Jak obliczać podstawowe wskaźniki statystyczne?

Wielkość: px
Rozpocząć pokaz od strony:

Download "Jak obliczać podstawowe wskaźniki statystyczne?"

Transkrypt

1 Jak obliczać podstawowe wskaźiki statystycze? Przeprowadzoe egzamiy zewętrze dostarczają iformacji o tym, jak ucziowie w poszczególych latach opaowali umiejętości i wiadomości określoe w stadardach wymagań egzamiacyjych. Każda szkoła z iformacją o wyikach egzamiu zewętrzego zapozawaa jest poprzez Raport przygotoway w OKE Jaworzo, który zawiera wyiki ucziów piszących egzami zewętrzy w województwie śląskim, a także - zamieszczoą w Załącziku - charakterystykę osiągięć ucziów daej szkoły. Celem iiejszego opracowaia jest opisaie wskaźików statystyczych pojawiających się w Raporcie, tak aby moża było obliczać i iterpretować je samodzielie podczas aalizowaia wyików egzamiów i sprawdziaów wewątrzszkolych. I. Wyiki dotyczące zestawu egzamiacyjego Na początek propoujemy porówaie wyików podstawowych (a więc wyików za zestaw egzamiacyjy) statystyczego uczia w województwie śląskim z ucziem w SP r 1 w Ogrodzie (przykładowa szkoła) oraz w Państwa szkole. Przypomiamy, że wyiki statystyczego uczia to wyiki średie dla daej zbiorowości. Tabela 1. Wyiki sprawdziau' 003 uzyskae przez ucziów Szkoły Podstawowej r 1 w Ogrodzie Kod Nazwisko, imię Miejsce Pukty za stadardy Wyik Arkusz urodzeia (x) A01 Bylica Krystya Ogród A A0 Fasola Krzysztof Łąka A A03 Hiacyt Jerzy Łąka A A04 Jodła Agieszka Ogród A A05 Klo Ja Łąka A A06 Kowalia Urszula Łąka A A07 Krokus Ryszard Ogród A A08 Malia Haa Ogród A A09 Malwa Aita Ogród A A10 Mech Grzegorz Ogród A A11 Paproć Ewa Ogród A A1 Pelargoia Jadwiga Ogród A A13 Piwoia Barbara Ogród A A14 Rumiaek Michał Szklaria A A15 Sasaka Tomasz Ogród A A16 Stokrotka Aa Ogród A Razem

2 Tabela. Wyiki uzyskae przez statystyczego uczia w 003 r. Wskaźiki Województwo Szkoła Podstawowa r 1 w Ogrodzie Liczba ucziów Moja szkoła Łatwość zestawu 0,7 0,68 Liczba puktów możliwa do zdobycia Wyik ajczęstszy (modala Mo) 33 - Wyik środkowy (mediaa Me) 30 8 Wyik średi (średia arytmetycza) M) 8,9 7,3 Odchyleie stadardowe 6,69 6,64 Wyik ajwyższy uzyskay przez ucziów Wyik ajiższy uzyskay przez ucziów 0 15 Rozstęp 40 3 Jak obliczyć łatwość zestawu egzamiacyjego, wyik średi, wartość odchyleia stadardowego? Jak wyzaczyć wyik ajczęstszy, wyik środkowy i rozstęp wyików? Łatwość zestawu zadań wyrażaa jest za pomocą wskaźika łatwości (p). Jest o stosukiem sumy puktów uzyskaych za rozwiązaie zadań do liczby puktów możliwych do uzyskaia. Wskaźik łatwości przyjmuje wartości z przedziału 0-1. p = x p - wskaźik łatwości k x - suma puktów uzyskaych za rozwiązae zadaia - liczba piszących k - maksymala liczba puktów, którą ucziowie otrzymali za poprawe rozwiązaie wszystkich zadań W SP r 1 w Ogrodzie: suma puktów uzyskaych za rozwiązae zadaia wyiosła 437, sprawdzia pisało 16 ucziów, za poprawe rozwiązaie wszystkich zadań uczeń otrzymywał 40 puktów p = 0, Łatwość zestawu dla ucziów w SP r 1 w Ogrodzie wyosi 0,68. Aby ziterpretować uzyskaą wartość ależy skorzystać z poiższej tabeli.

3 Tabela 3. Stopie opaowaia umiejętości przez ucziów Wartość wskaźika łatwości 0,00 0,19 0,0 0,49 0,50 0,69 0,70 0,79 0,80 0,89 0,90 1,00 Iterpretacja bardzo trude trude umiarkowaie trude łatwe bardzo łatwe Stopień osiągięć bardzo iski iski iżej zadowalający zadowalający dobry bardzo dobry Egzami zewętrzy w 003 r. w SP r 1 w Ogrodzie był umiarkowaie trudy, co ozacza iżej zadowalający poziom osiągięć. W skali województwa sprawdzia wypadł a poziomie zadowalającym (wskaźik wyiósł 0,7). W te sam sposób moża policzyć łatwość testu w Państwa szkole. Wyik średi (średia arytmetycza (M)) jest sumą wszystkich uzyskaych wyików podzieloą przez ich liczbę. M wyik średi M = x x - suma uzyskaych wyików liczba piszących (liczba wyików) W SP r 1 w Ogrodzie: suma uzyskaych wyików wyiosła 437, liczba piszących M = 7, 3 16 Wyik średi sprawdziau 003 w SP r 1 w Ogrodzie wyosi 7,3 puktu, dla województwa 8,9 puktu, a ile wyosi w Państwa szkole? Wyik ajczęstszy (modala (Mo)) jest wyikiem uzyskiwaym przez ajwiększą liczbą ucziów (jest wyikiem ajbardziej typowym) dla daej zbiorowości. W szkole w Ogrodzie ie moża wskazać modalej, gdyż spośród szesastu ucziów, dwuastu uzyskało wyiki róże (każdy iy), wyik 5 puktów powtórzył się dwukrotie, podobie jak wyik 8 puktów. Wśród piszących sprawdzia w województwie śląskim ajbardziej typowym okazał się wyik 33 pukty. Uzyskało go 396 ucziów. Jaki wyik ajczęściej uzyskiwali ucziowie w Państwa szkole? Wyik środkowy (mediaa (Me)) jest wyikiem zajdującym się w środku rozkładu uporządkowaego w kolejości malejącej lub rosącej o ieparzystej liczbie wyików, albo średią arytmetyczą dwóch środkowych wyików, jeżeli ich liczba jest parzysta. 3

4 W SP r 1 w Ogrodzie liczba wyików jest parzysta (16 ucziów). Ich rozkład uporządkoway rosąco przedstawiamy poiżej: Mediaa = 8 8 = 8 Wyik środkowy w aszej przykładowej szkole wyosi 8 puktów, tz. połowa ucziów uzyskała wyik wyższy od podaego. Jeśli w szkole pisałaby ieparzysta liczba ucziów, to wyik środkowy ależy wyzaczyć w sposób jak poiżej: Wyik środkowy w przypadku tej szkoły wyosi 30 puktów. Ile wyosi wyik środkowy w Państwa szkole? Rozstęp wyików (R) jest to różica między ajwyższym a ajiższym wyikiem uzyskaym przez ucziów. W SP r 1 w Ogrodzie rozstęp wyików wyosi 3 pukty. Wyik ajwyższy (xmax): 38 puktów, Wyik ajiższy(xmi): 15 puktów. R = xmax xmi 3 = Rozstęp łatwo odczytać z wykresu przedstawiającego rozkład puktów. Zamieszczoy jest w Załącziku, jaki szkoła otrzymała wraz z Raportem. Te sam wykres moża wykorzystać do ustaleia modalej i mediay. Proszę odszukać wyżej wspomiay wykres i odczytać z iego rozstęp wyików dla ucziów w Państwa szkole. Odchyleie stadardowe jest miarą zmieości (rozproszeia) wyików w stosuku do średiej arytmetyczej. Jeśli wyiki są mało rozproszoe, to odchyleie stadardowe przyjmuje iską wartość. s odchyleie stadardowe x wyik piszącego ( x M s ) M wyik średi - liczba piszących 4

