbych kombiacji. ak więc, dla symulacji skrzyżowaia mogą być wybrae trzy poziomy, dla zmieych każdego wejścia,ilustrowae a ab. 5.. Zmie e iezale że ab. 5. rzy poziomy stosowae dla każdej iezależej zmieej w siedmio czyikowym dwufazowym projektowaiu rotacyjym Poziom projektowaia Nr Nazwa Potoki wejściowe (pasy +), poj/5 mi Potoki przeciwe (pasy 3+4), poj/5 mi Skręty w prawo a pas, procet Skręty w lewo a pas, procet Skręty w lewo a pas 3, procet Skręty w prawo a pas 4, procet Wielkość czerwoego sygału, procet Powtórzeie jest bardzo pożądae zwłaszcza gdy rozważae jest projektowaie eksperymetale. Badaia statystycze pokazują, że wiarygodość symulacji wzrasta z pierwiastkiem kwadratowym wielkości próbki. Lepiej mieć wyiki z czterech 5-mi przebiegów, iż z pojedyczego przebiegu h. Jest wiele techik pozwalających zmiejszyć wielkość próbki i uzyskać taką samą wiarygodość. W końcu jest to istote, że wyiki symulacji mogą być porówywae ze zaym światem rzeczywistym odpowiadając za taki sam porządek wejścia, zapewiający satysfakcję z modelowej aalizy. Ważość tego procesu symulacji modelu jest wyzaczoa dla określeia czy to zadawalająco aśladuje rzeczywiste ruchowe zachowaia. Poieważ, jak to zauważoo poprzedio, ie jest itecją symulacji aśladowaie dokładie każdej miuty rzeczywistego systemu, to jest iezbęde ujęcie a początku tych charakterystyk rzeczywistego ruchu, dla których model powiie ująć ze względów użyteczych, iymi słowy, jakie kryteria będą stosowae w oceie wartości. eoretyczie model musi powtarzać te charakterystyki, które iżyier ruchu używa jako kryteria eksploatacyje. Jedak, jak zwykle ogóla użyteczość projektu i kryteria operacyje ie mogą być precyzyjie zdefiiowae i każde zastosowaie projektu wymaga wyboru odpowiedich kryteriów opartych a osądzie iżyierskim. Jede może adoptować filozofię mikroskopu, w której próby byłyby robioe dla powtórzeń a komputerze, ze specyficzymi detalami a polu próbek i umiarkowaia w długości czasu. Ie podejście makroskopowe może być użyte, a których przebiegi komputerowe szukają odtworzeia większości własości statystyczych a polu próbek osiągiętych w końcu długiego okresu czasu. ak długo jak proces ruchu jest losowy, prawdziwe argumety mogą być uzyskae dodatkowo w iym podejściu PR5-36

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elemety modelowaia matematyczego Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Modelowaie daych (ilościowe): Metody statystycze: estymacja parametrów modelu,

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu. Rachuek prawdopodobieństwa i statystyka W12: Statystycza aaliza daych jakościowych Dr Aa ADRIAN Paw B5, pok 407 ada@agh.edu.pl Wprowadzeie Rozróżia się dwa typy daych jakościowych: Nomiale jeśli opisują

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi. Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 1 i 2

STATYSTYKA OPISOWA WYKŁAD 1 i 2 STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia

Bardziej szczegółowo

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

Wykład 11. a, b G a b = b a,

Wykład 11. a, b G a b = b a, Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada

Bardziej szczegółowo

STATYSTYKA I ANALIZA DANYCH

STATYSTYKA I ANALIZA DANYCH TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica

Bardziej szczegółowo

Analiza matematyczna. Robert Rałowski

Analiza matematyczna. Robert Rałowski Aaliza matematycza Robert Rałowski 6 paździerika 205 2 Spis treści 0. Liczby aturale.................................... 3 0.2 Liczby rzeczywiste.................................... 5 0.2. Nierówości...................................

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów

Bardziej szczegółowo

BADANIA DOCHODU I RYZYKA INWESTYCJI

BADANIA DOCHODU I RYZYKA INWESTYCJI StatSoft Polska, tel. () 484300, (60) 445, ifo@statsoft.pl, www.statsoft.pl BADANIA DOCHODU I RYZYKA INWESTYCJI ZA POMOCĄ ANALIZY ROZKŁADÓW Agieszka Pasztyła Akademia Ekoomicza w Krakowie, Katedra Statystyki;

Bardziej szczegółowo

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem 9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3

Bardziej szczegółowo

Zasada indukcji matematycznej. Dowody indukcyjne.

