Zadanie 2. Dany jest szereg rozdzielczy przedziałowy, wyznaczyć następujące miary: wariancja, odchylenie standardowe

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zadanie 2. Dany jest szereg rozdzielczy przedziałowy, wyznaczyć następujące miary: 0 5 5 wariancja, odchylenie standardowe"

Transkrypt

1 Zadane 1. Dany jet zereg przedzałowy, wyznaczyć natępujące mary: x n średna arytmetyczna 1 10 warancja, odchylene tandardowe 15 domnanta 3 0 medana 4 35 kurtoza Zadane. Dany jet zereg rozdzelczy przedzałowy, wyznaczyć natępujące mary: x n średna arytmetyczna warancja, odchylene tandardowe domnanta kwantyl rzędu p // np. p {0,5; 0,50; 0,75; 0,90} kurtoza Zadane 3. Dany jet cąg oberwacj dwóch cech X Y., wyznaczyć: X Y wpółczynnk korelacj lnowej Pearona 3 8 równane regrej opujące zależność y(x) 4 8 równane regrej opujące zależność x(y) Zadane 4. Zebrano dane dotyczące wytępowana dwóch cech X Y w pewnej populacj umezczono je w tablcy korelacyjnej, wyznaczyć: X Y wpółczynnk korelacj lnowej Pearona równane regrej opujące zależność y(x) równane regrej opujące zależność x(y) tounk korelacyjne Pearona wkaźnk krzywolnowośc Zadane 5. Badając pewną welkość Y w pozczególnych meącach twerdzono, że relacja zman z meąca na meąc począwzy do lutego do tyczna kztałtowała ę natępująco: wzrot 0 %, padek 0%, bez zman, wzrot 15%, wzrot 10%, wzrot 5%, bez zman, padek 50% określć: średne tempo zman welkość zjawka w pozczególnych meącach, jeśl w maju welkość zjawka była na pozome 7600 wyznaczyć prognozę na meąc luty natępnego roku przy założenu tałego średnego tempa wzrotu. STRONA 1 Z 5

2 Zadane 6. Badając pewną welkość Y w pozczególnych meącach twerdzono, że relacja zman począwzy do lutego w tounku do maja kztałtowała ę natępująco: wzrot 0 %, padek 0%, bez zman, wzrot 15%, wzrot 10%, wzrot 5%, bez zman, padek 50% określć: średne tempo zman welkość zjawka w pozczególnych meącach, jeśl w lutym welkość zjawka była na pozome 080 wyznaczyć prognozę na meąc luty natępnego roku przy założenu tałego średnego tempa wzrotu. Odpowedz do zadań: Zadane 1. x n x n x 4 x ( x x) n ( x x) n n ,74 4, , ,74 494, , ,74 908, , ,74 096, , ,74 157, , ,74 143, , SUMA , ,889 średna arytmetyczna 3,7391 do dalzych oblczeń 3,74 warancja 58,0433 do dalzych oblczeń 58,04 odchylene tandardowe 7,6184 do dalzych oblczeń 7,6 domnanta 4 medana 4 kurtoza K= 1,1346 K = -1,8654 Zadane. x n x x n x x x n 4 x ( ) ( x x) n n 0 5 5,5 1,5-0,41 08, , ,5 187,5-5, , , ,5 437,5-30, , , ,5 96,5-35, , , , , , , , , , , ,5 487,5-50, , , SUMA ,5 4790, ,5 średna arytmetyczna 17,9054 do dalzych oblczeń 17,91 warancja 1340,0113 do dalzych oblczeń 1340,01 odchylene tandardowe 36,606 do dalzych oblczeń 36,61 domnanta 17, kwantyle: k 0,5 = 1,314 ; k 0,5 = 17,5 ; k 0,50 = 3,15 ; k 0,75 = 3,15 ; k 0,90 = 9,15 kurtoza K= 1,173 K = -1,877 Zadane 3. STRONA Z 5

3 x y x y x y Suma Średna 6 5, 40,4 3,8 6,4 kowarancja -4,8 wpółczynnk korelacj lnowej Pearona -0,954 równane regrej opujące zależność y(x) = -1,09x + 11,74 równane regrej opujące zależność x(y) = -0,83y +10,3 Zadane 4. X Y X Y n. x n. x n n.j Suma y j n.j y jn.j Suma X Y wpółczynnk korelacj korelacj Pearona -0, uma STRONA 3 Z 5

4 Badane tounków korelacyjnych Pearona X Y x n 1 x n x n 3 x n 1 x n x n Suma Średna 16,1 17,88 13,8 67,81 36,7 01,6 warancja wewnątrzgrupowa 8,4 warancja mędzygrupowa 3,07 warancja 11,49 e xy = + ( x ) ( x) = ( x ) ( x) = 0,5169 Zadane 5. meąc Indek łańcuchowy Wartość cechy tyczeń luty wzrot 0% 0,0 1, marzec padek 0% -0,0 0, kweceń bez zman 0,00 1, maj wzrot 15% 0,15 1, czerwec wzrot 10% 0,10 1, lpec wzrot 5% 0,05 1, erpeń bez zman 0,00 1, wrzeeń padek 50% -0,50 0, średne tempo zman padek o 5% -0,05 0,95 wrzeeń paźdzernk 15066,98 ltopad 144,67 grudzeń 13463,45 tyczeń 176,87 luty 1030,58 STRONA 4 Z 5

5 Zadane 6. Meąc Indek jednopodtawowy Wartość cechy Styczeń wzrot 0% 0,0 1, Luty padek 0% -0,0 0, Marzec bez zman 0,00 1, Kweceń wzrot 15% 0,15 1, Maj - 1, czerwec wzrot 10% 0,10 1, lpec wzrot 5% 0,05 1, erpeń bez zman 0,00 1, wrzeeń padek 50% -0,50 0, średne tempo zman padek o 10% -0,10 0,90 wrzeeń paźdzernk 1369,5 ltopad 11087,3 grudzeń 9938,03 tyczeń 8907,87 luty 7984,5 Uwaga. Ze względu na poób zaokrągleń wynk mogą neznaczne odbegać od przedtawonych. STRONA 5 Z 5