5 Tabela 4. Wyiki sprawdziau' 003 uzyskae przez ucziów Szkoły Podstawowej r 1 w Ogrodzie Kod Nazwisko, imię Miejsce urodzeia Arkusz Wyik (x) x-m (x-m) A01 Bylica Krystya Ogród A ,3 (0,7) 0,49 A0 Fasola Krzysztof Łąka A ,3 (-1,3) 151,9 A03 Hiacyt Jerzy Łąka A ,3 (-0,3) 0,09 A04 Jodła Agieszka Ogród A ,3 (-,3) 5,9 A05 Klo Ja Łąka A ,3 (-10,3) 106,09 A06 Kowalia Urszula Łąka A ,3 (1,7),89 A07 Krokus Ryszard Ogród A ,3 (8,7) 75,69 A08 Malia Haa Ogród A ,3 (,7) 7,9 A09 Malwa Aita Ogród A ,3 (0,7) 0,49 A10 Mech Grzegorz Ogród A ,3 (-7,3) 53,9 A11 Paproć Ewa Ogród A ,3 (-8,3) 68,89 A1 Pelargoia Jadwiga Ogród A ,3 (7,7) 59,9 A13 Piwoia Barbara Ogród A ,3 (4,7),09 A14 Rumiaek Michał Szklaria A ,3 (-,3) 5,9 A15 Sasaka Tomasz Ogród A ,3 (10,7) 114,49 A16 Stokrotka Aa Ogród A ,3 (5,7) 3,49 Razem ,44 ( x M ) s = 705,44 16 = 44, 09 = 6,64 Wartość odchyleia stadardowego w SP r 1 w Ogrodzie wyosi 6,64 puktu i jest zbliżoa do wartości odchyleia stadardowego w województwie (6,69 puktu). Zachęcamy do obliczeia tej miary w Państwa szkole. Wyik średi i odchyleie stadardowe służą do wyzaczaia przedziału wyików typowych dla daej grupy ucziów. Długość przedziału wyików typowych wyosi: M s M = 7,3 s = 6,64 7,3 6,64 czyli od 0 do 33 puktów. W przedziale wyików typowych swój rezultat uzyskało 10 ucziów, co staowi 6,5% wszystkich piszących w przykładowej szkole. Jaki % ucziów w Państwa szkole uzyskało wyiki z przedziału wartości typowych? Proszę wyliczyć długość przedziału i % ucziów. 5

6 Teraz porówajmy wyiki podstawowe uzyskae w roku 003 z uzyskaymi w 00. Tabela 5. Wyiki uzyskae przez statystyczego uczia w 00 i w 003 r. Szkoła Podstawowa r 1 w Ogrodzie Moja szkoła Wskaźiki 00 r. 003 r. 00 r. 003 r. Liczba ucziów 0 16 Łatwość zestawu 0,68 0,68 Liczba puktów możliwa do zdobycia Wyik ajczęstszy (modala Mo) 5 - Wyik środkowy (mediaa Me) 7 8 Wyik średi (średia arytmetycza) M) 7 7,3 Odchyleie stadardowe 3,51 6,64 Wyik ajwyższy uzyskay przez ucziów Wyik ajiższy uzyskay przez ucziów 0 15 Rozstęp 13 3 W przykładowej szkole łatwość sprawdziau a przestrzei dwóch lat jest bardzo podoba i ieco iższa iż w województwie. Jak było w Państwa szkole? 6

7 II. Wyiki dotyczące osiągięć w zakresie poszczególych stadardów Tabela 6. Wskaźiki opisujące opaowaie stadardów Wskaźiki Województwo Szkoła Podstawowa r 1 w Ogrodzie Moja szkoła Czytaie (1) Liczba puktów Łatwość 0,78 0,69 Wyik średi 7,6 6,9 Odchyleie stadardowe 1,93 1,89 Pisaie () Liczba puktów 1 1 Łatwość 0,77 0,78 Wyik średi 8,8 9,4 Odchyleie stadardowe,35 1,83 Rozumowaie (3) Liczba puktów 8 8 Łatwość 0,68 0,61 Wyik średi 5,4 4,9 Odchyleie stadardowe,03 1,54 Korzystaie z iformacji (4) Liczba puktów Łatwość 0,87 0,81 Wyik średi 1,7 1,6 Odchyleie stadardowe 0,53 0,48 Wykorzystywaie wiedzy w praktyce (5) Liczba puktów 8 8 Łatwość 0,59 0,56 Wyik średi 4,7 4,5 Odchyleie stadardowe 1,99,1 Łatwość stadardu 1 (czytaie) dla SP 1 w Ogrodzie oblicza się aalogiczie, jak łatwość zestawu czyli według wzoru: p = x p - wskaźik łatwości stadardu k x - suma puktów uzyskaych za stadard - liczba piszących k - maksymala liczba puktów, którą uczeń otrzymuje za stadard W SP r 1 w Ogrodzie: suma puktów uzyskaych za stadard 1 (czytaie) wyiosła 111 patrz tabela 1, sprawdzia pisało 16 ucziów, za poprawe rozwiązaie stadardu 1. uczeń mógł otrzymać 10 puktów p = 0,

8 Łatwość stadardu 1. dla statystyczego uczia w SP r 1 w Ogrodzie wyosi 0,69, w województwie 0,78. Wyik średi (średia arytmetycza (M)) dla stadardu 1 oblicza się podobie, jak średią arytmetyczą dla zestawu. M wyik średi dla stadardu M = x x - suma uzyskaych wyików za stadard 1 liczba piszących (liczba wyików) W SP r 1 w Ogrodzie: suma uzyskaych wyików wyiosła 111, liczba piszących M = 6, 9 16 Wyik średi za stadard 1 w SP r 1 w Ogrodzie wyosi 6,9 puktu, dla województwa 7,6, a ile wyosi w Państwa szkole? Do obliczeia odchyleia stadardowego towarzyszącego średiej arytmetyczej stadardu 1 wykorzystao wcześiej poday wzór: s odchyleie stadardowe x wyik piszącego ( x M s ) M wyik średi dla stadardu - liczba piszących Tabela 7. Wyiki za stadard 1. uzyskae podczas sprawdziau' 003 przez ucziów Szkoły Podstawowej r 1 w Ogrodzie Kod Nazwisko, imię Miejsce urodzeia Stadard Wyik (x) x-m (x-m) A01 Stokrotka Aa Ogród ,9 (3,1) 9,61 A0 Malwa Aita Łąka ,9 (-,9) 8,41 A03 Paproć Ewa Łąka ,9 (1,1) 1,1 A04 Krokus Ryszard Ogród ,9 (-,9) 8,41 A05 Bylica Krystya Łąka ,9 (-1,9) 3,61 A06 Klo Ja Łąka ,9 (0,1) 0,01 A07 Malia Haa Ogród ,9 (,1) 4,41 A08 Fasola Krzysztof Ogród ,9 (0,1) 0,01 A09 Mech Grzegorz Ogród ,9 (-0,9) 0,81 A10 Jodła Agieszka Ogród ,9 (-0,9) 0,81 A11 Rumiaek Michał Ogród ,9 (-1,9) 3,61 A1 Sasaka Tomasz Ogród ,9 (3,1) 9,61 A13 Hiacyt Jerzy Ogród ,9 (0,1) 0,01 A14 Piwoia Barbara Szklaria ,9 (-0,9) 0,81 A15 Pelargoia Jadwiga Ogród ,9 (,1) 4,41 A16 Kowalia Urszula Ogród ,9 (1,1) 1,1 Razem ,96 8