Zasada indukcji matematycznej. Dowody indukcyjne. Zasada idukcji matematyczej Dowody idukcyje Z zasadą idukcji matematyczej i dowodami idukcyjymi sytuacja jest ajczęściej taka, że podaje się w szkole treść zasady idukcji matematyczej, a astępie omawia,

Bardziej szczegółowo

Egzamin maturalny z matematyki CZERWIEC 2011

Egzamin maturalny z matematyki CZERWIEC 2011 Egzami maturaly z matematyki CZERWIEC 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Poziom podstawowy czerwiec 0 Klucz puktowaia do zadań zamkiętych Nr

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy transportowe cd, Problem komiwojażera

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy transportowe cd, Problem komiwojażera Istrukcja do ćwiczeń laboratoryjych z przedmiotu: Badaia operacyje Temat ćwiczeia: Problemy trasportowe cd Problem komiwojażera Zachodiopomorski Uiwersytet Techologiczy Wydział Iżyierii Mechaiczej i Mechatroiki

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrówawcze z fizyki -Zestaw 5 -Teoria Optyka geometrycza i optyka falowa. Prawo odbicia i prawo załamaia światła, Bieg promiei świetlych w pryzmacie, soczewki i zwierciadła. Zjawisko dyfrakcji

Bardziej szczegółowo

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D. Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)

Bardziej szczegółowo

0.1 ROZKŁADY WYBRANYCH STATYSTYK

0.1 ROZKŁADY WYBRANYCH STATYSTYK 0.1. ROZKŁADY WYBRANYCH STATYSTYK 1 0.1 ROZKŁADY WYBRANYCH STATYSTYK Zadaia 0.1.1. Niech X 1,..., X będą iezależymi zmieymi losowymi o tym samym rozkładzie. Obliczyć ES 2 oraz D 2 ( 1 i=1 X 2 i ). 0.1.2.

Bardziej szczegółowo

Przykładowe zadania dla poziomu rozszerzonego

Przykładowe zadania dla poziomu rozszerzonego Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,

Bardziej szczegółowo

3. Funkcje elementarne

3. Funkcje elementarne 3. Fukcje elemetare Fukcjami elemetarymi będziemy azywać fukcję tożsamościową x x, fukcję wykładiczą, fukcje trygoometrycze oraz wszystkie fukcje, jakie moża otrzymać z wyżej wymieioych drogą astępujących

Bardziej szczegółowo

Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień.

Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień. Metoda aalizy hierarchii Saaty ego Ważym problemem podejmowaia decyzji optymalizowaej jest często występująca hierarchiczość zagadień. Istieje wiele heurystyczych podejść do rozwiązaia tego problemu, jedak

Bardziej szczegółowo

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 +

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 + Zadaia róże W tym rozdziale zajdują się zadaia ietypowe, często dotyczące łańcuchów Markowa oraz własości zmieych losowych. Pojawią się także zadaia z estymacji Bayesowskiej.. (Eg 8/) Rozważamy łańcuch

Bardziej szczegółowo

Fundamentalna tabelka atomu. eureka! to odkryli. p R = nh -

Fundamentalna tabelka atomu. eureka! to odkryli. p R = nh - TEKST TRUDNY Postulat kwatowaia Bohra, czyli założoy ad hoc związek pomiędzy falą de Broglie a a geometryczymi własościami rozważaego problemu, pozwolił bez większych trudości teoretyczie przewidzieć rozmiary

Bardziej szczegółowo

8. Optymalizacja decyzji inwestycyjnych

8. Optymalizacja decyzji inwestycyjnych 8. Optymalizacja decyzji iwestycyjych 8. Wprowadzeie W wielu różych sytuacjach, w tym rówież w czasie wyboru iwestycji do realizacji, podejmujemy decyzje. Sytuacje takie azywae są sytuacjami decyzyjymi.

Bardziej szczegółowo

5. Zasada indukcji matematycznej. Dowody indukcyjne.

5. Zasada indukcji matematycznej. Dowody indukcyjne. Notatki do lekcji, klasa matematycza Mariusz Kawecki, II LO w Chełmie 5. Zasada idukcji matematyczej. Dowody idukcyje. W rozdziale sformułowaliśmy dla liczb aturalych zasadę miimum. Bezpośredią kosekwecją

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam

Bardziej szczegółowo

Materiał ćwiczeniowy z matematyki Marzec 2012

Materiał ćwiczeniowy z matematyki Marzec 2012 Materiał ćwiczeiowy z matematyki Marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Marzec 0 Klucz puktowaia do zadań zamkiętych Nr zad 3 5 6 7 8 9 0

Bardziej szczegółowo

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz

Bardziej szczegółowo

a n 7 a jest ciągiem arytmetycznym.

a n 7 a jest ciągiem arytmetycznym. ZADANIA MATURALNE - CIĄGI LICZBOWE - POZIOM PODSTAWOWY Opracowała mgr Dauta Brzezińska Zad.1. ( pkt) Ciąg a określoy jest wzorem 5.Wyzacz liczbę ujemych wyrazów tego ciągu. Zad.. ( 6 pkt) a Day jest ciąg

Bardziej szczegółowo

SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY

SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY Weryfikacja hipotez statystyczych WNIOSKOWANIE STATYSTYCZNE Wioskowaie statystycze, to proces uogóliaia wyików uzyskaych a podstawie próby a całą

Bardziej szczegółowo

40:5. 40:5 = 500000υ5 5p 40, 40:5 = 500000 5p 40.

