CZĘŚĆ 6. MODEL REGRESJI, TREND LINIOWY ESTYMACJA, WNIOSKOWANIE

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "CZĘŚĆ 6. MODEL REGRESJI, TREND LINIOWY ESTYMACJA, WNIOSKOWANIE"

Transkrypt

1 CZĘŚĆ 6. MODEL REGRESJI, TREND LINIOWY ESTYMACJA, WNIOSKOWANIE Zadane 1. Na podstawe obserwacj dotczącch welkośc powerzchn ekspozcjnej (cecha X w m kw.) oraz welkośc dzennego obrotu punktu sprzedaż płtek ceramcznch (cecha Y w ts. zł), przeprowadzonej w 18 punktach sprzedaż ustalono dla tej grup punktów: - średną welkość powerzchn ekspozcjnej na pozome 16 m kw. z odchlena standardowm m kw., - średną welkość dzennego obrotu na pozome 15,3 ts. zł z odchlenem standardowm 5 ts. zł, - następującą postać oszacowanej funkcj lnowej regresj drugego rodzaju: ˆ =,05 x 17, 5, Na podstawe powższch danch wznaczć współcznnk korelacj lnowej mędz pozomem obrotów powerzchną ekspozcjną punktu sprzedaż oraz zbadać jego stotność. Odp. r(x)=0,8; t = 5,86 H0 odrzucam Zadane. Analzując zmenność lczb zaweranch umów handlowch w zależnośc od lczb pracownków zatrudnanch w dzałach dstrbucj uzskano następując cąg reszt w modelu regresj lnowej: 0, 0, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 0, 1, -1, -1, 1, -1, 1, -1. Proszę określć przecętn błąd szacunku lczb zaweranch umów handlowch względem lczb pracownków zatrudnanch w dzałach dstrbucj. Odp.: S(z) = 0,97 Zadane 3. Na podstawe 7 obserwacj oszacowano lnow model zużca surowca (Y w t.) względem welkośc produkcj (X w ts. szt.) uzskując: ˆ = 15x + 10 x = 4, =1 (x ) x = 8, = 180, S( ) = 44, S( z) = 10. Cz oszacowane współcznnk w modelu regresj są stotne? wznaczć welkość zużca surowca prz welkośc produkcj 7 ts. szt. oraz dokładność tej prognoz. Odp.: S(a) = 0,73 S(b) = 4,83; t a = 0,5 t b = 4,8 wartość prognozowana: 5 ton Zadane 4. Analza zależnośc czasu spędzonego przed telewzorem (zmenna Y, w godznach) a welkoścą czasu wolnego od zajęć zawodowch domowch w cągu dna (zmenna X, w godznach) wśród losowo wbranch 14 kobet umożlwła wznaczene następującch składnków estmacj równana regresj lnowej: ocena współcznnka regresj lnowej = 0, ze średnm błędem szacunku 0,05 ocena wrazu wolnego = 0,0 ze średnm błędem szacunku 0,004 Należ znterpretować oszacowana parametrów modelu oraz wznaczć znterpretować prognozowan czas oglądana telewzj wśród kobet dsponującch godznam wolnego czasu. Odp.: 0,4 godz. Zadane 5. Na podstawe danch dotczącch czasu trwana cąż (cecha X w tgodnach) oraz mas noworodka (cecha Y w gramach) dla 1000 obserwacj uzskano następujące nformacje: x = 40,1; S( x) = 3,57; 1000 = = 1 ( ˆ = ; ) = ; cov( x, ) = 1591,95; 1000 = 1 ( ˆ ) = a) Proszę zbadać, cz zależność lnową mędz masą noworodka oraz czasem trwana cąż można uznać za stotną? b) O le gramów zmenała sę średna waga noworodka wraz ze wzrostem czasu trwana cąż o jeden tdzeń? Odp.: a) t = 1,73 ne, b) średno o 14,9 gram Zadane