9 ( x M s ) = 56,96 16 = 3, 56 = 1,89 Wartość odchyleia stadardowego w SP r 1 w Ogrodzie wyosi 1,89 puktu i jest zbliżoa do wartości odchyleia stadardowego w województwie (1,93 puktu). Zachęcamy do obliczeia tej miary w Państwa szkole. Wskaźiki dla pozostałych stadardów oblicza się aalogiczie, jak dla stadardu 1. Mamy adzieję, że zamieszczoe wyżej wskazówki zachęcą do uzupełieia tabeli 6. i tym samym do obliczeia wartości średiej arytmetyczej i towarzyszącego jej odchyleia stadardowego. Oprócz łatwości, średiej arytmetyczej i odchyleia stadardowego w obrębie każdego stadardu moża w bardzo prosty sposób wyzaczyć modalą, mediaę i rozstęp. Wystarczy uzyskae przez ucziów liczby puktów przedstawić jak poiżej: Na przedstawioym rozkładzie moża zauważyć, że dwóch ucziów uzyskało po 4 pukty, dwóch po 5 puktów, trzech po 6 puktów itd., widać rówież brak wyiku ajczęstszego czyli modalej, atomiast wyik środkowy (mediaa) łatwo ustalić licząc średią arytmetyczą dwóch środkowych wartości (liczba wyików jest parzysta) czyli wyiku ósmego i dziewiątego: 7 7 Mediaa = = 7 W SP r 1 w Ogrodzie ajiższy uzyskay wyik wyosi 4, a ajwyższy 10 puktów, stąd rozstęp wyosi 6 puktów. Ilustruje to poiższy zapis: R = xmax xmi 6 =

10 Aaliza wyliczoych wskaźików a pewo wyzwoli w uczących refleksję co do jakości prowadzoych zajęć dydaktyczych. Aby była oa głębsza, warto porówać wyiki w obszarze stadardów w roku 003 z wyikami 00. Tabela 8. Porówaie poziomu opaowaia stadardów Wskaźiki Szkoła Podstawowa r 1 w Ogrodzie Moja szkoła Czytaie (1) Liczba puktów Łatwość 0,73 0,69 Wyik średi 7,3 6,9 Odchyleie stadardowe 1,31 1,89 Pisaie () Liczba puktów Łatwość 0,70 0,78 Wyik średi 8,4 9,4 Odchyleie stadardowe,01 1,83 Rozumowaie (3) Liczba puktów Łatwość 0,71 0,61 Wyik średi 5,7 4,9 Odchyleie stadardowe 1,5 1,54 Korzystaie z iformacji (4) Liczba puktów Łatwość 0,75 0,81 Wyik średi 1,5 1,6 Odchyleie stadardowe 0,67 0,48 Wykorzystywaie wiedzy w praktyce (5) Liczba puktów Łatwość 0,51 0,56 Wyik średi 4,1 4,5 Odchyleie stadardowe 1,37,1 Pomimo, że stopień trudości sprawdziau w 00 i 003 roku w SP-1 w Ogrodzie był taki sam, to widocze są różice w opaowaiu stadardów. Powyższe dae są iewystarczające do ocey dotychczasowego auczaia w tej szkole. Koiecze jest dokoywaie po każdym kolejym sprawdziaie porówań, gdyż z czasem staą się oe źródłem iformacji dla auczycieli, o tym jakie podejmować działaia dydaktycze, by proces auczaia-uczeia się uczyić bardziej trafym i efektywym. 10

STATYSTYKA OPISOWA WYKŁAD 1 i 2

STATYSTYKA OPISOWA WYKŁAD 1 i 2 STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest

Bardziej szczegółowo

STATYSTYKA I ANALIZA DANYCH

STATYSTYKA I ANALIZA DANYCH TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy

Bardziej szczegółowo

Materiały do wykładu 4 ze Statystyki

Materiały do wykładu 4 ze Statystyki Materiały do wykładu 4 ze Statytyki CHARAKTERYSTYKI LICZBOWE STRUKTURY ZBIOROWOŚCI (dok.) 1. miary położeia - wykład 2 2. miary zmieości (dyperji, rozprozeia) - wykład 3 3. miary aymetrii (kośości) 4.

Bardziej szczegółowo

Opracowanie i analiza materiału statystycznego 419[01].O1.04

Opracowanie i analiza materiału statystycznego 419[01].O1.04 MINISTERSTWO EDUKACJI NARODOWEJ Ewa Kawczyńska-Kiełbasa Opracowaie i aaliza materiału statystyczego 419[01].O1.04 Poradik dla uczia Wydawca Istytut Techologii Eksploatacji Państwowy Istytut Badawczy Radom

Bardziej szczegółowo

a n 7 a jest ciągiem arytmetycznym.

a n 7 a jest ciągiem arytmetycznym. ZADANIA MATURALNE - CIĄGI LICZBOWE - POZIOM PODSTAWOWY Opracowała mgr Dauta Brzezińska Zad.1. ( pkt) Ciąg a określoy jest wzorem 5.Wyzacz liczbę ujemych wyrazów tego ciągu. Zad.. ( 6 pkt) a Day jest ciąg

Bardziej szczegółowo

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D. Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu. Rachuek prawdopodobieństwa i statystyka W12: Statystycza aaliza daych jakościowych Dr Aa ADRIAN Paw B5, pok 407 ada@agh.edu.pl Wprowadzeie Rozróżia się dwa typy daych jakościowych: Nomiale jeśli opisują

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu

Bardziej szczegółowo

STATYSTYCZNA OCENA WYNIKÓW POMIARÓW.

STATYSTYCZNA OCENA WYNIKÓW POMIARÓW. Statytycza ocea wyików pomiaru STATYSTYCZNA OCENA WYNIKÓW POMIARÓW CEL ĆWICZENIA Celem ćwiczeia jet: uświadomieie tudetom, że każdy wyik pomiaru obarczoy jet błędem o ie zawze zaej przyczyie i wartości,

Bardziej szczegółowo

Konspekt lekcji (Kółko matematyczne, kółko przedsiębiorczości)

Konspekt lekcji (Kółko matematyczne, kółko przedsiębiorczości) Kospekt lekcji (Kółko matematycze, kółko przedsiębiorczości) Łukasz Godzia Temat: Paradoks skąpej wdowy. O procecie składaym ogólie. Czas lekcji 45 miut Cele ogóle: Uczeń: Umie obliczyć procet składay

Bardziej szczegółowo

14. RACHUNEK BŁĘDÓW *

14. RACHUNEK BŁĘDÓW * 4. RACHUNEK BŁĘDÓW * Błędy, które pojawiają się w czasie doświadczeia mogą mieć włase źródła. Są imi błędy związae z błędą kalibracją torów pomiarowych, szumy, czas reagowaia przyrządu, ograiczeia kostrukcyje,

Bardziej szczegółowo

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa Matematyka fiasowa 8.05.0 r. Komisja Egzamiacyja dla Aktuariuszy LX Egzami dla Aktuariuszy z 8 maja 0 r. Część I Matematyka fiasowa WERJA EU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut

Bardziej szczegółowo

BADANIA DOCHODU I RYZYKA INWESTYCJI

BADANIA DOCHODU I RYZYKA INWESTYCJI StatSoft Polska, tel. () 484300, (60) 445, ifo@statsoft.pl, www.statsoft.pl BADANIA DOCHODU I RYZYKA INWESTYCJI ZA POMOCĄ ANALIZY ROZKŁADÓW Agieszka Pasztyła Akademia Ekoomicza w Krakowie, Katedra Statystyki;