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

Egzamin ze statystyki/ Studia Licencjackie Stacjonarne/ Termin I /czerwiec 2010

Egzamin ze statystyki/ Studia Licencjackie Stacjonarne/ Termin I /czerwiec 2010 Egzamn ze statystyk/ Studa Lcencjacke Stacjonarne/ Termn /czerwec 2010 Uwaga: Przy rozwązywanu zadań, jeśl to koneczne, naleŝy przyjąć pozom stotnośc 0,01 współczynnk ufnośc 0,99 Zadane 1 PonŜsze zestawene

Bardziej szczegółowo

Zadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 1 Statystyka opsowa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 W statystyce opsowej mamy pełne nformacje

Bardziej szczegółowo

Badania sondażowe. Braki danych Konstrukcja wag. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa

Badania sondażowe. Braki danych Konstrukcja wag. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa Badana sondażowe Brak danych Konstrukcja wag Agneszka Zęba Zakład Badań Marketngowych Instytut Statystyk Demograf Szkoła Główna Handlowa 1 Błędy braku odpowedz Całkowty brak odpowedz (UNIT nonresponse)

Bardziej szczegółowo

1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ

1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ Ćwczene nr 1 cz.3 Dyfuzja pary wodnej zachodz w kerunku od środowska o wyższej temperaturze do środowska chłodnejszego. Para wodna dyfundująca przez przegrody budowlane w okrese zmowym napotyka na coraz

Bardziej szczegółowo

Analiza korelacji i regresji

Analiza korelacji i regresji Analza korelacj regresj Zad. Pewen zakład produkcyjny zatrudna pracownków fzycznych. Ich wydajność pracy (Y w szt./h) oraz mesęczne wynagrodzene (X w tys. zł) przedstawa ponższa tabela: Pracownk y x A

Bardziej szczegółowo

Statystyka Inżynierska

Statystyka Inżynierska Statystyka Inżynerska dr hab. nż. Jacek Tarasuk AGH, WFIS 013 Wykład DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE Zmenna losowa, Funkcja rozkładu, Funkcja gęstośc, Dystrybuanta, Charakterystyk zmennej, Funkcje

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statytyka. v.0.9 egz mgr inf nietacj Statytyczna analiza danych Statytyka opiowa Szereg zczegółowy proty monotoniczny ciąg danych i ) n uzykanych np. w trakcie pomiaru lub za pomocą ankiety. Przykłady

Bardziej szczegółowo

WOJEWÓDZTWA PRZODUJĄCE W REALIZACJI REGIONALNYCH PROGRAMÓW OPERACYJNYCH W POLSCE W DRUGIEJ POŁOWIE 2008 ROKU

WOJEWÓDZTWA PRZODUJĄCE W REALIZACJI REGIONALNYCH PROGRAMÓW OPERACYJNYCH W POLSCE W DRUGIEJ POŁOWIE 2008 ROKU X SYMPOZJUM WYDZIAŁU ZARZĄDZANIA I MODELOWANIA KOM- PUTEROWEGO POLITECHNIKA ŚWIĘTOKRZYSKA Kelce 18 19 maja 2009 r. WOJEWÓDZTWA PRZODUJĄCE W REALIZACJI REGIONALNYCH PROGRAMÓW OPERACYJNYCH W POLSCE W DRUGIEJ

Bardziej szczegółowo

EKSPLORACJA ZASOBÓW INTERNETU - MIŁOSZ KADZIŃSKI LABORATORIUM IV WEB ADVERTISING + LATENT SEMANTIC INDEXING

EKSPLORACJA ZASOBÓW INTERNETU - MIŁOSZ KADZIŃSKI LABORATORIUM IV WEB ADVERTISING + LATENT SEMANTIC INDEXING EPLORACJA ZAOBÓW INERNEU - IŁOZ AZIŃI LABORAORIU IV WEB AVERIING + LAEN EANIC INEXING. Laboratorum IV.. Web advertng algorytm BALANCE oraz podtawy algorytmu Adword.2. Latent emantc Indexng algorytm redukcj

Bardziej szczegółowo

± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości

± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości Podstawowe pojęca procesu pomarowego kreślene jakośc poznana rzeczywstośc Δ zmerzone rzeczywste 17 9 Zalety stosowana elektrycznych przyrządów 1/ 1. możlwość budowy czujnków zamenających werne każdą welkość

Bardziej szczegółowo

STATYSTYKA ZESTAW ZADAŃ

STATYSTYKA ZESTAW ZADAŃ ZADAIA ROK 004v05R STATYSTYKA ZESTAW ZADAŃ dr Adam Sojda. Analza truktury jednowymarowego rozkładu emprycznego..... Badane wpółzależnośc w dwuwymarowym rozkładze emprycznym.... 8 3. Analza zeregów czaowych....

Bardziej szczegółowo

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego

Bardziej szczegółowo

CZĘŚĆ 6. MODEL REGRESJI, TREND LINIOWY ESTYMACJA, WNIOSKOWANIE

CZĘŚĆ 6. MODEL REGRESJI, TREND LINIOWY ESTYMACJA, WNIOSKOWANIE CZĘŚĆ 6. MODEL REGRESJI, TREND LINIOWY ESTYMACJA, WNIOSKOWANIE Zadane 1. Na podstawe obserwacj dotczącch welkośc powerzchn ekspozcjnej (cecha X w m kw.) oraz welkośc dzennego obrotu punktu sprzedaż płtek

Bardziej szczegółowo

BADANIE STABILNOŚCI WSPÓŁCZYNNIKA BETA AKCJI INDEKSU WIG20

BADANIE STABILNOŚCI WSPÓŁCZYNNIKA BETA AKCJI INDEKSU WIG20 Darusz Letkowsk Unwersytet Łódzk BADANIE STABILNOŚCI WSPÓŁCZYNNIKA BETA AKCJI INDEKSU WIG0 Wprowadzene Teora wyboru efektywnego portfela nwestycyjnego zaproponowana przez H. Markowtza oraz jej rozwnęca