40:5. 40:5 = 500000υ5 5p 40, 40:5 = 500000 5p 40. Portfele polis Poieważ składka jest ustalaa jako wartość oczekiwaa rzeczywistego, losowego kosztu ubezpieczeia, więc jest tym bliższa średiej wydatków im większa jest liczba ubezpieczoych Polisy grupuje

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2011 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2011 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY Cetrala Komisja Egzamiacyja Arkusz zawiera iformacje prawie chroioe do mometu rozpoczęcia egzamiu. Układ graficzy CKE 2010 KOD WISUJE ZDAJĄCY ESEL Miejsce a aklejkę z kodem EGZAMIN MATURALNY Z INORMATYKI

Bardziej szczegółowo

Niepewności pomiarowe

Niepewności pomiarowe Niepewości pomiarowe Obserwacja, doświadczeie, pomiar Obserwacja zjawisk fizyczych polega a badaiu ych zjawisk w warukach auralych oraz a aalizie czyików i waruków, od kórych zjawiska e zależą. Waruki

Bardziej szczegółowo

Jak obliczać podstawowe wskaźniki statystyczne?

Jak obliczać podstawowe wskaźniki statystyczne? Jak obliczać podstawowe wskaźiki statystycze? Przeprowadzoe egzamiy zewętrze dostarczają iformacji o tym, jak ucziowie w poszczególych latach opaowali umiejętości i wiadomości określoe w stadardach wymagań

Bardziej szczegółowo

Moduł 4. Granica funkcji, asymptoty

Moduł 4. Granica funkcji, asymptoty Materiały pomocicze do e-learigu Matematyka Jausz Górczyński Moduł. Graica fukcji, asymptoty Wyższa Szkoła Zarządzaia i Marketigu Sochaczew Od Autora Treści zawarte w tym materiale były pierwotie opublikowae

Bardziej szczegółowo

Podstawy informatyki 2. Podstawy informatyki 2. Wykład nr 9 (09.05.2007) Plan wykładu nr 9. Politechnika Białostocka. - Wydział Elektryczny

Podstawy informatyki 2. Podstawy informatyki 2. Wykład nr 9 (09.05.2007) Plan wykładu nr 9. Politechnika Białostocka. - Wydział Elektryczny odstawy iforatyki Wykład r 9 /44 odstawy iforatyki olitechika Białostocka - Wydział Elektryczy Elektrotechika, seestr II, studia stacjoare Rok akadeicki 006/007 la wykładu r 9 Obliczaie liczby π etodą

Bardziej szczegółowo

Materiały do wykładu 4 ze Statystyki

Materiały do wykładu 4 ze Statystyki Materiały do wykładu 4 ze Statytyki CHARAKTERYSTYKI LICZBOWE STRUKTURY ZBIOROWOŚCI (dok.) 1. miary położeia - wykład 2 2. miary zmieości (dyperji, rozprozeia) - wykład 3 3. miary aymetrii (kośości) 4.

Bardziej szczegółowo

STATYSTYCZNA OCENA WYNIKÓW POMIARÓW.

STATYSTYCZNA OCENA WYNIKÓW POMIARÓW. Statytycza ocea wyików pomiaru STATYSTYCZNA OCENA WYNIKÓW POMIARÓW CEL ĆWICZENIA Celem ćwiczeia jet: uświadomieie tudetom, że każdy wyik pomiaru obarczoy jet błędem o ie zawze zaej przyczyie i wartości,

Bardziej szczegółowo

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa Matematyka fiasowa 8.05.0 r. Komisja Egzamiacyja dla Aktuariuszy LX Egzami dla Aktuariuszy z 8 maja 0 r. Część I Matematyka fiasowa WERJA EU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut

Bardziej szczegółowo

INSTRUKCJA NR 06-2 POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ

INSTRUKCJA NR 06-2 POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ LABORATORIUM OCHRONY ŚRODOWISKA - SYSTEM ZARZĄDZANIA JAKOŚCIĄ - INSTRUKCJA NR 06- POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ 1. Cel istrukcji Celem istrukcji jest określeie metodyki postępowaia w celu

Bardziej szczegółowo

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO Agieszka Jakubowska ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO. Wstęp Skąplikowaie współczesego życia gospodarczego powoduje, iż do sterowaia procesem zarządzaia

Bardziej szczegółowo

Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r.

Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r. Matematyka fiasowa 08.10.2007 r. Komisja Egzamiacyja dla Aktuariuszy XLIII Egzami dla Aktuariuszy z 8 paździerika 2007 r. Część I Matematyka fiasowa WERSJA TESTU A Imię i azwisko osoby egzamiowaej:...