Bardziej szczegółowo

Analiza potencjału energetycznego depozytów mułów węglowych

Analiza potencjału energetycznego depozytów mułów węglowych zaiteresowaia wykorzystaiem tej metody w odiesieiu do iych droboziaristych materiałów odpadowych ze wzbogacaia węgla kamieego ależy poszukiwać owych, skutecziej działających odczyików. Zdecydowaie miej

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elemety modelowaia matematyczego Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Modelowaie daych (ilościowe): Metody statystycze: estymacja parametrów modelu,

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia

Bardziej szczegółowo

Egzamin maturalny z matematyki CZERWIEC 2011

Egzamin maturalny z matematyki CZERWIEC 2011 Egzami maturaly z matematyki CZERWIEC 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Poziom podstawowy czerwiec 0 Klucz puktowaia do zadań zamkiętych Nr

Bardziej szczegółowo

POMIARY WARSZTATOWE. D o u ż y t k u w e w n ę t r z n e g o. Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Ćwiczenia laboratoryjne

POMIARY WARSZTATOWE. D o u ż y t k u w e w n ę t r z n e g o. Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Ćwiczenia laboratoryjne D o u ż y t k u w e w ę t r z e g o Katedra Iżyierii i Aparatury Przemysłu Spożywczego POMIARY WARSZTATOWE Ćwiczeia laboratoryje Opracowaie: Urszula Goik, Maciej Kabziński Kraków, 2015 1 SUWMIARKI Suwmiarka

Bardziej szczegółowo

SYSTEM OCENY STANU NAWIERZCHNI SOSN ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI BITUMICZNYCH W SYSTEMIE OCENY STANU NAWIERZCHNI SOSN

SYSTEM OCENY STANU NAWIERZCHNI SOSN ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI BITUMICZNYCH W SYSTEMIE OCENY STANU NAWIERZCHNI SOSN ZAŁĄCZNIK B GENERALNA DYREKCJA DRÓG PUBLICZNYCH Biuro Studiów Sieci Drogowej SYSTEM OCENY STANU NAWIERZCHNI SOSN WYTYCZNE STOSOWANIA - ZAŁĄCZNIK B ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI

Bardziej szczegółowo

Egzaminy. na wyższe uczelnie 2003. zadania

Egzaminy. na wyższe uczelnie 2003. zadania zadaia Egzamiy wstępe a wyższe uczelie 003 I. Akademia Ekoomicza we Wrocławiu. Rozwiąż układ rówań Æ_ -9 y - 5 _ y = 5 _ -9 _. Dla jakiej wartości parametru a suma kwadratów rozwiązań rzeczywistych rówaia

Bardziej szczegółowo

L.Kowalski zadania ze statystyki matematycznej-zestaw 3 ZADANIA - ZESTAW 3

L.Kowalski zadania ze statystyki matematycznej-zestaw 3 ZADANIA - ZESTAW 3 L.Kowalski zadaia ze statystyki matematyczej-zestaw 3 ZADANIA - ZESTAW 3 Zadaie 3. Cecha X populacji ma rozkład N m,. Z populacji tej pobrao próbę 7 elemetową i otrzymao wyiki x7 = 9, 3, s7 =, 5 a Na poziomie

Bardziej szczegółowo

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz

Bardziej szczegółowo

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów

Bardziej szczegółowo

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO Agieszka Jakubowska ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO. Wstęp Skąplikowaie współczesego życia gospodarczego powoduje, iż do sterowaia procesem zarządzaia

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI Miejsce a aklejkę z kodem szkoły dysleksja MIN-R_P-072 EGZAMIN MATURALNY Z INFORMATYKI MAJ ROK 2007 POZIOM ROZSZERZONY CZĘŚĆ I Czas pracy 90 miut Istrukcja dla zdającego. Sprawdź, czy arkusz egzamiacyjy

Bardziej szczegółowo

Materiał ćwiczeniowy z matematyki Marzec 2012

Materiał ćwiczeniowy z matematyki Marzec 2012 Materiał ćwiczeiowy z matematyki Marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Marzec 0 Klucz puktowaia do zadań zamkiętych Nr zad 3 5 6 7 8 9 0

Bardziej szczegółowo

SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY

SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY Weryfikacja hipotez statystyczych WNIOSKOWANIE STATYSTYCZNE Wioskowaie statystycze, to proces uogóliaia wyików uzyskaych a podstawie próby a całą

Bardziej szczegółowo

METODYKA WYKONYWANIA POMIARÓW ORAZ OCENA NIEPEWNOŚCI I BŁĘDÓW POMIARU

METODYKA WYKONYWANIA POMIARÓW ORAZ OCENA NIEPEWNOŚCI I BŁĘDÓW POMIARU METODYKA WYKONYWANIA POMIARÓW ORAZ OCENA NIEPEWNOŚCI I BŁĘDÓW POMIARU Celem każdego ćwiczeia w laboratorium studeckim jest zmierzeie pewych wielkości, a astępie obliczeie a podstawie tych wyików pomiarów

Bardziej szczegółowo

Struktura czasowa stóp procentowych (term structure of interest rates)

Struktura czasowa stóp procentowych (term structure of interest rates) Struktura czasowa stóp procetowych (term structure of iterest rates) Wysokość rykowych stóp procetowych Na ryku istieje wiele różorodych stóp procetowych. Poziom rykowej stopy procetowej (lub omialej stopy,

Bardziej szczegółowo

ANALIZA SKORELOWANIA WYNIKÓW POMIAROWYCH W OCENACH STANU ZAGROŻEŃ HAŁASOWYCH ŚRODOWISKA

ANALIZA SKORELOWANIA WYNIKÓW POMIAROWYCH W OCENACH STANU ZAGROŻEŃ HAŁASOWYCH ŚRODOWISKA SYSTEMY WSPOMAGANIA W INŻYNIERII PRODUKCJI Środowisko i Bezpieczeństwo w Iżyierii Produkcji 2013 5 ANALIZA SKORELOWANIA WYNIKÓW POMIAROWYCH W OCENACH STANU ZAGROŻEŃ HAŁASOWYCH ŚRODOWISKA 5.1 WPROWADZENIE

Bardziej szczegółowo

0.1 ROZKŁADY WYBRANYCH STATYSTYK

0.1 ROZKŁADY WYBRANYCH STATYSTYK 0.1. ROZKŁADY WYBRANYCH STATYSTYK 1 0.1 ROZKŁADY WYBRANYCH STATYSTYK Zadaia 0.1.1. Niech X 1,..., X będą iezależymi zmieymi losowymi o tym samym rozkładzie. Obliczyć ES 2 oraz D 2 ( 1 i=1 X 2 i ). 0.1.2.

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2011 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2011 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY Cetrala Komisja Egzamiacyja Arkusz zawiera iformacje prawie chroioe do mometu rozpoczęcia egzamiu. Układ graficzy CKE 2010 KOD WISUJE ZDAJĄCY ESEL Miejsce a aklejkę z kodem EGZAMIN MATURALNY Z INORMATYKI

Bardziej szczegółowo

OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI SWOBODNIE PODPARTEJ SWOBODNIE PODPARTEJ ALGORYTM DO PROGRAMU MATHCAD

OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI SWOBODNIE PODPARTEJ SWOBODNIE PODPARTEJ ALGORYTM DO PROGRAMU MATHCAD OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI ALGORYTM DO PROGRAMU MATHCAD 1 PRAWA AUTORSKIE BUDOWNICTWOPOLSKIE.PL GRUDZIEŃ 2010 Rozpatrujemy belkę swobodie podpartą obciążoą siłą skupioą, obciążeiem rówomierie

Bardziej szczegółowo

40:5. 40:5 = 500000υ5 5p 40, 40:5 = 500000 5p 40.