2 Na podstawe obserwacj dotczącej welkośc powerzchn ekspozcjnej (cecha X w m ) oraz welkośc dzennego obrotu punktu sprzedaż płtek ceramcznch (cecha Y w ts. zł), przeprowadzonej w losowej próbe 18 punktów sprzedaż ustalono, że: średna powerzchna ekspozcjna w próbe wnosła 16 m kw. z odchlena standardowm m kw., średn dzenn obrót w próbe wnósł 15,3 ts. zł z odchlenem standardowm 5 ts. zł, postać oszacowanej funkcj lnowej regresj bła następująca: ˆ =,05 x 17, 5, Na podstawe powższch danch wznaczć współcznnk korelacj lnowej mędz pozomem obrotów powerzchną ekspozcjną punktu sprzedaż oraz przjmując, że obe cech mają rozkład normaln, zbadać jego stotność. Odp.: 0,8; t = 5,73 Zadane 7. Na podstawe 553 obserwacj oszacowano lnow model regresj mesęcznego dochodu (w złotch) względem długośc okresu edukacj (w latach). Uzskano następujące wnk: ˆ = 107,433x + 55,566 [11,6013] [10,34] Wadomo ponadto, że średna długość okresu edukacj w tej grupe kształtowała sę na pozome 10,1 lat, zaś dla oszacowanego równana otrzmano R = 0,13. a/ Cz wpłw długośc okresu edukacj na dochód jest statstczne stotn, prz pozome stotnośc 0,01? b/ Ne wkonując żadnch oblczeń proszę ocenć prawdzwość następującego wnosku, sformułowanego na podstawe oszacowanego równana: współcznnk korelacj lnowej dochodu długośc okresu edukacj zawera sę w przedzale (-1; -0,4)? Odp.: a) t = 9,6; b) neprawdzw Zadane 8. Dane dotczące wdatków na reklamę ( X w ts. zł) oraz osąganch zsków ze sprzedaż (Y w ts. zł) w pewnm przedsęborstwe posłużł do oszacowana metodą najmnejszch kwadratów, parametrów lnowego modelu regresj. Dla 15 obserwacj uzskano następujące równane: ˆ = 177,13 x + 608, 13, standardow błęd szacunku współcznnka regresj wrazu wolnego wnosł odpowedno: 40,16 ts. zł 179,6. Proszę podać nterpretację oszacowanch parametrów modelu oraz standardowch błędów szacunku; Cz dla pozomu stotnośc 0,05 uznam współcznnk regresj za stotn? Odp.: b) t = 4,41 Zadane 9. Badając zależność kosztów zmennch produkcj względem rozmarów fzcznch produkcj dla 7 obserwacj otrzmano następujące wnk: wzrost welkośc produkcj o 1 ts. szt. prowadzł do wzrostu kosztów zmennch średno o 0,0 ts. zł, pozom kosztów oraz rozmar fzczne produkcj charakterzował wartośc średne wnoszące odpowedno 10 mln zł oraz 0 ts. szt. z odchlenam standardowm odpowedno 1 mln zł oraz 5 ts. szt. Cz na podstawe zebranch nformacj można uznać korelację lnową mędz kosztam zmennm welkoścą produkcj za statstczne stotną? O czm może śwadczć ustalona wartość współcznnka korelacj lnowej? Odp.: r(x) = 0,1 t = 0,5 Zadane 10. Badając zależność kosztów zmennch wdobca surowca względem welkośc wdobca dla 7 obserwacj otrzmano następujące wnk: wzrost welkośc wdobca o 1 ts. t prowadzł do wzrostu kosztów zmennch średno o 0,5 ts. zł, pozom kosztów oraz rozmar wdobca charakterzował wartośc średne wnoszące odpowedno 4 mln zł oraz 10 ts. t. z odchlenam standardowm odpowedno mln zł oraz 3 ts. t. Cz na podstawe zebranch nformacj można uznać korelację lnową mędz kosztam zmennm welkoścą produkcj za statstczne stotną? O czm może śwadczć ustalona wartość współcznnka korelacj lnowej? Odp.: r(x) = 0,75 t = 5,67 Zadane 11. Na podstawe 9 obserwacj oszacowano lnow model zużca surowca (Y w t.) względem welkośc produkcj (X w ts. szt.) uzskując: - -