Bardziej szczegółowo

SYSTEM OCENY STANU NAWIERZCHNI SOSN ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI BITUMICZNYCH W SYSTEMIE OCENY STANU NAWIERZCHNI SOSN

SYSTEM OCENY STANU NAWIERZCHNI SOSN ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI BITUMICZNYCH W SYSTEMIE OCENY STANU NAWIERZCHNI SOSN ZAŁĄCZNIK B GENERALNA DYREKCJA DRÓG PUBLICZNYCH Biuro Studiów Sieci Drogowej SYSTEM OCENY STANU NAWIERZCHNI SOSN WYTYCZNE STOSOWANIA - ZAŁĄCZNIK B ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI

Bardziej szczegółowo

Matematyka. Zakres podstawowy. Nawi zanie do gimnazjum. n/m Rozwi zywanie zada Zadanie domowe Dodatkowe Komunikaty Bie ce materiały

Matematyka. Zakres podstawowy. Nawi zanie do gimnazjum. n/m Rozwi zywanie zada Zadanie domowe Dodatkowe Komunikaty Bie ce materiały Lekcja 1. Lekcja orgaizacyja kotrakt Podręczik: W. Babiański, L. Chańko, D. Poczek Mateatyka. Zakres podstawowy. Wyd. Nowa Era. Zakres ateriału: Liczby rzeczywiste Wyrażeia algebraicze Rówaia i ierówości

Bardziej szczegółowo

Chemia Teoretyczna I (6).

Chemia Teoretyczna I (6). Chemia Teoretycza I (6). NajwaŜiejsze rówaia róŝiczkowe drugiego rzędu o stałych współczyikach w chemii i fizyce cząstka w jedowymiarowej studi potecjału Cząstka w jedowymiarowej studi potecjału Przez

Bardziej szczegółowo

Zeszyty naukowe nr 9

Zeszyty naukowe nr 9 Zeszyty aukowe r 9 Wyższej Szkoły Ekoomiczej w Bochi 2011 Piotr Fijałkowski Model zależości otowań giełdowych a przykładzie otowań ołowiu i spółki Orzeł Biały S.A. Streszczeie Niiejsza praca opisuje próbę

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW BADANIE ODKSZTAŁCEŃ SPRĘŻYNY ŚRUBOWEJ Opracował: Dr iż. Grzegorz

Bardziej szczegółowo

METODYKA WYKONYWANIA POMIARÓW ORAZ OCENA NIEPEWNOŚCI I BŁĘDÓW POMIARU

METODYKA WYKONYWANIA POMIARÓW ORAZ OCENA NIEPEWNOŚCI I BŁĘDÓW POMIARU METODYKA WYKONYWANIA POMIARÓW ORAZ OCENA NIEPEWNOŚCI I BŁĘDÓW POMIARU Celem każdego ćwiczeia w laboratorium studeckim jest zmierzeie pewych wielkości, a astępie obliczeie a podstawie tych wyików pomiarów

Bardziej szczegółowo

Struktura czasowa stóp procentowych (term structure of interest rates)

Struktura czasowa stóp procentowych (term structure of interest rates) Struktura czasowa stóp procetowych (term structure of iterest rates) Wysokość rykowych stóp procetowych Na ryku istieje wiele różorodych stóp procetowych. Poziom rykowej stopy procetowej (lub omialej stopy,

Bardziej szczegółowo

INWESTYCJE MATERIALNE

INWESTYCJE MATERIALNE OCENA EFEKTYWNOŚCI INWESTYCJI INWESTCJE: proces wydatkowaia środków a aktywa, z których moża oczekiwać dochodów pieiężych w późiejszym okresie. Każde przedsiębiorstwo posiada pewą liczbę możliwych projektów

Bardziej szczegółowo

Podstawowe cechy podzielności liczb.

Podstawowe cechy podzielności liczb. Mariusz Kawecki, Notatki do lekcji Cechy podzielości liczb Podstawowe cechy podzielości liczb. Pamiętamy z gimazjum, że istieją reguły, przy pomocy których łatwo sprawdzić, czy kokreta liczba dzieli się

Bardziej szczegółowo

14. RACHUNEK BŁĘDÓW *

14. RACHUNEK BŁĘDÓW * 4. RACHUNEK BŁĘDÓW * Błędy, które pojawiają się w czasie doświadczeia mogą mieć włase źródła. Są imi błędy związae z błędą kalibracją torów pomiarowych, szumy, czas reagowaia przyrządu, ograiczeia kostrukcyje,

Bardziej szczegółowo

Wykład. Inwestycja. Inwestycje. Inwestowanie. Działalność inwestycyjna. Inwestycja

Wykład. Inwestycja. Inwestycje. Inwestowanie. Działalność inwestycyjna. Inwestycja Iwestycja Wykład Celowo wydatkowae środki firmy skierowae a powiększeie jej dochodów w przyszłości. Iwestycje w wyiku użycia środków fiasowych tworzą lub powiększają majątek rzeczowy, majątek fiasowy i

Bardziej szczegółowo

(1) gdzie I sc jest prądem zwarciowym w warunkach normalnych, a mnożnik 1,25 bierze pod uwagę ryzyko 25% wzrostu promieniowania powyżej 1 kw/m 2.