Bardziej szczegółowo

ZAJĘCIA X. Zasada największej wiarygodności

ZAJĘCIA X. Zasada największej wiarygodności ZAJĘCIA X Zasada najwększej warygodnośc Funkcja warygodnośc Estymacja wg zasady maksymalzacj warygodnośc Rodzna estymatorów ML Przypadk szczególne WPROWADZEIE Komputerowa dentyfkacja obektów Przyjęce na

Bardziej szczegółowo

ANALIZA RYZYKA STARZENIA DEMOGRAFICZNEGO WYBRANYCH MIAST W POLSCE

ANALIZA RYZYKA STARZENIA DEMOGRAFICZNEGO WYBRANYCH MIAST W POLSCE Grażyna Trzpiot Anna Ojrzyńka Uniwerytet Ekonomiczny w Katowicach ANALIZA RYZYKA STARZENIA DEMOGRAFICZNEGO WYBRANYCH MIAST W POLSCE Wtęp Starzenie ię populacji to pochodna przede wzytkim dwóch czynników:

Bardziej szczegółowo

STATYSTYCZNA ANALIZA WYNIKÓW POMIARÓW

STATYSTYCZNA ANALIZA WYNIKÓW POMIARÓW Zakład Metrolog Systemów Pomarowych P o l t e c h n k a P o z n ańska ul. Jana Pawła II 4 60-965 POZAŃ (budynek Centrum Mechatronk, Bomechank anonżyner) www.zmsp.mt.put.poznan.pl tel. +48 61 665 5 70 fax

Bardziej szczegółowo

Nowoczesne metody sterowania odstawą urobku w kopalniach

Nowoczesne metody sterowania odstawą urobku w kopalniach r nż. ZYGUNT SZYAŃSKI Poltechnka Śląka Katera Elektryfkacj Atomatyzacj Górncta Nooczene metoy teroana otaą robk kopalnach W artykle przetaono koncepcję teroana narzęnego mazyn górnczych opartego na teroan

Bardziej szczegółowo

Analiza struktury zbiorowości statystycznej

Analiza struktury zbiorowości statystycznej Analza struktury zborowośc statystycznej.analza tendencj centralnej. Średne klasyczne Średna arytmetyczna jest parametrem abstrakcyjnym. Wyraża przecętny pozom badanej zmennej (cechy) w populacj generalnej:

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5 MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając

Bardziej szczegółowo

9. DZIAŁANIE SIŁY NORMALNEJ

9. DZIAŁANIE SIŁY NORMALNEJ Część 2 9. DZIŁIE SIŁY ORMLEJ 1 9. DZIŁIE SIŁY ORMLEJ 9.1. ZLEŻOŚCI PODSTWOWE Przyjmiemy, że materiał pręta jet jednorodny i izotropowy. Jeśli ponadto założymy, że pręt jet pryzmatyczny, to łuzne ą wzory

Bardziej szczegółowo

OTWARTE FUNDUSZE EMERYTALNE W POLSCE Struktura funduszy emerytalnych pod względem liczby członków oraz wielkości aktywów

OTWARTE FUNDUSZE EMERYTALNE W POLSCE Struktura funduszy emerytalnych pod względem liczby członków oraz wielkości aktywów OTWARTE FUNDUSZE EMERYTALNE W POLSCE Struktura funduszy emerytalnych pod względem liczby członków oraz wielkości aktywów Tomasz Gruszczyk Informatyka i Ekonometria I rok, nr indeksu: 156012 Sopot, styczeń

Bardziej szczegółowo

KONKURS NA NAJLEPSZEGO ANALITYKA/ZESPÓŁ ANALITYCZNY

KONKURS NA NAJLEPSZEGO ANALITYKA/ZESPÓŁ ANALITYCZNY KONKURS NA NAJLEPSZEGO ANALTYKA/ZESPÓŁ ANALTYCZNY Celem konkuru jet wyłonene najlepzego zepołu analtyków profejonalne zajmującego ę prognozowanem wkaźnków (zmennych) makroekonomcznych dla gopodark polkej.

Bardziej szczegółowo

Dobór zmiennych objaśniających

Dobór zmiennych objaśniających Dobór zmennych objaśnających Metoda grafowa: Należy tak rozpąć graf na werzchołkach opsujących poszczególne zmenne, aby występowały w nm wyłączne łuk symbolzujące stotne korelacje pomędzy zmennym opsującym.

Bardziej szczegółowo

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są

Bardziej szczegółowo

SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY

SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY Opsowa analza struktury zjawsk masowych Demografa statystyka PROJEKT DOFINANSOWANY ZE ŚRODKÓW NARODOWEGO BANKU POLSKIEGO URZĄD STATYSTYCZNY

Bardziej szczegółowo

Wykład 3: Atomy wieloelektronowe

Wykład 3: Atomy wieloelektronowe Wykład 3: Atomy wieloelektronowe Funkcje falowe Kolejność zapełniania orbitali Energia elektronów Konfiguracja elektronowa Reguła Hunda i zakaz Pauliego Efektywna liczba atomowa Reguły Slatera Wydział

Bardziej szczegółowo

Proste modele ze złożonym zachowaniem czyli o chaosie

Proste modele ze złożonym zachowaniem czyli o chaosie Proste modele ze złożonym zachowanem czyl o chaose 29 kwetna 2014 Komputer jest narzędzem coraz częścej stosowanym przez naukowców do ukazywana skrzętne ukrywanych przez naturę tajemnc. Symulacja, obok

Bardziej szczegółowo

Opracowanie metody predykcji czasu życia baterii na obiekcie i oceny jej aktualnego stanu na podstawie analizy bieżących parametrów jej eksploatacji.

Opracowanie metody predykcji czasu życia baterii na obiekcie i oceny jej aktualnego stanu na podstawie analizy bieżących parametrów jej eksploatacji. Zakład Systemów Zaslana (Z-5) Opracowane nr 323/Z5 z pracy statutowej pt. Opracowane metody predykcj czasu życa bater na obekce oceny jej aktualnego stanu na podstawe analzy beżących parametrów jej eksploatacj.