3 ˆ = 5x x = 6, (x ) x =,8, = 4, S( ) = 6, S( z) = 1. 9 =1 Cz oszacowane współcznnk w modelu regresj są stotne? Wznaczć welkość zużca surowca prz welkośc produkcj 7 ts. szt. Odp.: a) t = 0,9 b) x ˆ = 0, , 16 welkość zużca surowca prz produkcj 7 ts. szt. to 1,133 ton. Zadane 1. Na podstawe ponższch danch dotczącch lczb odwedzającch punkt sprzedaż oraz realzowanch dzennch obrotów należ wznaczć regresję emprczną oraz zbudować model regresj. Lczba odwedzającch Obrot w ts. zł (Y),5 3,1 4,5 5,3 6,4 7,8 8,9 9,5 10,3 11,5 1,1 Jake własnośc wkazuje zbudowane równane jako oszacowane funkcj regresj II-go rodzaju? Zadane 13. Badając zależność kosztów całkowtch produkcj względem rozmarów fzcznch produkcj otrzmano następujące wnk: wzrost welkośc produkcj o 1 ts. szt. prowadzł do wzrostu kosztów całkowtch średno o 0,18 mln. zł, pozom kosztów oraz rozmar fzczne produkcj charakterzował wartośc średne wnoszące odpowedno 7,1 mln zł oraz 6,6 ts. szt. z odchlenam standardowm odpowedno 1,9 mln zł 6,5 ts. szt. Należ: określć słę zależnośc korelacjnej kosztów całkowtch względem skal produkcj. Cz współcznnk równana oraz można uznać za stotne,jeśl stopeń determnacj lnowej kosztów całkowtch skalą produkcj wnósł dla danch z prób 0,35? Dokonać smulacj pozomu kosztów prz welkośc produkcj na pozome 10 ts. szt. Jak jest średn maksmaln błąd tej smulacj? Zadane 14. Konstruując model regresj lnowej welkośc zsku względem ponoszonch wdatków na marketng, otrzmano następujące dane: średn pozom zsku wnósł w badanej grupe 17 przedsęborstw pewnej branż 5000 zł z przecętnm zróżncowanem 50 zł, zaś średn pozom wdatków na marketng kształtował sę w tej grupe na pozome 100 zł z przecętnm zróżncowanem zł. Uzskano następując cąg reszt: 0, 0, -1, -1,, 4, 5, -, -4, -5, 0,, 3, 1, 0, -1, -1, -,,, 3, -,3, -,, 4,-4,-4. jak jest stopeń determnacj lnowej welkośc zsku wdatkam na marketng? b) cz otrzmane reszt wskazują na zachowane założena o braku wpłwu cznnków przpadkowch (pomnętch w modelu regresj) na pozom zsku? Zadane 15. Wg danch GUS współcznnk aktwnośc zawodowej kobet dla lat bł następujące: Lata Wsp. Aktwnośc zawodowej (w %) 50,0 50,0 49,7 49, 48,8 48,0 a) Przjmując numerację t=1,,...,n, oszacuj lnową roczną funkcję trendu zman współcznnków aktwnośc zawodowej podaj komentarz jej parametrów. b) Jakej teoretczne welkośc współcznnka można bło sę spodzewać w 003 r. Zadane 16. W wnku oszacowana parametrów modelu zman spożca rżu w ostatnch 1 latach (dla t = 0, 1,,..., n-1) otrzmano następujące nformacje: - welkość spożca rosła z roku na rok przecętne o 0, kg, - teoretczna welkość spożca w perwszm badanm roku wnosła 6 kg, - warancja składnka resztowego wnosła 1,1 kg, ( t t ) = 143 t = 5, 5. Oszacuj z dokładnoścą do błędu prognoz oczekwan pozom spożca w czwartm roku po zakończenu obserwacj. Zadane 17. Mesęczna obserwacja lczb bezrobotnch mężczzn (w ts. t= ) umożlwła oszacowane następującej funkcj trendu: ŷ t = - 18,79 t ,7. Ponadto wadomo, że suma kwadratów reszt wnosła ,9. a) Znterpretuj uzskan współcznnk trendu