40:5. 40:5 = 500000υ5 5p 40, 40:5 = 500000 5p 40. Portfele polis Poieważ składka jest ustalaa jako wartość oczekiwaa rzeczywistego, losowego kosztu ubezpieczeia, więc jest tym bliższa średiej wydatków im większa jest liczba ubezpieczoych Polisy grupuje

Bardziej szczegółowo

Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r.

Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r. Matematyka fiasowa 08.10.2007 r. Komisja Egzamiacyja dla Aktuariuszy XLIII Egzami dla Aktuariuszy z 8 paździerika 2007 r. Część I Matematyka fiasowa WERSJA TESTU A Imię i azwisko osoby egzamiowaej:...

Bardziej szczegółowo

Uwarunkowania rozwojowe województw w Polsce analiza statystyczno-ekonometryczna

Uwarunkowania rozwojowe województw w Polsce analiza statystyczno-ekonometryczna 3 MAŁGORZATA STEC Dr Małgorzata Stec Zakład Statystyki i Ekoometrii Uiwersytet Rzeszowski Uwarukowaia rozwojowe województw w Polsce aaliza statystyczo-ekoometrycza WPROWADZENIE Rozwój społeczo-gospodarczy

Bardziej szczegółowo

Kluczowy aspekt wyszukiwania informacji:

Kluczowy aspekt wyszukiwania informacji: Wyszukiwaieiformacjitoproceswyszukiwaiawpewymzbiorze tychwszystkichdokumetów,którepoświęcoesąwskazaemuw kweredzietematowi(przedmiotowi)lubzawierająiezbędedla Wg M. A. Kłopotka: użytkowikafaktyiiformacje.

Bardziej szczegółowo

Wpływ warunków eksploatacji pojazdu na charakterystyki zewnętrzne silnika

Wpływ warunków eksploatacji pojazdu na charakterystyki zewnętrzne silnika POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ MECHANICZNY Katedra Budowy i Eksploatacji Maszy Istrukcja do zajęć laboratoryjych z przedmiotu: EKSPLOATACJA MASZYN Wpływ waruków eksploatacji pojazdu a charakterystyki

Bardziej szczegółowo

8. Optymalizacja decyzji inwestycyjnych

8. Optymalizacja decyzji inwestycyjnych 8. Optymalizacja decyzji iwestycyjych 8. Wprowadzeie W wielu różych sytuacjach, w tym rówież w czasie wyboru iwestycji do realizacji, podejmujemy decyzje. Sytuacje takie azywae są sytuacjami decyzyjymi.

Bardziej szczegółowo

TRANZYSTORY POLOWE JFET I MOSFET

TRANZYSTORY POLOWE JFET I MOSFET POLTECHNKA RZEZOWKA Kaedra Podsaw Elekroiki srukcja Nr5 F 00/003 sem. lei TRANZYTORY POLOWE JFET MOFET Cel ćwiczeia: Pomiar podsawowych charakerysyk i wyzaczeie paramerów określających właściwości razysora

Bardziej szczegółowo

ZESZYTY NAUKOWE NR 11(83) AKADEMII MORSKIEJ W SZCZECINIE. Analiza dokładności wskazań obiektów nawodnych. Accuracy Analysis of Sea Objects

ZESZYTY NAUKOWE NR 11(83) AKADEMII MORSKIEJ W SZCZECINIE. Analiza dokładności wskazań obiektów nawodnych. Accuracy Analysis of Sea Objects ISSN 1733-8670 ZESZYTY NAUKOWE NR 11(83) AKADEMII MORSKIEJ W SZCZECINIE IV MIĘDZYNARODOWA KONFERENCJA NAUKOWO-TECHNICZNA E X P L O - S H I P 2 0 0 6 Adrzej Burzyński Aaliza dokładości wskazań obiektów

Bardziej szczegółowo

ANALIZA SPRAWDZIANU SZÓSTOKLASISTY

ANALIZA SPRAWDZIANU SZÓSTOKLASISTY ANALIZA SPRAWDZIANU SZÓSTOKLASISTY Zespół Szkolno - Przedszkolny im. Feliksa Michalskiego Miejska Szkoła Podstawowa nr 3 w Knurowie W klasie VI przeprowadzono sprawdzian, który pisało 19 uczniów. Uczniowie

Bardziej szczegółowo

co wskazuje, że ciąg (P n ) jest ciągiem arytmetycznym o różnicy K 0 r. Pierwszy wyraz tego ciągu a więc P 1 z uwagi na wzór (3) ma postać P

co wskazuje, że ciąg (P n ) jest ciągiem arytmetycznym o różnicy K 0 r. Pierwszy wyraz tego ciągu a więc P 1 z uwagi na wzór (3) ma postać P Wiadomości wstępe Odsetki powstają w wyiku odjęcia od kwoty teraźiejszej K kwoty początkowej K, zatem Z = K K. Z ekoomiczego puktu widzeia właściciel kapitału K otrzymuje odsetki jako zapłatę od baku za

Bardziej szczegółowo

Zasada indukcji matematycznej. Dowody indukcyjne.

Zasada indukcji matematycznej. Dowody indukcyjne. Zasada idukcji matematyczej Dowody idukcyje Z zasadą idukcji matematyczej i dowodami idukcyjymi sytuacja jest ajczęściej taka, że podaje się w szkole treść zasady idukcji matematyczej, a astępie omawia,

Bardziej szczegółowo

ROZPORZĄDZENIE MINISTRA NAUKI I SZKOLNICTWA WYŻSZEGO 1) z dnia 21 października 2011 r.

ROZPORZĄDZENIE MINISTRA NAUKI I SZKOLNICTWA WYŻSZEGO 1) z dnia 21 października 2011 r. Dzieik Ustaw Nr 251 14617 Poz. 1508 1508 ROZPORZĄDZENIE MINISTRA NAUKI I SZKOLNICTWA WYŻSZEGO 1) z dia 21 paździerika 2011 r. w sprawie sposobu podziału i trybu przekazywaia podmiotowej dotacji a dofiasowaie

Bardziej szczegółowo

INSTRUKCJA NR 06-2 POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ

INSTRUKCJA NR 06-2 POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ LABORATORIUM OCHRONY ŚRODOWISKA - SYSTEM ZARZĄDZANIA JAKOŚCIĄ - INSTRUKCJA NR 06- POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ 1. Cel istrukcji Celem istrukcji jest określeie metodyki postępowaia w celu

Bardziej szczegółowo

Niepewności pomiarowe

Niepewności pomiarowe Niepewości pomiarowe Obserwacja, doświadczeie, pomiar Obserwacja zjawisk fizyczych polega a badaiu ych zjawisk w warukach auralych oraz a aalizie czyików i waruków, od kórych zjawiska e zależą. Waruki

Bardziej szczegółowo

ZESZYTY NAUKOWE POLITECHNIKI GDAŃSKIEJ

ZESZYTY NAUKOWE POLITECHNIKI GDAŃSKIEJ ZESZYTY NAUKOWE POLITECHNIKI GDAŃSKIEJ Nr 573 Ekoomia XXXIX 2001 BŁAŻEJ PRUSAK Katedra Ekoomii i Zarządzaia Przedsiębiorstwem METODY OCENY PROJEKTÓW INWESTYCYJNYCH Celem artykułu jest przedstawieie metod

Bardziej szczegółowo

Podstawowe definicje statystyczne

Podstawowe definicje statystyczne Podstawowe definicje statystyczne 1. Definicje podstawowych wskaźników statystycznych Do opisu wyników surowych (w punktach, w skali procentowej) stosuje się następujące wskaźniki statystyczne: wynik minimalny

Bardziej szczegółowo

Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień.

Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień. Metoda aalizy hierarchii Saaty ego Ważym problemem podejmowaia decyzji optymalizowaej jest często występująca hierarchiczość zagadień. Istieje wiele heurystyczych podejść do rozwiązaia tego problemu, jedak

Bardziej szczegółowo

Analiza sprawdzianu 2013 klas szóstych szkoły podstawowej

Analiza sprawdzianu 2013 klas szóstych szkoły podstawowej Zespół Szkolno - Przedszkolny w Rudzicy im. Jana Pawła II Analiza sprawdzianu 2013 klas szóstych szkoły podstawowej Opracowała: mgr Magdalena Balcy SPIS TREŚCI 1. Informacje wstępne... 3 2. Charakterystyka

Bardziej szczegółowo

ĆWICZENIE 1 Symulacja doświadczeń losowych Statystyka opisowa Estymacja parametryczna i nieparametryczna T E O R I A

ĆWICZENIE 1 Symulacja doświadczeń losowych Statystyka opisowa Estymacja parametryczna i nieparametryczna T E O R I A ĆWICZENIE Symulacja doświadczeń losowych Statystya opisowa Estymacja parametrycza i ieparametrycza T E O R I A Opracowała: Katarzya Stąpor Opis programu MS EXCEL. Iformacje ogóle Program Microsoft Excel

Bardziej szczegółowo

Przemysław Jaśko Wydział Ekonomii i Stosunków Międzynarodowych, Uniwersytet Ekonomiczny w Krakowie

Przemysław Jaśko Wydział Ekonomii i Stosunków Międzynarodowych, Uniwersytet Ekonomiczny w Krakowie MODELE SCORINGU KREDYTOWEGO Z WYKORZYSTANIEM NARZĘDZI DATA MINING ANALIZA PORÓWNAWCZA Przemysław Jaśko Wydział Ekoomii i Stosuków Międzyarodowych, Uiwersytet Ekoomiczy w Krakowie 1 WROWADZENIE Modele aplikacyjego

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTUT EKSPLOATACJI MASZYN I TRANSPORTU ZAKŁAD STEROWANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆWICZENIE: E20 BADANIE UKŁADU

Bardziej szczegółowo

Współpraca instytucji pomocy społecznej z innymi instytucjami

Współpraca instytucji pomocy społecznej z innymi instytucjami Projekt 1.16 Koordyacja a rzecz aktywej itegracji jest współfiasoway przez Uię Europejską w ramach Europejskiego Fu duszu Społeczego Współpraca istytucji pomocy społeczej z iymi istytucjami a tereie gmiy,

Bardziej szczegółowo

Chemia Teoretyczna I (6).

Chemia Teoretyczna I (6). Chemia Teoretycza I (6). NajwaŜiejsze rówaia róŝiczkowe drugiego rzędu o stałych współczyikach w chemii i fizyce cząstka w jedowymiarowej studi potecjału Cząstka w jedowymiarowej studi potecjału Przez

Bardziej szczegółowo

Jak statystyka może pomóc w odczytaniu wyników sprawdzianu

Jak statystyka może pomóc w odczytaniu wyników sprawdzianu 16 Jak statystyka może pomóc w odczytaniu wyników sprawdzianu Wyniki pierwszego ważnego egzaminu sprawdzianu w klasie szóstej szkoły podstawowej mogą w niebagatelny sposób wpływać na losy pojedynczych

Bardziej szczegółowo

Bielecki Jakub Kawka Marcin Porczyk Krzysztof Węgrzyn Bartosz. Zbiorcze bazy danych

Bielecki Jakub Kawka Marcin Porczyk Krzysztof Węgrzyn Bartosz. Zbiorcze bazy danych Bielecki Jakub Kawka Marci Porczk Krzsztof Węgrz Bartosz Zbiorcze baz dach Marzec 2006 Spis treści. Opis działalości bizesowej firm... 3 2. Omówieie struktur orgaizacjej... 4 3. Opis obszaru bizesowego...

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM RACHUNEK EKONOMICZNY W ELEKTROENERGETYCE INSTRUKCJA DO ĆWICZENIA

Bardziej szczegółowo

Metody oceny projektów inwestycyjnych

Metody oceny projektów inwestycyjnych Metody ocey projektów iwestycyjych PRZEDMIIOT : EFEKTYWNOŚĆ SYSTEMÓW IINFORMATYCZNYCH Pla wykładu Temat: Metody ocey projektów iwestycyjych 5 FINANSOWE METODY OCENY PROJEKTÓW INWESTYCYJNYCH... 4 5.1. WPROWADZENIE...

Bardziej szczegółowo

INWESTYCJE MATERIALNE

INWESTYCJE MATERIALNE OCENA EFEKTYWNOŚCI INWESTYCJI INWESTCJE: proces wydatkowaia środków a aktywa, z których moża oczekiwać dochodów pieiężych w późiejszym okresie. Każde przedsiębiorstwo posiada pewą liczbę możliwych projektów

Bardziej szczegółowo

Mapowanie rozkładu temperatury w przestrzeniach magazynowych praktyczne podejście

Mapowanie rozkładu temperatury w przestrzeniach magazynowych praktyczne podejście Fa r m a c j a p r z e m y s ł o wa Mapowaie rozkładu temperatury w przestrzeiach magazyowych praktycze podejście Michał Kucharczyk, Bartłomiej Slusarski LSMW Sp. z o.o. Total Life Sciece Solutios Oddział

Bardziej szczegółowo

Projekt z dnia 24.05.2012 r. Wersja 0.5 ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dnia..

Projekt z dnia 24.05.2012 r. Wersja 0.5 ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dnia.. Projekt z dia 24.05.2012 r. Wersja 0.5 ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dia.. w sprawie szczegółowego zakresu obowiązku uzyskaia i przedstawieia do umorzeia świadectw efektywości eergetyczej i uiszczaia

Bardziej szczegółowo

Wykład. Inwestycja. Inwestycje. Inwestowanie. Działalność inwestycyjna. Inwestycja

Wykład. Inwestycja. Inwestycje. Inwestowanie. Działalność inwestycyjna. Inwestycja Iwestycja Wykład Celowo wydatkowae środki firmy skierowae a powiększeie jej dochodów w przyszłości. Iwestycje w wyiku użycia środków fiasowych tworzą lub powiększają majątek rzeczowy, majątek fiasowy i

Bardziej szczegółowo

ANALIZA ZJAWISKA STARZENIA SIĘ LUDNOŚCI ŚLĄSKA W UJĘCIU PRZESTRZENNYM

ANALIZA ZJAWISKA STARZENIA SIĘ LUDNOŚCI ŚLĄSKA W UJĘCIU PRZESTRZENNYM Katarzya Zeug-Żebro Uiwersytet Ekoomiczy w Katowicach Katedra Matematyki katarzya.zeug-zebro@ue.katowice.pl ANALIZA ZJAWISKA STARZENIA SIĘ LUDNOŚCI ŚLĄSKA W UJĘCIU PRZESTRZENNYM Wprowadzeie Zjawisko starzeia

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fiasowy gospodarki Zajęcia r 5 Matematyka fiasowa Wartość pieiądza w czasie 1 złoty posiaday dzisiaj jest wart więcej iż 1 złoty posiaday w przyszłości, p. za rok. Powody: Suma posiadaa dzisiaj

Bardziej szczegółowo

PRÓBNY SPRAWDZIAN 2008

PRÓBNY SPRAWDZIAN 2008 PRÓBNY SPRAWDZIAN 2008 SZKOŁA PODSTAWOWA NR 7 W CZELADZI ANALIZA WYNIKÓW SPIS TREŚCI I. Informacje o wynikach próbnego sprawdzianu w Szkole Podstawowej nr 7 w Czeladzi 1. Informacje wstępne... 3 2. Standardowy

Bardziej szczegółowo

Analiza matematyczna. Robert Rałowski

Analiza matematyczna. Robert Rałowski Aaliza matematycza Robert Rałowski 6 paździerika 205 2 Spis treści 0. Liczby aturale.................................... 3 0.2 Liczby rzeczywiste.................................... 5 0.2. Nierówości...................................