(1) gdzie I sc jest prądem zwarciowym w warunkach normalnych, a mnożnik 1,25 bierze pod uwagę ryzyko 25% wzrostu promieniowania powyżej 1 kw/m 2. Katarzya JARZYŃSKA ABB Sp. z o.o. PRODUKTY NISKONAPIĘCIOWE W INSTALACJI PV Streszczeie: W ormalych warukach pracy każdy moduł geeruje prąd o wartości zbliżoej do prądu zwarciowego I sc, który powiększa

Bardziej szczegółowo

KOMPETENCJE EKSPERTÓW W INFORMATYCZNYM SYSTEMIE WSPOMAGANIA DECYZJI

KOMPETENCJE EKSPERTÓW W INFORMATYCZNYM SYSTEMIE WSPOMAGANIA DECYZJI KOMPETENCJE EKSPERTÓW W INFORMATYCZNYM SYSTEMIE WSPOMAGANIA DECYZJI Ryszard Budziński, Marta Fukacz, Jarosław Becker, Uiwersytet Szczeciński, Wydział Nauk Ekoomiczych i Zarządzaia, Istytut Iformatyki w

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTUT EKSPLOATACJI MASZYN I TRANSPORTU ZAKŁAD STEROWANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆWICZENIE: E20 BADANIE UKŁADU

Bardziej szczegółowo

Laboratorium Sensorów i Pomiarów Wielkości Nieelektrycznych. Ćwiczenie nr 1

Laboratorium Sensorów i Pomiarów Wielkości Nieelektrycznych. Ćwiczenie nr 1 1. Cel ćwiczeia: Laboratorium Sesorów i Pomiarów Wielkości Nieelektryczych Ćwiczeie r 1 Pomiary ciśieia Celem ćwiczeia jest zapozaie się z kostrukcją i działaiem czujików ciśieia. W trakcie zajęć laboratoryjych

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM RACHUNEK EKONOMICZNY W ELEKTROENERGETYCE INSTRUKCJA DO ĆWICZENIA

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI Miejsce a aklejkę z kodem szkoły dysleksja MIN-R_P-072 EGZAMIN MATURALNY Z INFORMATYKI MAJ ROK 2007 POZIOM ROZSZERZONY CZĘŚĆ I Czas pracy 90 miut Istrukcja dla zdającego. Sprawdź, czy arkusz egzamiacyjy

Bardziej szczegółowo

Konspekt lekcji (Kółko matematyczne, kółko przedsiębiorczości)

Konspekt lekcji (Kółko matematyczne, kółko przedsiębiorczości) Kospekt lekcji (Kółko matematycze, kółko przedsiębiorczości) Łukasz Godzia Temat: Paradoks skąpej wdowy. O procecie składaym ogólie. Czas lekcji 45 miut Cele ogóle: Uczeń: Umie obliczyć procet składay

Bardziej szczegółowo

Wpływ warunków eksploatacji pojazdu na charakterystyki zewnętrzne silnika

Wpływ warunków eksploatacji pojazdu na charakterystyki zewnętrzne silnika POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ MECHANICZNY Katedra Budowy i Eksploatacji Maszy Istrukcja do zajęć laboratoryjych z przedmiotu: EKSPLOATACJA MASZYN Wpływ waruków eksploatacji pojazdu a charakterystyki

Bardziej szczegółowo

PODSTAWY MATEMATYKI FINANSOWEJ

PODSTAWY MATEMATYKI FINANSOWEJ PODSTAWY MATEMATYKI INANSOWEJ WZORY I POJĘCIA PODSTAWOWE ODSETKI, A STOPA PROCENTOWA KREDYTU (5) ODSETKI OD KREDYTU KWOTA KREDYTU R R- rocza stopa oprocetowaia kredytu t - okres trwaia kredytu w diach

Bardziej szczegółowo

sin sin ε δ Pryzmat Pryzmat Pryzmat Pryzmat Powierzchnia sferyczna Elementy optyczne II sin sin,

sin sin ε δ Pryzmat Pryzmat Pryzmat Pryzmat Powierzchnia sferyczna Elementy optyczne II sin sin, Wykład XI Elemety optycze II pryzmat kąt ajmiejszego odchyleia powierzchia serycza tworzeie obrazów rówaie soczewka rodzaje rówaia szliierzy i Gaussa kostrukcja obrazów moc optycza korekcja wad wzroku

Bardziej szczegółowo

Uwarunkowania rozwojowe województw w Polsce analiza statystyczno-ekonometryczna

Uwarunkowania rozwojowe województw w Polsce analiza statystyczno-ekonometryczna 3 MAŁGORZATA STEC Dr Małgorzata Stec Zakład Statystyki i Ekoometrii Uiwersytet Rzeszowski Uwarukowaia rozwojowe województw w Polsce aaliza statystyczo-ekoometrycza WPROWADZENIE Rozwój społeczo-gospodarczy

Bardziej szczegółowo

Egzaminy. na wyższe uczelnie 2003. zadania

Egzaminy. na wyższe uczelnie 2003. zadania zadaia Egzamiy wstępe a wyższe uczelie 003 I. Akademia Ekoomicza we Wrocławiu. Rozwiąż układ rówań Æ_ -9 y - 5 _ y = 5 _ -9 _. Dla jakiej wartości parametru a suma kwadratów rozwiązań rzeczywistych rówaia