4 b)cz współcznnk trendu jest stotne ujemn ( przjąć α = 0,05)? c) Podaj punktowe przedzałowe oszacowane lczb bezrobotnch mężczzn, której można sę spodzewać po upłwe kolejnch 6 mesęc ( przjąć 1-α = 0,95). Zadane 18. Ilość komputerów podłączonch na stałe do Internetu na śwece ( mln) wg Mędznarodowej Un Telekomunkacjnej (ITU) wnosła: Rok Ilość komputerów 0,03 0,08 0,16 0,38 0,73 1,3, 4,9 9,5 16,1 a) W układze współrzędnch wkreślć szereg czasow obserwacj na tej podstawe zastanowć sę nad prawdłowoścam rozwoju badanego zjawska. b) Jaka funkcja matematczna w najlepsz sposób odzwercedl gwałtowne wzrastającą na śwece lość komputerów podłączonch na stałe do Internetu? c) Metodą najmnejszch kwadratów oszacować parametr lnowego oraz nelnowego (wbranego w p. ) modelu trendu lośc komputerów podłączonch na stałe do Internetu w latach Zadane 19. W pewnej fabrce na podstawe danch o mesęcznej sprzedaż farb (ts. kg) za okres I X 005 r. oszacowano lnową funkcję trendu. Zgodne z ną sprzedaż spadała z mesąca na mesąc średno o 10 ts. kg. Łączna sprzedaż za 10 mesęc wnosła 990 ts kg, zaś warancja (neobcążona) sprzedaż w tm okrese wnosła 60. Pozom składnka resztowego bł następujące:3; -6; 3; ; 5; -5; -4; 3; 4; -5. Oblczć znterpretować parametr (strukturalne) funkcj trendu. - Cz stopeń wjaśnana zróżncowana sprzedaż przez nne nż czas cznnk dskwalfkuje tę funkcję? - Zwerfkować hpotezę dotczącą losowośc reszt (pozom stotnośc 0,1) - Sprawdzć założene modelu o neskorelowanu składnków losowch. Zadane 0. Na podstawe lczb urodzeń (w ts.) w Polsce w latach oszacowano lnową funkcję trendu: ˆ = 15,3t + 551, 9 + e, t = 1,,...,n. Wedząc, że: t = 10, ( ˆ ) = 415, 3, ( ˆ ) = 65315, 8 t oraz ( t t ) = 80proszę: Oblczć znterpretować współcznnk determnacj lnowej. Podać przewdwaną lczbę urodzeń w Polsce na rok beżąc oraz standardow błąd tej prognoz. Zadane 1. Dwanaśce osób o równomernm rozkładze pozomu ntelgencj poddano pewnemu testow pschologcznemu. Czas przgotowana sę do testu bł jednak różn. Na podstawe wnków zawartch w szeregu określć, cz stneje zwązek mędz czasem przgotowana do testu a wnkam testu. Jeżel tak, to jaka jest sła kerunek tego zwązku? Jak średno wzrasta punktacja, gd czas przgotowana do testu wzrasta o jedną mnutę? Czas przgotowana (mn) Wnk testu (pkt.) Zadane. W celu ustalena zależnośc mędz lczbą braków a welkoścą produkcj częśc zamennch zbadano 7 losowo wbranch zakładów wtwarzającch take częśc. Wnk badana bł następujące: PRODUKCJA X (w ts. szt.),0 1,0 0,8 1, 3,0 1,6 1,0 LICZBA BRAKÓW Y (w szt.) Y-teor. 15,9 9,6 8,3,3 13,4 9,6 średna(x)=1,5, S(x) = 0,8, średna()=1,8, S() = 5, Na podstawe powższch danch należ: a) wznaczć wartość współcznnka korelacj lnowej Pearsona, b) oszacować parametr lnowej funkcj regresj opsującej zależność zmennej Y od X, c) uzupełnć brakujące dane w tabel, d) oszacować błęd ocen parametrów lnowej funkcj regresj, e) zwerfkować na pozome stotnośc 5% hpotezę o zerowej wartośc współcznnka regresj w populacj (wkorzstując przedzał ufnośc), f) wznaczć wartość współcznnka determnacj, g) znterpretować otrzmane wnk, - 4 -

5 Zadane 3. Na podstawe danch dla lat o welkośc produkcj pewnego wrobu ( ts. szt.) otrzmano lnową funkcję trendu ŷ = - 10 t + 413,4; t = 0, 1,...; warancja reszt S wnosła 9,61. Znterpretować parametr strukturalne funkcj trendu, Wznaczć przedzał ufnośc dla współcznnka trendu prz 1-α = 0,95, Ocenć na pozome stotnośc 0,05, cz trend produkcj jest stotn, Prognozować wartość produkcj w roku 004. Zadane 4. Na podstawe lczb urodzeń (w ts.) w Polsce w latach oszacowano lnową funkcję trendu: ˆ = 15,3t + 