Bardziej szczegółowo

Metody Obliczeniowe w Nauce i Technice laboratorium

Metody Obliczeniowe w Nauce i Technice laboratorium Marci Rociek Iformatyka, II rok Metody Obliczeiowe w Nauce i Techice laboratorium zestaw 1: iterpolacja Zadaie 1: Zaleźć wzór iterpolacyjy Lagrage a mając tablicę wartości: 3 5 6 y 1 3 5 6 Do rozwiązaia

Bardziej szczegółowo

Siłownie ORC sposobem na wykorzystanie energii ze źródeł niskotemperaturowych.

Siłownie ORC sposobem na wykorzystanie energii ze źródeł niskotemperaturowych. Siłowie ORC sposobem a wykorzystaie eergii ze źródeł iskotemperaturowych. Autor: prof. dr hab. Władysław Nowak, Aleksadra Borsukiewicz-Gozdur, Zachodiopomorski Uiwersytet Techologiczy w Szczeciie, Katedra

Bardziej szczegółowo

A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 2(300), 2014. Tomasz Zapart *

A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 2(300), 2014. Tomasz Zapart * A C T A N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 2(300), 2014 Toasz Zapart * CZYNNIKI WPŁYWAJĄCE NA WSKAŹNIK SZKODOWOŚCI ZE SZCZEGÓLNYM WZGLĘDNIENIEM BEZPIECZENIA FLOTY POJAZDÓW 1.

Bardziej szczegółowo

Projekt z dnia 8.07.2013 r.

Projekt z dnia 8.07.2013 r. Projekt z dia 8.07.2013 r. Rozporządzeie Miistra Trasportu, Budowictwa i Gospodarki Morskiej 1) z dia.. 2013 r. w sprawie metodologii obliczaia charakterystyki eergetyczej budyku i lokalu mieszkalego lub

Bardziej szczegółowo

Metody analizy długozasięgowej

Metody analizy długozasięgowej Copyright (c) 999-00 by Hugo Steihaus Ceter Metody aalizy długozasięgowej Adrzej Zacharewicz Warsztat aalizy zależości długotermiowej jest wciąż rozwijay i udoskoalay. Od czasów Hursta (95) i jego aalizy

Bardziej szczegółowo

Metody oceny efektywności projektów inwestycyjnych

Metody oceny efektywności projektów inwestycyjnych Opracował: Leszek Jug Wydział Ekoomiczy, ALMAMER Szkoła Wyższa Meody ocey efekywości projeków iwesycyjych Niezbędym warukiem urzymywaia się firmy a ryku jes zarówo skuecze bieżące zarządzaie jak i podejmowaie

Bardziej szczegółowo

BIULETYN MATURALNY NR 4 CENTRALNEJ KOMISJI EGZAMINACYJNEJ MATEMATYKA

BIULETYN MATURALNY NR 4 CENTRALNEJ KOMISJI EGZAMINACYJNEJ MATEMATYKA BIULETYN MATURALNY NR 4 CENTRALNEJ KOMISJI EGZAMINACYJNEJ MATEMATYKA SPIS TREŚCI Rozdział I O egzamiie... Rozdział II Elemety matematyki fiasowej dr hab. Michał Szurek... 6 Rozdział III Wzory... 9 Rozdział

Bardziej szczegółowo

ĆWICZENIA NR 1 Z MATEMATYKI (Finanse i Rachunkowość, studia zaoczne, I rok) Zad. 1. Wyznaczyć dziedziny funkcji: 1 = 1, b) ( x) , c) h ( x) x x

ĆWICZENIA NR 1 Z MATEMATYKI (Finanse i Rachunkowość, studia zaoczne, I rok) Zad. 1. Wyznaczyć dziedziny funkcji: 1 = 1, b) ( x) , c) h ( x) x x ĆWICZENIA NR Z MATEMATYKI (Fiase i Rachukowość studia zaocze I rok) Zad Wyzaczyć dziedziy fukcji: a) f ( ) b) ( ) + + 6 f c) f ( ) + + d) f ( ) + e) ( ) f l f) f ( ) l( + ) + l( ) g) f ( ) l( si ) h) f

Bardziej szczegółowo

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki)

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki) Podstawy aalzy epewośc pomarowych (I Pracowa Fzyk) Potr Cygak Zakład Fzyk Naostruktur Naotecholog Istytut Fzyk UJ Pok. 47 Tel. 0-663-5838 e-mal: potr.cygak@uj.edu.pl Potr Cygak 008 Co to jest błąd pomarowy?

Bardziej szczegółowo

Zmiany w zarządzaniu jakością w polskich szpitalach

Zmiany w zarządzaniu jakością w polskich szpitalach Łopacińska Hygeia Public I, Tokarski Health 2014, Z, Deys 49(2): A. 343-347 Zmiay w zarządzaiu jakością w polskich szpitalach 343 Zmiay w zarządzaiu jakością w polskich szpitalach Quality maagemet chages

Bardziej szczegółowo

KOMPETENCJE EKSPERTÓW W INFORMATYCZNYM SYSTEMIE WSPOMAGANIA DECYZJI

KOMPETENCJE EKSPERTÓW W INFORMATYCZNYM SYSTEMIE WSPOMAGANIA DECYZJI KOMPETENCJE EKSPERTÓW W INFORMATYCZNYM SYSTEMIE WSPOMAGANIA DECYZJI Ryszard Budziński, Marta Fukacz, Jarosław Becker, Uiwersytet Szczeciński, Wydział Nauk Ekoomiczych i Zarządzaia, Istytut Iformatyki w

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW BADANIE ODKSZTAŁCEŃ SPRĘŻYNY ŚRUBOWEJ Opracował: Dr iż. Grzegorz

Bardziej szczegółowo

Zeszyty naukowe nr 9

Zeszyty naukowe nr 9 Zeszyty aukowe r 9 Wyższej Szkoły Ekoomiczej w Bochi 2011 Piotr Fijałkowski Model zależości otowań giełdowych a przykładzie otowań ołowiu i spółki Orzeł Biały S.A. Streszczeie Niiejsza praca opisuje próbę

Bardziej szczegółowo

Podstawy informatyki 2. Podstawy informatyki 2. Wykład nr 9 (09.05.2007) Plan wykładu nr 9. Politechnika Białostocka. - Wydział Elektryczny

Podstawy informatyki 2. Podstawy informatyki 2. Wykład nr 9 (09.05.2007) Plan wykładu nr 9. Politechnika Białostocka. - Wydział Elektryczny odstawy iforatyki Wykład r 9 /44 odstawy iforatyki olitechika Białostocka - Wydział Elektryczy Elektrotechika, seestr II, studia stacjoare Rok akadeicki 006/007 la wykładu r 9 Obliczaie liczby π etodą

Bardziej szczegółowo

Aplikacyjne aspekty metody Six Sigma w kwalitatywnej ocenie funkcjonowania systemów logistycznych

Aplikacyjne aspekty metody Six Sigma w kwalitatywnej ocenie funkcjonowania systemów logistycznych Aplikacyje aspekty metody Six Sigma w kwalitatywej oceie fukcjoowaia systemów logistyczych Applicatio aspects of the Six Sigma method i qualitative ratig of the workig of logistic systems Moika Dopytalska*,