Bardziej szczegółowo

HARMONOGRAM ZAJĘĆ J. ANGIELSKI I SEMESTR rok akademicki 2015/2016 zimowy

HARMONOGRAM ZAJĘĆ J. ANGIELSKI I SEMESTR rok akademicki 2015/2016 zimowy 24 październik 2015r. sobota 25 październik 2015r. niedziela 8 listopad 2015r. niedziela Wykład 3h 14 listopad 2015r. sobota 15 listopad 2015r. niedziela 05 grudzień 2015r. sobota sala 7 Wykłady 2h sala

Bardziej szczegółowo

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej Podstawy Mary położea wskazują mejsce wartośc ajlepej reprezetującej wszystke welkośc daej zmeej. Mówą o przecętym pozome aalzowaej cechy. Średa arytmetycza suma wartośc zmeej wszystkch jedostek badaej

Bardziej szczegółowo

MIARY ZALEŻNOŚCI ANALIZA STATYSTYCZNA NA PRZYKŁADZIE WYBRANYCH WALORÓW RYNKU METALI NIEŻELAZNYCH

MIARY ZALEŻNOŚCI ANALIZA STATYSTYCZNA NA PRZYKŁADZIE WYBRANYCH WALORÓW RYNKU METALI NIEŻELAZNYCH Domnk Krężołek Unwersytet Ekonomczny w Katowcach MIARY ZALEŻNOŚCI ANALIZA AYYCZNA NA PRZYKŁADZIE WYBRANYCH WALORÓW RYNKU MEALI NIEŻELAZNYCH Wprowadzene zereg czasowe obserwowane na rynkach kaptałowych

Bardziej szczegółowo

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5 L.Kowalsk zadaa ze statystyk opsowej-zestaw 5 Zadae 5. X cea (zł, Y popyt (tys. szt.. Mając dae ZADANIA Zestaw 5 x,5,5 3 3,5 4 4,5 5 y 44 43 43 37 36 34 35 35 Oblcz współczyk korelacj Pearsoa. Oblcz współczyk

Bardziej szczegółowo

Metody predykcji analiza regresji

Metody predykcji analiza regresji Metody predykcj analza regresj TPD 008/009 JERZY STEFANOWSKI Instytut Informatyk Poltechnka Poznańska Przebeg wykładu. Predykcja z wykorzystanem analzy regresj.. Przypomnene wadomośc z poprzednch przedmotów..

Bardziej szczegółowo

METODY HODOWLANE - zagadnienia

METODY HODOWLANE - zagadnienia METODY HODOWLANE METODY HODOWLANE - zagadnena 1. Matematyczne podtawy metod odowlanyc. Wartość cecy loścowej defncje parametrów genetycznyc 3. Metody zacowana parametrów genetycznyc 4. Wartość odowlana

Bardziej szczegółowo

OZNACZANIE TWARDOŚCI OGÓLNEJ WODY ZA POMOCĄ WERSENIANU SODU

OZNACZANIE TWARDOŚCI OGÓLNEJ WODY ZA POMOCĄ WERSENIANU SODU OZNACZANIE TWARDOŚCI OGÓLNEJ WODY ZA POMOCĄ WERSENIANU SODU Intrukcja do ćwczeń opracowana w Katedrze Chem Środowka Unwerytetu Łódzkego. 1. Wprowadzene 1.1. Twardość wody Twardość wody jet to właścwość

Bardziej szczegółowo

STATYSTYKA I stopień ZESTAW ZADAŃ

STATYSTYKA I stopień ZESTAW ZADAŃ Stattka ZADAIA STATYSTYKA I topeń ZESTAW ZADAŃ dr Adam Sojda. Aalza truktur jedowmarowego rozkładu emprczego..... Badae wpółzależośc w dwuwmarowm rozkładze emprczm. 8 3. Aalza zeregów czaowch.... 4. Aalza

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobeństwo statystya.05.00 r. Zadane Zmenna losowa X ma rozład wyładnczy o wartośc oczewanej, a zmenna losowa Y rozład wyładnczy o wartośc oczewanej. Obe zmenne są nezależne. Oblcz E( Y X + Y =

Bardziej szczegółowo

1. OKREŚLENIE PARAMETRÓW GEOTECHNICZNYCH

1. OKREŚLENIE PARAMETRÓW GEOTECHNICZNYCH Projekt z fundamentowana: MUR OPOROWY (tuda mgr) POSADOWIENIE NA PALACH WG PN-83/B-02482. OKREŚLENIE PARAMETRÓW GEOTECHNICZNYCH grunt G π P d T/Nm P / P r grunt zayp. Tabl.II.. Zetawene parametrów geotechncznych.

Bardziej szczegółowo

Klasyfkator lnowy Wstęp Klasyfkator lnowy jest najprostszym możlwym klasyfkatorem. Zakłada on lnową separację lnowy podzał dwóch klas mędzy sobą. Przedstawa to ponższy rysunek: 5 4 3 1 0-1 - -3-4 -5-5

Bardziej szczegółowo

LABORATORIUM Z PODSTAW KONSTRUKCJI MASZYN

LABORATORIUM Z PODSTAW KONSTRUKCJI MASZYN LABORATORIUM Z PODSTAW KONSTRUKCJI MASZYN ĆWICZENIE NR 3 WYZNACZANIE NIEOGRANICZONEJ WYTRZYMAŁOŚCI PODSTAWY ZĘBA NA ZMĘCZENIE DLA NAPRĘśEŃ GNĄCYCH l. Cel ćwczena a) Zapoznane ę z etodą wyznaczana neogranczonej

Bardziej szczegółowo

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja) Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz

Bardziej szczegółowo

Temat B. Wykład nr. Nr indeksu. Nazwisko, imię (studenta) 1 a b c 2 a b c d 3 a b c d e 4 5 a b

Temat B. Wykład nr. Nr indeksu. Nazwisko, imię (studenta) 1 a b c 2 a b c d 3 a b c d e 4 5 a b Wykład nr Nr ndeksu Nazwsko, mę (studenta). Temat B Egzamn ze statystyk Studa Lcencjacke Stacjonarne Termn I /czerwec 20 Zad 1 a c 2 a c d 3 a c d e 4 5 a Pkt Razem Uwaga: Przy rozwązywanu zadań, jeśl

Bardziej szczegółowo

NAFTA-GAZ marzec 2011 ROK LXVII. Wprowadzenie. Tadeusz Kwilosz

NAFTA-GAZ marzec 2011 ROK LXVII. Wprowadzenie. Tadeusz Kwilosz NAFTA-GAZ marzec 2011 ROK LXVII Tadeusz Kwlosz Instytut Nafty Gazu, Oddzał Krosno Zastosowane metody statystycznej do oszacowana zapasu strategcznego PMG, z uwzględnenem nepewnośc wyznaczena parametrów

Bardziej szczegółowo

ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH

ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH Grzegorz PRZEKOTA ZESZYTY NAUKOWE WYDZIAŁU NAUK EKONOMICZNYCH ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH Zarys treśc: W pracy podjęto problem dentyfkacj cykl gełdowych.