Bardziej szczegółowo

Harmonogramowanie linii montażowej jako element projektowania cyfrowej fabryki

Harmonogramowanie linii montażowej jako element projektowania cyfrowej fabryki 52 Sławomir Herma Sławomir HERMA atedra Iżyierii Produkcji, ATH w Bielsku-Białej E mail: slawomir.herma@gmail.com Harmoogramowaie liii motażowej jako elemet projektowaia cyfrowej fabryki Streszczeie: W

Bardziej szczegółowo

AUDYT SYSTEMU GRZEWCZEGO

AUDYT SYSTEMU GRZEWCZEGO Wytycze do audytu wykoao w ramach projektu Doskoaleie poziomu edukacji w samorządach terytorialych w zakresie zrówoważoego gospodarowaia eergią i ochroy klimatu Ziemi dzięki wsparciu udzieloemu przez Isladię,

Bardziej szczegółowo

Przemysław Jaśko Wydział Ekonomii i Stosunków Międzynarodowych, Uniwersytet Ekonomiczny w Krakowie

Przemysław Jaśko Wydział Ekonomii i Stosunków Międzynarodowych, Uniwersytet Ekonomiczny w Krakowie MODELE SCORINGU KREDYTOWEGO Z WYKORZYSTANIEM NARZĘDZI DATA MINING ANALIZA PORÓWNAWCZA Przemysław Jaśko Wydział Ekoomii i Stosuków Międzyarodowych, Uiwersytet Ekoomiczy w Krakowie 1 WROWADZENIE Modele aplikacyjego

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU. Wprowadzenie. = =

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU. Wprowadzenie. = = WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Wprowadzeie. Przy przejśiu światła z jedego ośrodka do drugiego występuje zjawisko załamaia zgodie z prawem Selliusa siα

Bardziej szczegółowo

Politechnika Poznańska

Politechnika Poznańska Politechika Pozańska Temat: Laboratorium z termodyamiki Aaliza składu spali powstałych przy spalaiu paliw gazowych oraz pomiar ich prędkości przepływu za pomocą Dopplerowskiego Aemometru Laserowego (LDA)

Bardziej szczegółowo

ROZPORZĄDZENIE MINISTRA NAUKI I SZKOLNICTWA WYŻSZEGO 1) z dnia 21 października 2011 r.

ROZPORZĄDZENIE MINISTRA NAUKI I SZKOLNICTWA WYŻSZEGO 1) z dnia 21 października 2011 r. Dzieik Ustaw Nr 251 14617 Poz. 1508 1508 ROZPORZĄDZENIE MINISTRA NAUKI I SZKOLNICTWA WYŻSZEGO 1) z dia 21 paździerika 2011 r. w sprawie sposobu podziału i trybu przekazywaia podmiotowej dotacji a dofiasowaie

Bardziej szczegółowo

L.Kowalski zadania ze statystyki matematycznej-zestaw 3 ZADANIA - ZESTAW 3

L.Kowalski zadania ze statystyki matematycznej-zestaw 3 ZADANIA - ZESTAW 3 L.Kowalski zadaia ze statystyki matematyczej-zestaw 3 ZADANIA - ZESTAW 3 Zadaie 3. Cecha X populacji ma rozkład N m,. Z populacji tej pobrao próbę 7 elemetową i otrzymao wyiki x7 = 9, 3, s7 =, 5 a Na poziomie

Bardziej szczegółowo

ALGORYTM OPTYMALIZACJI PARAMETRÓW EKSPLOATACYJNYCH ŚRODKÓW TRANSPORTU

ALGORYTM OPTYMALIZACJI PARAMETRÓW EKSPLOATACYJNYCH ŚRODKÓW TRANSPORTU Łukasz WOJCIECHOWSKI, Tadeusz CISOWSKI, Piotr GRZEGORCZYK ALGORYTM OPTYMALIZACJI PARAMETRÓW EKSPLOATACYJNYCH ŚRODKÓW TRANSPORTU Streszczeie W artykule zaprezetowao algorytm wyzaczaia optymalych parametrów

Bardziej szczegółowo

Analiza dokładności pomiaru, względnego rozkładu egzytancji widmowej źródeł światła, dokonanego przy użyciu spektroradiometru kompaktowego

Analiza dokładności pomiaru, względnego rozkładu egzytancji widmowej źródeł światła, dokonanego przy użyciu spektroradiometru kompaktowego doi:1.15199/48.215.4.38 Eugeiusz CZECH 1, Zbigiew JAROZEWCZ 2,3, Przemysław TABAKA 4, rea FRYC 5 Politechika Białostocka, Wydział Elektryczy, Katedra Elektrotechiki Teoretyczej i Metrologii (1), stytut

Bardziej szczegółowo

ZESZYTY NAUKOWE POLITECHNIKI GDAŃSKIEJ

ZESZYTY NAUKOWE POLITECHNIKI GDAŃSKIEJ ZESZYTY NAUKOWE POLITECHNIKI GDAŃSKIEJ Nr 573 Ekoomia XXXIX 2001 BŁAŻEJ PRUSAK Katedra Ekoomii i Zarządzaia Przedsiębiorstwem METODY OCENY PROJEKTÓW INWESTYCYJNYCH Celem artykułu jest przedstawieie metod