Bardziej szczegółowo

OKRĘGOWA KOMISJA EGZAMINACYJNA W ŁODZI INFORMACJE O WYNIKACH UCZNIÓW ROZWIĄZUJĄCYCH ARKUSZE NIESTANDARDOWE

OKRĘGOWA KOMISJA EGZAMINACYJNA W ŁODZI INFORMACJE O WYNIKACH UCZNIÓW ROZWIĄZUJĄCYCH ARKUSZE NIESTANDARDOWE OKRĘGOWA KOMISJA EGZAMINACYJNA W ŁODZI INFORMACJE O WYNIKACH UCZNIÓW ROZWIĄZUJĄCYCH ARKUSZE NIESTANDARDOWE SPRAWDZIAN W ROKU 2009 SPIS TREŚCI 1. DANE STATYSTYCZNE UCZNIÓW ROZWIĄZUJĄCYCH DOSTOSOWANE ARKUSZE

Bardziej szczegółowo

PODSTAWY MATEMATYKI FINANSOWEJ

PODSTAWY MATEMATYKI FINANSOWEJ PODSTAWY MATEMATYKI INANSOWEJ WZORY I POJĘCIA PODSTAWOWE ODSETKI, A STOPA PROCENTOWA KREDYTU (5) ODSETKI OD KREDYTU KWOTA KREDYTU R R- rocza stopa oprocetowaia kredytu t - okres trwaia kredytu w diach

Bardziej szczegółowo

Statystyka Opisowa Wzory

Statystyka Opisowa Wzory tatystyka Opsowa Wzory zereg rozdzelczy: x - wartośc cechy - lczebośc wartośc cechy - lczebość całej zborowośc Wskaźk atężea przy rysowau wykresu szeregu rozdzelczego przedzałowego o erówych przedzałach:

Bardziej szczegółowo

Jak skutecznie reklamować towary konsumpcyjne

Jak skutecznie reklamować towary konsumpcyjne K Stowarzyszeie Kosumetów Polskich Jak skuteczie reklamować towary kosumpcyje HALO, KONSUMENT! Chcesz pozać swoje praw a? Szukasz pomoc y? ZADZWOŃ DO INFOLINII KONSUMENCKIEJ BEZPŁATNY TELEFON 0 800 800

Bardziej szczegółowo

ISSN 1898-6447. Zeszyty Naukowe. Uniwersytet Ekonomiczny w Krakowie. Cracow Review of Economics and Management. Metody analizy danych.

ISSN 1898-6447. Zeszyty Naukowe. Uniwersytet Ekonomiczny w Krakowie. Cracow Review of Economics and Management. Metody analizy danych. ISSN 1898-6447 Uiwersytet Ekoomiczy w Krakowie Zeszyty Naukowe Cracow Review of Ecoomics ad Maagemet 93 Metody aalizy daych Kraków 013 Rada Naukowa Adrzej Atoszewski (Polska), Slavko Arsovski (Serbia),

Bardziej szczegółowo

Matematyka. Zakres podstawowy. Nawi zanie do gimnazjum. n/m Rozwi zywanie zada Zadanie domowe Dodatkowe Komunikaty Bie ce materiały

Matematyka. Zakres podstawowy. Nawi zanie do gimnazjum. n/m Rozwi zywanie zada Zadanie domowe Dodatkowe Komunikaty Bie ce materiały Lekcja 1. Lekcja orgaizacyja kotrakt Podręczik: W. Babiański, L. Chańko, D. Poczek Mateatyka. Zakres podstawowy. Wyd. Nowa Era. Zakres ateriału: Liczby rzeczywiste Wyrażeia algebraicze Rówaia i ierówości

Bardziej szczegółowo

AN ANALYSIS OF KINDERGARDEN TEACHERS` PREPARATION TO PROVIDE FIRST AID

AN ANALYSIS OF KINDERGARDEN TEACHERS` PREPARATION TO PROVIDE FIRST AID PRZEGL EPIDEMIOL 2011; 65: 663-667 Zdrowie publicze Jadwiga Woźiak, Grzegorz Nowicki, Mariusz Goiewicz, Katarzya Zieloka, Marek Górecki, Alia Dzirba, Ewa Chemperek ANALIZA PRZYGOTOWANIA NAUCZYCIELI WYCHOWANIA

Bardziej szczegółowo

4. PRZEKŁADNIKI PRĄDOWE I NAPIĘCIOWE

4. PRZEKŁADNIKI PRĄDOWE I NAPIĘCIOWE 4. PRZEŁDN PRĄDOWE NPĘOWE 4.. Wstęp 4.. Przekładiki prądowe Przekładikie prądowy prądu zieego azywa się trasforator przezaczoy do zasilaia obwodów prądowych elektryczych przyrządów poiarowych oraz przekaźików.

Bardziej szczegółowo

ć Ó ć Ź ć ć ć ć ć ć Ś Ą ć ź Ź ć Ź Ź ć ć ć Ą Ź ĄĄ ć ź ć ć ć ć ć ć Ą ź Ó ć ć ć ć ć ć ć Ą ć ź ć ć ć Ś Ą ź ć Ó ć ć ć Ł ć ć Ą ć ć Ą Ó ć ć ć ć ź ć ć ć ć ć ć Ść ć ć Ó ć Ę ć ć ÓĄ Ś ć ć ć Ą ć ć Ź ź Ś ć Ź ć ć ć

Bardziej szczegółowo

BIULETYN MATURALNY NR 4 CENTRALNEJ KOMISJI EGZAMINACYJNEJ MATEMATYKA

BIULETYN MATURALNY NR 4 CENTRALNEJ KOMISJI EGZAMINACYJNEJ MATEMATYKA BIULETYN MATURALNY NR 4 CENTRALNEJ KOMISJI EGZAMINACYJNEJ MATEMATYKA SPIS TREŚCI Rozdział I O egzamiie... Rozdział II Elemety matematyki fiasowej dr hab. Michał Szurek... 6 Rozdział III Wzory... 9 Rozdział

Bardziej szczegółowo

Wytarzanie energii ze źródeł odnawialnych w procesie spalania mieszanego paliwa wtórnego zawierającego biomasę

Wytarzanie energii ze źródeł odnawialnych w procesie spalania mieszanego paliwa wtórnego zawierającego biomasę Wytarzaie eergii ze źródeł odawialych w procesie spalaia mieszaego paliwa wtórego zawierającego biomasę Autor: Rafał Szymaowicz - ENERGOPOMIAR Sp. z o.o., Zakład Techiki Cieplej ( Eergetyka r 5/2011) W

Bardziej szczegółowo

Dopuszczalne wahania eksploatacyjnych i fizyczno-chemicznych parametrów wód leczniczych

Dopuszczalne wahania eksploatacyjnych i fizyczno-chemicznych parametrów wód leczniczych Dopuszczale wahaia eksploatacyjych i fizyczo-chemiczych parametrów wód lecziczych Zasady ustalaia Miisterstwo Środowiska Wykoao a zamówieie Miistra Środowiska za środki fiasowe wypłacoe przez Narodowy

Bardziej szczegółowo

Ć wiczenie 9 SILNIK TRÓJFAZOWY ZWARTY

Ć wiczenie 9 SILNIK TRÓJFAZOWY ZWARTY 145 Ć wiczeie 9 SILNIK TRÓJFAZOWY ZWARTY 1. Wiadomości ogóle 1.1. Ogóla budowa Siliki asychroicze trójfazowe, dzięki swoim zaletom ruchowym, prostocie kostrukcji, łatwej obsłudze są powszechie stosowae

Bardziej szczegółowo