Bardziej szczegółowo

PRĘDKOŚCI KOSMICZNE OPRACOWANIE

PRĘDKOŚCI KOSMICZNE OPRACOWANIE PRĘDKOŚCI KOSMICZNE OPRACOWANIE I, II, III pędkość komiczna www.iwiedza.net Obecnie, żyjąc w XXI wieku, wydaje ię nomalne, że człowiek potafi polecieć w komo, opuścić Ziemię oaz wylądować na Kiężycu. Poza

Bardziej szczegółowo

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4. Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można

Bardziej szczegółowo

Algorytmy ewolucyjne (2)

Algorytmy ewolucyjne (2) Algorytmy ewolucyjne (2) zajecia.jakubw.pl/nai/ ALGORYTM GEETYCZY Cel: znaleźć makimum unkcji. Założenie: unkcja ta jet dodatnia. 1. Tworzymy oobników loowych. 2. Stoujemy operacje mutacji i krzyżowania

Bardziej szczegółowo

Evaluation of estimation accuracy of correlation functions with use of virtual correlator model

Evaluation of estimation accuracy of correlation functions with use of virtual correlator model Jadwga LAL-JADZIAK Unwersytet Zelonogórsk Instytut etrolog Elektrycznej Elżbeta KAWECKA Unwersytet Zelonogórsk Instytut Informatyk Elektronk Ocena dokładnośc estymacj funkcj korelacyjnych z użycem modelu

Bardziej szczegółowo

I. Poziom: poziom podstawowy (nowa formuła)

I. Poziom: poziom podstawowy (nowa formuła) Przedmot: matematyka Dorota Marcnkowska Analza wynków egzamnu maturalnego wosna 2016 I. Pozom: pozom podstawowy (nowa formuła) 1. Zestawene wynków dla Technkum Nr 1 Lczba ucznów zdających -T 52 Zdało egzamn

Bardziej szczegółowo

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej cechy. Średnia arytmetyczna suma wartości zmiennej wszystkich

Bardziej szczegółowo

Maksymalny błąd oszacowania prędkości pojazdów uczestniczących w wypadkach drogowych wyznaczonej różnymi metodami

Maksymalny błąd oszacowania prędkości pojazdów uczestniczących w wypadkach drogowych wyznaczonej różnymi metodami BIULETYN WAT VOL LV, NR 3, 2006 Makymalny błąd ozacowania prędkości pojazdów uczetniczących w wypadkach drogowych wyznaczonej różnymi metodami BOLESŁAW PANKIEWICZ, STANISŁAW WAŚKO* Wojkowa Akademia Techniczna,

Bardziej szczegółowo

Praca i energia. x jest. x i W Y K Ł A D 5. 6-1 Praca i energia kinetyczna. Ruch jednowymiarowy pod działaniem stałych sił.

Praca i energia. x jest. x i W Y K Ł A D 5. 6-1 Praca i energia kinetyczna. Ruch jednowymiarowy pod działaniem stałych sił. ykład z fzyk. Pot Pomykewcz 40 Y K Ł A D 5 Pa enega. Pa enega odgywają waŝną olę zaówno w fzyce jak w codzennym Ŝycu. fzyce ła wykonuje konketną pacę, jeŝel dzała ona na pzedmot ma kładową wzdłuŝ pzemezczena

Bardziej szczegółowo

formularzy opisowych, ankiet lub innych dokumentów stanowi nieuporządkowany statystyczny, stanowi on podstawę dalszych

formularzy opisowych, ankiet lub innych dokumentów stanowi nieuporządkowany statystyczny, stanowi on podstawę dalszych Zebran materał statstczn w forme sprawozdań, formularz opsowch, anket lub nnch dokumentów stanow neuporządkowan surow materał statstczn, neprzdatn jeszcze do bezpośrednej analz, porównań wnosków. Materał

Bardziej szczegółowo

176 Wstȩp do statystyki matematycznej = 0, 346. uczelni zdaje wszystkie egzaminy w pierwszym terminie.

176 Wstȩp do statystyki matematycznej = 0, 346. uczelni zdaje wszystkie egzaminy w pierwszym terminie. 176 Wtȩp do tatytyki matematycznej trści wynika że H o : p 1 przeciwko hipotezie H 3 1: p< 1. Aby zweryfikować tȩ 3 hipotezȩ zatujemy tet dla frekwencji. Wtedy z ob 45 1 150 3 1 3 2 3 150 0 346. Tymczaem

Bardziej szczegółowo

TYPOWE OPERATORY KRZYŻOWANIA OBLICZENIA EWOLUCYJNE FUNKCJE TESTOWE F. RASTRIGINA F. ACKLEYA ... 3. ( x) = x i 30 -30. minimum globalne.