Bardziej szczegółowo

Fraktale. Definicja ogólna. fraktala. w naturze. Samopodobieństwo. w naturze. Śnieżynka von Kocha

Fraktale. Definicja ogólna. fraktala. w naturze. Samopodobieństwo. w naturze. Śnieżynka von Kocha Defiicja ogóla fraktala Fraktale dr iż.. Piotr Steć Fraktalem azywamy obiekt, który wykazuje cechy dokładego lub statystyczego podobieństwa Fraktal jest obiektem, którego wymiar jest ułamkiem Słowo fraktal

Bardziej szczegółowo

Wprowadzenie. metody elementów skończonych

Wprowadzenie. metody elementów skończonych Metody komputerowe Wprowadzeie Podstawy fizycze i matematycze metody elemetów skończoych Literatura O.C.Ziekiewicz: Metoda elemetów skończoych. Arkady, Warszawa 972. Rakowski G., acprzyk Z.: Metoda elemetów

Bardziej szczegółowo

Zatem przyszła wartość kapitału po 1 okresie kapitalizacji wynosi

Zatem przyszła wartość kapitału po 1 okresie kapitalizacji wynosi Zatem rzyszła wartość kaitału o okresie kaitalizacji wyosi m k m* E Z E( m r) 2 Wielkość K iterretujemy jako umowa włatę, zastęującą w rówoważy sosób, w sesie kaitalizacji rostej, m włat w wysokości E

Bardziej szczegółowo

Ekonometria Mirosław Wójciak

Ekonometria Mirosław Wójciak Ekoometria Mirosław Wójciak Literatura obowiązkowa Barczak A, ST. Biolik J, Podstawy Ekoometrii, Wydawictwo AE Katowice, Katowice 1998 Dziechciarz J. Ekoometria Metody, przykłady, zadaia (wyd. ) Kukuła

Bardziej szczegółowo

3. Wykład III: Warunki optymalności dla zadań bez ograniczeń

3. Wykład III: Warunki optymalności dla zadań bez ograniczeń 3 Wkład III: Waruki optmalości dla zadań bez ograiczeń Podae poiże waruki optmalości dla są uogólieiem powszechie zach waruków dla fukci ede zmiee (zerowaie się pierwsze pochode i lokala wpukłość) 3 Twierdzeie

Bardziej szczegółowo

ANALIZA SKORELOWANIA WYNIKÓW POMIAROWYCH W OCENACH STANU ZAGROŻEŃ HAŁASOWYCH ŚRODOWISKA

ANALIZA SKORELOWANIA WYNIKÓW POMIAROWYCH W OCENACH STANU ZAGROŻEŃ HAŁASOWYCH ŚRODOWISKA SYSTEMY WSPOMAGANIA W INŻYNIERII PRODUKCJI Środowisko i Bezpieczeństwo w Iżyierii Produkcji 2013 5 ANALIZA SKORELOWANIA WYNIKÓW POMIAROWYCH W OCENACH STANU ZAGROŻEŃ HAŁASOWYCH ŚRODOWISKA 5.1 WPROWADZENIE

Bardziej szczegółowo

Akustyka. Fale akustyczne = fale dźwiękowe = fale mechaniczne, polegające na drganiach cząstek ośrodka.

Akustyka. Fale akustyczne = fale dźwiękowe = fale mechaniczne, polegające na drganiach cząstek ośrodka. Akustyka Fale akustycze ale dźwiękowe ale mechaicze, polegające a drgaiach cząstek ośrodka. Cząstka mała, myślowo wyodrębioa część ośrodka, p. w gazie prostopadłościa o ustaloych wymiarach w pręcie prostopadłościa

Bardziej szczegółowo

Załącznik 5. do Umowy nr EPS/[ ]/2016 sprzedaży energii elektrycznej na pokrywanie strat powstałych w sieci przesyłowej. zawartej pomiędzy [ ]

Załącznik 5. do Umowy nr EPS/[ ]/2016 sprzedaży energii elektrycznej na pokrywanie strat powstałych w sieci przesyłowej. zawartej pomiędzy [ ] Załączik 5 do Umowy r EPS/[ ]/ sprzedaży eergii elektryczej a pokrywaie strat powstałych w sieci przesyłowej zawartej pomiędzy Polskie Sieci Elektroeergetycze Spółka Akcyja [ ] a WARUNKI ZABEZPIECZENIA

Bardziej szczegółowo

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce! Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,

Bardziej szczegółowo

Twoja firma. Podręcznik użytkownika. Aplikacja Grupa. V edycja, kwiecień 2013

Twoja firma. Podręcznik użytkownika. Aplikacja Grupa. V edycja, kwiecień 2013 Twoja firma Podręczik użytkowika Aplikacja Grupa V edycja, kwiecień 2013 Spis treści I. INFORMACJE WSTĘPNE I LOGOWANIE...3 I.1. Wstęp i defiicje...3 I.2. Iformacja o możliwości korzystaia z systemu Aplikacja