551, 9 + e, t = 1,,...,n. Wedząc, że: t = 10, ( ˆ ) = 415, 3, ( ˆ ) = 65315, 8 t oraz ( t t ) = 80proszę: Oblczć znterpretować współcznnk determnacj lnowej. Podać przewdwaną lczbę urodzeń w Polsce na rok beżąc oraz standardow błąd tej prognoz. Zadane 5. Analtk kosztów usług szptalnch chce oszacować lnow zwązek mędz lczbą dn hosptalzacj pacjenta (jakej będze on wmagał w ocene lekarza przjmującego) całkowtm kosztem pobtu pacjenta w szptalu. Wnk badana mają bć wkorzstane do prognozowana kosztów pobtu pacjenta w szptalu na podstawe wstępnej ocen długośc jego pobtu. Wbrano następującą próbę 11 przpadków: Wstępna ocena długośc pobtu (dn) Całkowt koszt pobtu (w $) Oszacuj parametr modelu regresj lnowej. Zwerfkuj na pozome stotnośc 0,05 hpotezę, że współcznnk regresj w populacj jest równ zero. Oceń stopeń dopasowana modelu regresj do danch emprcznch. Jak jest przewdwan całkowt koszt pobtu pacjenta, któr bł hosptalzowan 10 dn? Podaj standardow błąd prognoz. Zadane 6. Na gełdze zanotowano cen wek klku oferowanch do sprzedaż samochodów mark Fat Uno: Wek (w latach) Cena (w ts. zł) Sporządź wkres rozrzutu punktów emprcznch oceń na jego podstawe, cz uzasadnone jest przpuszczene o lnowej regresj cen użwanego Fata Uno względem jego weku. Dopasuj metodą najmnejszch kwadratów prostą regresj cen względem weku samochodu. Oceń stopeń dopasowana modelu regresj do danch emprcznch. Jaka jest przewdwana cena samochodu 6-letnego? Zadane 7. Dla losowo wbranch 10 klentów supermarketu zarejestrowano dane o lczbe pozcj na rachunku czase obsług prz kase (w mn), otrzmując: X Y, , ,5 7,5 6 8 Na podstawe tch danch uzskano: ( x ) x = 1883, 6; ( ) = 34, 6 oraz ˆ = 0,1 x +, 59. Oblcz odchlene standardowe reszt standardowe błęd ocen parametrów lnowej funkcj regresj. Zwerfkuj na pozome stotnośc 0,05 hpotezę, że współcznnk regresj w populacj jest równ zero. Podaj dla nego przedzał ufnośc prz współcznnku ufnośc 0,95. Dokonaj podzału całkowtej zmennośc czasu obsług na część wjaśnoną ne wjaśnoną regresją lnową. Oblcz na tej podstawe współcznnk determnacj lnowej współcznnk korelacj. Sprawdź na pozome stotnośc 0,05 hpotezę o neskorelowanu obu cech w populacj. Cz rezultat jesak sam jak w przpadku werfkacj hpotez, że α = 0? Zadane 8. Z zapsów klnk położnczej wlosowano 10 przpadków urodzeń, rejestrując długość w cm (X) wagę w dkg (Y) noworodków: X Y

6 W trakce przetwarzana powższch danch uzskano ponadto (sumowane po wszstkch obserwacjach): x = 540, x = 9344, = 330, = , x = Wznacz metodą najmnejszch kwadratów prostą regresj wag noworodków względem długośc. Znterpretuj ocen parametrów lnowej funkcj regresj. Cz na podstawe wartośc współcznnka regresj można ocenać słę badanej zależnośc? Oblcz kowarancję współcznnk korelacj lnowej. Jak slna jest korelacja mędz badanm cecham? Zadane 9. (egz.) Badając współzależność mędz zmennm x, uzskano na podstawe ndwdualnch danch dla 0 jednostek m.n. następujące rezultat: x = 5 ; V x = 0% ; x = 50 ; S = 0, 6 ; V = 0% ; = 187, ; S = 0, 97 e oraz x = 95. Zbudować pełn model regresj względem x, zakładając lnowość oraz ujemn kerunek zwązku. Oszacować przedzałowo (1-α=0,9) współcznnk regresj funkcj I rodzaju. Zadane 30. (egz.) Posługując