TYPOWE OPERATORY KRZYŻOWANIA OBLICZENIA EWOLUCYJNE FUNKCJE TESTOWE F. RASTRIGINA F. ACKLEYA ... 3. ( x) = x i 30 -30. minimum globalne. FUNKCJE TESTOWE OBLICENIA EWOLUCJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromoome EVOLUTIONAR OPERATORS AND RECEIVING FITNESS F. wykład

Bardziej szczegółowo

dy dx stąd w przybliżeniu: y

dy dx stąd w przybliżeniu: y Przykłady do funkcj nelnowych funkcj Törnqusta Proszę sprawdzć uzasadnć, które z podanych zdań są prawdzwe, a które fałszywe: Przykład 1. Mesęczne wydatk na warzywa (y, w jednostkach penężnych, jp) w zależnośc

Bardziej szczegółowo

Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu

Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu PRACE KOMISJI GEOGRAFII PRZEMY SŁU Nr 7 WARSZAWA KRAKÓW 2004 Akadema Pedagogczna, Kraków Kształtowane sę frm nformatycznych jako nowych elementów struktury przestrzennej przemysłu Postępujący proces rozwoju

Bardziej szczegółowo

Markowa. ZałoŜenia schematu Gaussa-

Markowa. ZałoŜenia schematu Gaussa- ZałoŜena scheatu Gaussa- Markowa I. Model jest nezennczy ze względu na obserwacje: f f f3... fl f, czyl y f (x, ε) II. Model jest lnowy względe paraetrów. y βo + β x +ε Funkcja a być lnowa względe paraetrów

Bardziej szczegółowo

WPŁYW AKCESJI POLSKI DO UNII EUROPEJSKIEJ NA ROZWÓJ ROLNICTWA EKOLOGICZNEGO. Lidia Luty

WPŁYW AKCESJI POLSKI DO UNII EUROPEJSKIEJ NA ROZWÓJ ROLNICTWA EKOLOGICZNEGO. Lidia Luty 74 LIDIA LUTY ROCZNIKI NAUKOWE EKONOMII ROLNICTWA I ROZWOJU OBSZARÓW WIEJSKICH, T. 11, z. 1, 214 WPŁYW AKCESJI POLSKI DO UNII EUROPEJSKIEJ NA ROZWÓJ ROLNICTWA EKOLOGICZNEGO Lda Lut Katedra Statstk Matematcznej

Bardziej szczegółowo

Materiały do wykładu 4 ze Statystyki

Materiały do wykładu 4 ze Statystyki Materiały do wykładu 4 ze Statytyki CHARAKTERYSTYKI LICZBOWE STRUKTURY ZBIOROWOŚCI (dok.) 1. miary położeia - wykład 2 2. miary zmieości (dyperji, rozprozeia) - wykład 3 3. miary aymetrii (kośości) 4.

Bardziej szczegółowo

LABORATORIUM PRZYRZĄDÓW I UKŁADÓW MOCY. Ćwiczenie 3 B. Stany dynamiczne Przetwornica impulsowa

LABORATORIUM PRZYRZĄDÓW I UKŁADÓW MOCY. Ćwiczenie 3 B. Stany dynamiczne Przetwornica impulsowa 90-924 Łódź, ul. Wólczańka 221/223, bud. B18 tel. (0)42 631 26 28 fak (0)42 636 03 27 e-mal ecretary@dmc.p.lodz.pl http://www.dmc.p.lodz.pl ABORATORIM PRZYRZĄDÓW I KŁADÓW MOCY Ćwczene 3 B Stany dynamczne

Bardziej szczegółowo

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru Pomary fzyczne - dokonywane tylko ze skończoną dokładnoścą. Powodem - nedoskonałość przyrządów pomarowych neprecyzyjność naszych zmysłów borących udzał w obserwacjach. Podawane samego tylko wynku pomaru

Bardziej szczegółowo

METODA UNITARYZACJI ZEROWANEJ Porównanie obiektów przy ocenie wielokryterialnej. Ranking obiektów.

METODA UNITARYZACJI ZEROWANEJ Porównanie obiektów przy ocenie wielokryterialnej. Ranking obiektów. Opracowane: Dorota Mszczyńska METODA UNITARYZACJI ZEROWANEJ Porównane obektów przy ocene welokryteralnej. Rankng obektów. Porównane wybranych obektów (warantów decyzyjnych) ze względu na różne cechy (krytera)

Bardziej szczegółowo

Pozyskiwanie wiedzy z danych

Pozyskiwanie wiedzy z danych Pozyskiwanie wiedzy z danych dr Agnieszka Goroncy Wydział Matematyki i Informatyki UMK PROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Pozyskiwanie wiedzy

Bardziej szczegółowo

Projekt 2 studium wykonalności. 1. Wyznaczenie obciążenia powierzchni i obciążenia ciągu (mocy)

Projekt 2 studium wykonalności. 1. Wyznaczenie obciążenia powierzchni i obciążenia ciągu (mocy) Niniejzy projekt kłada ię z dwóch części: Projekt 2 tudium wykonalności ) yznaczenia obciążenia powierzchni i obciążenia ciągu (mocy) przyzłego amolotu 2) Ozacowania koztów realizacji projektu. yznaczenie

Bardziej szczegółowo

Ćwiczenia nr 3 Finanse II Robert Ślepaczuk. Teoria portfela papierów wartościowych

Ćwiczenia nr 3 Finanse II Robert Ślepaczuk. Teoria portfela papierów wartościowych Ćczea r 3 Fae II obert Ślepaczuk Teora portfela paperó artoścoych Teora portfela paperó artoścoych jet jedym z ajażejzych dzałó ooczeych faó. Dotyczy oa etycj faoych, a przede zytkm etycj dokoyaych a ryku

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Statystyka zbiór przetworzonych i zsyntetyzowanych danych liczbowych, nauka o ilościowych metodach

Bardziej szczegółowo

Podstawowe układy pracy tranzystora bipolarnego

Podstawowe układy pracy tranzystora bipolarnego L A B O A T O I U M U K Ł A D Ó W L I N I O W Y C H Podtawowe układy pracy tranzytora bipolarnego Ćwiczenie opracował Jacek Jakuz 4. Wtęp Ćwiczenie umożliwia pomiar i porównanie parametrów podtawowych

Bardziej szczegółowo

WYBRANE METODY TWORZENIA STRATEGII ZRÓWNOWAŻONEGO TRANSPORTU MIEJSKIEGO SELECTED METHODS FOR DEVELOPING SUSTAINABLE URBAN TRANS- PORT STRATEGIES

WYBRANE METODY TWORZENIA STRATEGII ZRÓWNOWAŻONEGO TRANSPORTU MIEJSKIEGO SELECTED METHODS FOR DEVELOPING SUSTAINABLE URBAN TRANS- PORT STRATEGIES Zbgnew SKROBACKI WYBRANE METODY TWORZENIA STRATEGII ZRÓWNOWAŻONEGO TRANSPORTU MIEJSKIEGO SELECTED METHODS FOR DEVELOPING SUSTAINABLE URBAN TRANS- PORT STRATEGIES W artykule przedstawone systemowe podejśce