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fiasowy gospodarki Zajęcia r 5 Matematyka fiasowa Wartość pieiądza w czasie 1 złoty posiaday dzisiaj jest wart więcej iż 1 złoty posiaday w przyszłości, p. za rok. Powody: Suma posiadaa dzisiaj

Bardziej szczegółowo

WYBRANE METODY DOSTĘPU DO DANYCH

WYBRANE METODY DOSTĘPU DO DANYCH WYBRANE METODY DOSTĘPU DO DANYCH. WSTĘP Coraz doskoalsze, szybsze i pojemiejsze pamięci komputerowe pozwalają gromadzić i przetwarzać coraz większe ilości iformacji. Systemy baz daych staowią więc jedo

Bardziej szczegółowo

Metody oceny efektywności projektów inwestycyjnych

Metody oceny efektywności projektów inwestycyjnych Opracował: Leszek Jug Wydział Ekoomiczy, ALMAMER Szkoła Wyższa Meody ocey efekywości projeków iwesycyjych Niezbędym warukiem urzymywaia się firmy a ryku jes zarówo skuecze bieżące zarządzaie jak i podejmowaie

Bardziej szczegółowo

2. Trójfazowe silniki prądu przemiennego

2. Trójfazowe silniki prądu przemiennego 2. Trójfazowe siliki prądu przemieego Pierwszy silik elektryczy był jedostką prądu stałego, zbudowaą w 1833. Regulacja prędkości tego silika była prosta i spełiała wymagaia wielu różych aplikacji i układów

Bardziej szczegółowo

Ć wiczenie 17 BADANIE SILNIKA TRÓJFAZOWEGO KLATKOWEGO ZASILANEGO Z PRZEMIENNIKA CZĘSTOTLIWOŚCI

Ć wiczenie 17 BADANIE SILNIKA TRÓJFAZOWEGO KLATKOWEGO ZASILANEGO Z PRZEMIENNIKA CZĘSTOTLIWOŚCI Ć wiczeie 7 BADANIE SILNIKA TRÓJFAZOWEGO KLATKOWEGO ZASILANEGO Z RZEIENNIKA CZĘSTOTLIWOŚCI Wiadomości ogóle Rozwój apędów elektryczych jest ściśle związay z rozwojem eergoelektroiki Współcześie a ogół

Bardziej szczegółowo

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA 1. ZAMAWIAJĄCY TALEX S.A., ul. Karpia 27 d, 61 619 Pozań, e mail: cetrumit@talex.pl 2. INFORMACJE OGÓLNE 2.1. Talex S.A. zaprasza do udziału w postępowaiu przetargowym,

Bardziej szczegółowo

Termodynamika defektów sieci krystalicznej

Termodynamika defektów sieci krystalicznej Termodyamika defektów sieci krystaliczej Defekty sieci krystaliczej puktowe (wakasje, atomy międzywęzłowe, obce atomy) jedowymiarowe (dyslokacje krawędziowe i śrubowe) dwuwymiarowe (graice międzyziarowe,

Bardziej szczegółowo

TRANZYSTORY POLOWE JFET I MOSFET

TRANZYSTORY POLOWE JFET I MOSFET POLTECHNKA RZEZOWKA Kaedra Podsaw Elekroiki srukcja Nr5 F 00/003 sem. lei TRANZYTORY POLOWE JFET MOFET Cel ćwiczeia: Pomiar podsawowych charakerysyk i wyzaczeie paramerów określających właściwości razysora

Bardziej szczegółowo

Projekt z dnia 24.05.2012 r. Wersja 0.5 ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dnia..

Projekt z dnia 24.05.2012 r. Wersja 0.5 ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dnia.. Projekt z dia 24.05.2012 r. Wersja 0.5 ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dia.. w sprawie szczegółowego zakresu obowiązku uzyskaia i przedstawieia do umorzeia świadectw efektywości eergetyczej i uiszczaia

Bardziej szczegółowo

Artykuł techniczny CVM-NET4+ Zgodny z normami dotyczącymi efektywności energetycznej

Artykuł techniczny CVM-NET4+ Zgodny z normami dotyczącymi efektywności energetycznej 1 Artykuł techiczy Joatha Azañó Dział ds. Zarządzaia Eergią i Jakości Sieci CVM-ET4+ Zgody z ormami dotyczącymi efektywości eergetyczej owy wielokaałowy aalizator sieci i poboru eergii Obeca sytuacja Obece

Bardziej szczegółowo

Siłownie ORC sposobem na wykorzystanie energii ze źródeł niskotemperaturowych.

Siłownie ORC sposobem na wykorzystanie energii ze źródeł niskotemperaturowych. Siłowie ORC sposobem a wykorzystaie eergii ze źródeł iskotemperaturowych. Autor: prof. dr hab. Władysław Nowak, Aleksadra Borsukiewicz-Gozdur, Zachodiopomorski Uiwersytet Techologiczy w Szczeciie, Katedra

Bardziej szczegółowo