Bardziej szczegółowo

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni. Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :

Bardziej szczegółowo

Analiza regresji modele ekonometryczne

Analiza regresji modele ekonometryczne Analza regresj modele ekonometryczne Klasyczny model regresj lnowej - przypadek jednej zmennej objaśnającej. Rozpatrzmy klasyczne zagadnene zależnośc pomędzy konsumpcją a dochodam. Uważa sę, że: - zależność

Bardziej szczegółowo

3 BADANIE WYDAJNOŚCI SPRĘŻARKI TŁOKOWEJ. 1. Wprowadzenie

3 BADANIE WYDAJNOŚCI SPRĘŻARKI TŁOKOWEJ. 1. Wprowadzenie 3 BADANIE WYDAJNOŚCI SPRĘŻARKI TŁOKOWEJ. Wprowadzene Sprężarka jet podtawowym przykładem otwartego układu termodynamcznego. Jej zadanem jet medzy nnym podwyżzene cśnena gazu w celu: uzykane czynnka napędowego

Bardziej szczegółowo

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 3. Analiza obwodów RLC przy wymuszeniach sinusoidalnych w stanie ustalonym

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 3. Analiza obwodów RLC przy wymuszeniach sinusoidalnych w stanie ustalonym ĆWCZENE 3 Analza obwodów C przy wymszenach snsodalnych w stane stalonym 1. CE ĆWCZENA Celem ćwczena jest praktyczno-analtyczna ocena obwodów elektrycznych przy wymszenach snsodalne zmennych.. PODSAWY EOEYCZNE

Bardziej szczegółowo

Estymacja parametrów rozkładu cechy

Estymacja parametrów rozkładu cechy Estymacja parametrów rozkładu cechy Estymujemy parametr θ rozkładu cechy X Próba: X 1, X 2,..., X n Estymator punktowy jest funkcją próby ˆθ = ˆθX 1, X 2,..., X n przybliżającą wartość parametru θ Przedział

Bardziej szczegółowo

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch Za: Stansław Latoś, Nwelacja trygonometryczna, [w:] Ćwczena z geodezj II [red.] J. eluch 6.1. Ogólne zasady nwelacj trygonometrycznej. Wprowadzene Nwelacja trygonometryczna, zwana równeż trygonometrycznym

Bardziej szczegółowo

KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE

KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE Adranna Mastalerz-Kodzs Unwersytet Ekonomczny w Katowcach KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE Wprowadzene W dzałalnośc nstytucj fnansowych, takch

Bardziej szczegółowo

Regresja liniowa i nieliniowa

Regresja liniowa i nieliniowa Metody prognozowana: Regresja lnowa nelnowa Dr nż. Sebastan Skoczypec Zmenna losowa Zmenna losowa X zmenna, która w wynku pewnego dośwadczena przyjmuje z pewnym prawdopodobeństwem wartość z określonego

Bardziej szczegółowo

ĆWICZENIE 1 CHARAKTERYSTYKI STATYCZNE DIOD P-N

ĆWICZENIE 1 CHARAKTERYSTYKI STATYCZNE DIOD P-N LBORTORM PRZYRZĄDÓW PÓŁPRZEWODNKOWYCH ĆWCZENE 1 CHRKTERYSTYK STTYCZNE DOD P-N K T E D R S Y S T E M Ó W M K R O E L E K T R O N C Z N Y C H 1 CEL ĆWCZEN Celem ćwiczenia jet zapoznanie ię z: przebiegami

Bardziej szczegółowo

Półautomatyczny system tworzenia bazy zdjęć satelitarnych NOAA/AVHRR dla potrzeb monitoringu wzrostu roślin uprawnych w Polsce. Jędrzej Bojanowski

Półautomatyczny system tworzenia bazy zdjęć satelitarnych NOAA/AVHRR dla potrzeb monitoringu wzrostu roślin uprawnych w Polsce. Jędrzej Bojanowski Półautomatyczny ytem tworzenia bazy zdjęć atelitarnych NOAA/AVHRR dla potrzeb monitoringu wzrotu roślin uprawnych w Polce Jędrzej Bojanowki Werja 3 marca 2010 Obliczanie wkaźników roślinnych na podtawie

Bardziej szczegółowo

SKUTECZNOŚĆ ROZDZIELANIA MIESZANINY ZIARNIAKÓW ZBÓŻ I ORZESZKÓW GRYKI W TRYJERZE Z WGŁĘBIENIAMI KIESZONKOWYMI

SKUTECZNOŚĆ ROZDZIELANIA MIESZANINY ZIARNIAKÓW ZBÓŻ I ORZESZKÓW GRYKI W TRYJERZE Z WGŁĘBIENIAMI KIESZONKOWYMI Inżynieria Rolnicza 6(115)/009 SKUTECZNOŚĆ ROZDZIELANIA MIESZANINY ZIARNIAKÓW ZBÓŻ I ORZESZKÓW GRYKI W TRYJERZE Z WGŁĘBIENIAMI KIESZONKOWYMI Zdziław Kaliniewicz Katedra Mazyn Roboczych i Proceów Separacji,

Bardziej szczegółowo

Model ASAD. ceny i płace mogą ulegać zmianom (w odróżnieniu od poprzednio omawianych modeli)

Model ASAD. ceny i płace mogą ulegać zmianom (w odróżnieniu od poprzednio omawianych modeli) Model odstawowe założena modelu: ceny płace mogą ulegać zmanom (w odróżnenu od poprzedno omawanych model) punktem odnesena analzy jest obserwacja pozomu produkcj cen (a ne stopy procentowej jak w modelu

Bardziej szczegółowo

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru Pomary fzyczne - dokonywane tylko ze skończoną dokładnoścą. Powodem - nedoskonałość przyrządów pomarowych neprecyzyjność naszych zmysłów borących udzał w obserwacjach. Podawane samego tylko wynku pomaru

Bardziej szczegółowo

Ekonometryczne modele nieliniowe

Ekonometryczne modele nieliniowe Ekonomeryczne modele nelnowe Wykład 5 Progowe modele regrej Leraura Hanen B. E. 997 Inference n TAR Model, Sude n Nonlnear Dynamc and Economerc,. Tek na rone nerneowej wykładu Dodakowa leraura Hanen B.

Bardziej szczegółowo

Testy dotyczące wartości oczekiwanej (1 próbka).

Testy dotyczące wartości oczekiwanej (1 próbka). ZASADY TESTOWANIA HIPOTEZ STATYSTYCZNYCH. TESTY DOTYCZĄCE WARTOŚCI OCZEKIWANEJ Przez hipotezę tatytyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu intereującej na cechy. Hipotezy

Bardziej szczegółowo

ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ

ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BYŁY SZTYWNEJ 1. Welkośc w uchu obotowym. Moment pędu moment sły 3. Zasada zachowana momentu pędu 4. uch obotowy były sztywnej względem ustalonej os -II

Bardziej szczegółowo

Ryzyko inwestycji. Ryzyko jest to niebezpieczeństwo niezrealizowania celu, założonego przy podejmowaniu określonej decyzji. 3.

Ryzyko inwestycji. Ryzyko jest to niebezpieczeństwo niezrealizowania celu, założonego przy podejmowaniu określonej decyzji. 3. PZEDMIIOT : EFEKTYWNOŚĆ SYSTEMÓW IINFOMTYCZNYCH 3. 3. Istota, defncje rodzaje ryzyka Elementem towarzyszącym każdej decyzj, w tym decyzj nwestycyjnej, jest ryzyko. Wynka to z faktu, że decyzje operają

Bardziej szczegółowo

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA Problemy jednoczesnego testowana welu hpotez statystycznych ch zastosowana w analze mkromacerzy DNA Konrad Furmańczyk Katedra Zastosowań Matematyk SGGW Plan referatu Testowane w analze mkromacerzy DNA

Bardziej szczegółowo

HARMONOGRAM ZAJĘĆ EDUKACJA MUZYCZNA I PLASTYCZNA I SEMESTR rok akademicki 2015/2016 zimowy

HARMONOGRAM ZAJĘĆ EDUKACJA MUZYCZNA I PLASTYCZNA I SEMESTR rok akademicki 2015/2016 zimowy Od-do 24 październik 2015r. sobota 25 październik 2014r. niedziela 08 listopad 2015r. niedziela Wykład 3h 28 listopad 2015r. sobota 29 listopad 2015r. niedziela sala 4 sala 4 sala 4 sala 4 sala 4 EDUKACJA

Bardziej szczegółowo

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 2(88)/2012

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 2(88)/2012 ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW (88)/01 Hubert Sar, Potr Fundowcz 1 WYZNACZANIE ASOWEGO OENTU BEZWŁADNOŚCI WZGLĘDE OSI PIONOWEJ DLA SAOCHODU TYPU VAN NA PODSTAWIE WZORU EPIRYCZNEGO 1. Wstęp asowy moment

Bardziej szczegółowo

Zmiany cen nieruchomości w czasie

Zmiany cen nieruchomości w czasie Inwestycje i ryzyko na rynku nieruchości Ewa Kusideł 1 Zmiany cen nieruchomości w czasie Dr Ewa Kusideł Inwestycje i ryzyko na rynku nieruchości 2 Analiza średnich zmian cen nieruchomości w czasie za pomocą

Bardziej szczegółowo

Zawartość. Zawartość

Zawartość. Zawartość Opr. dr inż. Grzegorz Biesok. Wer. 2.20 2011 Zawartość Zawartość 1. Tworzenie szeregu rozdzielczego przedziałowego (klasowego)... 3 2. Podstawowy opis struktury... 3 3. Opis rozkładu jednej cechy szereg

Bardziej szczegółowo

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup Jednoczynnkowa Analza Waranc (ANOVA) Wykład 11 Przypomnene: wykłady zadana kursu były zaczerpnęte z podręcznków: Statystyka dla studentów kerunków techncznych przyrodnczych, J. Koronack, J. Melnczuk, WNT

Bardziej szczegółowo

RESULTATIVE PRODUCT INNOVATIVENESS AND SALES PROFITABILITY BASED ON THE EXAMPLE OF IT COMPANIES QUOTED ON THE WARSAW STOCK EXCHANGE

RESULTATIVE PRODUCT INNOVATIVENESS AND SALES PROFITABILITY BASED ON THE EXAMPLE OF IT COMPANIES QUOTED ON THE WARSAW STOCK EXCHANGE Tomaz NAWROCK oltechnka Śląka Wdzał Organzacj Zarządzana nttut Ekonom nformatk Wżza Szkoła Bankoośc Fnanó Belku-Bałej REZULTATYWNA NNOWACYJNOŚĆ RODUKTOWA A RENTOWNOŚĆ SRZEDAŻY NA RZYKŁADZE SÓŁEK NFORMATYCZNYCH

Bardziej szczegółowo

Inteligentna analiza danych

Inteligentna analiza danych Numer indeksu 150946 Michał Moroz Imię i nazwisko Numer indeksu 150875 Grzegorz Graczyk Imię i nazwisko kierunek: Informatyka rok akademicki: 2010/2011 Inteligentna analiza danych Ćwiczenie I Wskaźniki

Bardziej szczegółowo

Parametry statystyczne

Parametry statystyczne I. MIARY POŁOŻENIA charakteryzują średni lub typowy poziom wartości cechy, wokół nich skupiają się wszystkie pozostałe wartości analizowanej cechy. I.1. Średnia arytmetyczna x = x 1 + x + + x n n = 1 n

Bardziej szczegółowo

EDOMETRYCZNE MODUŁY ŚCISLIWOŚCI GRUNTU

EDOMETRYCZNE MODUŁY ŚCISLIWOŚCI GRUNTU Dr inż. Grzegorz Straż Intrukcja do ćwiczeń laboratoryjnych pt: EDOMETRYCZNE MODUŁY ŚCISLIWOŚCI GRUNTU Wprowadzenie. Zalecenia dotyczące badań gruntów w edometrze: Zalecane topnie wywoływanego naprężenia:

Bardziej szczegółowo