sę danm uzskanm z prób losowej 7 studentów oszacowano model regresj lnowej ocen uzskanej na egzamne (Y) względem lczb neobecnośc na wkładze (X): = 0,x + 3, 9 + e. Odchlene standardowe uzskanch ocen wnosło 0,7, warancja lczb neobecnośc bła równa 9, zaś odchlene standardowe reszt wnosło 0,36. Znterpretuj parametr funkcj regresj. Oceń dopasowane modelu do danch emprcznch. Podaj prognozę punktową (bez wznaczana błędu standardowego) ocen uzskanej przez osobę, która mała neobecnośc na wkładze. zwerfkować hpotezę o stotnośc współcznnka regresj (na pozome stotnośc 0,05). Zadane 31. (egz.) Badając zależność pomędz wskaźnkem zdolnośc do spłat zadłużena (Y) a wskaźnkem zwrotu z nwestcj (X) otrzmano dla 9 przedsęborstw następujące wnk: ˆ = 1,46 x + 0, 1 ( x) = 1, 5 x = 0,08 s(e)=0,. Należ: podać prognozę wskaźnka zdolnośc do spłat zadłużena w przedsęborstwe, które osągnęło zwrot z nwestcj równ 0,. wznaczć błąd standardow tej prognoz. Zadane 3. Producent napojów chłodzącch zgromadzł dane o welkośc zamóweń hurtown średnej temperaturze w dobowej w okrese lpec-serpeń dla przpadkowo wbranch dn: Średna temperatura dobowa (w st. C) Welkość zamóweń (w ts. l) Przedstawć grafczne badan zwązek. Zbudować model regresj. Jake są standardowe błęd oszacowana parametrów funkcj? Wznaczć współcznnk determnacj lnowej. Zadane 33. Na podstawe statstk krmnalnch w 50 stanach *S.A. oszacowano model regresj przedstawając zależność lczb zabójstw (na 1 mln. meszkańców, roczne) od ogranczeń w posadanu bron x (wrażonch w skal od 0 do 100% oznacza całkowt zakaz posadana bron przez obwatel): ˆ = 1, x Współcznnk determnacj wnos 0,9, błąd standardow oszacowana parametru regresj 0,3. Należ stwerdzć, cz ponższe stwerdzena są prawdzwe, uzasadnając odpowedź: ocena jakośc modelu, na podstawe dostępnch danch, jest zadawalająca, - jeżel ne stneją ogranczena w posadanu bron, to teoretczna lczba zabójstw na 1 mln. meszkańców wnos 651, - gdb warancja X bła wększa, to prz nezmenonch pozostałch podanch welkoścach statstka służąca do testowana stotnośc oszacowana błab nższa. z uwag na brak nformacj ne można stwerdzć cz wbór funkcj lnowej jest uzasadnon, - jeżel stneje całkowt zakaz posadana bron przez obwatel, to teoretczna lczba zabójstw na 1 mln. meszkańców wnos korelacja mędz x jest wsoka dodatna. x - 6 -

7 - z uwag na małą wartość parametru regresj, jego oszacowane jest nestotne. Zadane 34. Na podstawe 3 obserwacj oszacowano funkcję regresj lnowej. Na pozome 0,05 można odrzucć hpotezę o nestotnośc oszacowana parametru regresj. Wadomo, że S ( X ) = 8 S ( Y ) = 10 X = Dla = średn błąd oszacowana wartośc oczekwanej zmennej Y wnos 0,8. Jaka może bć mnmalna wartość oszacowana parametru regresj, jeżel jest ona dodatna? Zadane 35. Analza zwązku mędz opłatam za dojazd z centrum masta na lotnsko (Y w złotch) oraz czasem dojazdu (X w mnutach) dla 0 losowo wbranch portów lotnczch dostarczła m.n. następującch danch: średn czas dojazdu na lotnsko wnosł 30 mn., a średna opłata 60 zł; warancja czasu dojazdu bła równa 55,5 (mn), warancja opłat za dojazd 137,1 (zł) ; współcznnk korelacj lnowej wnosł +0,7; suma kwadratów składnków resztowch wnosła 1398,4 (zł). Określ znterpretuj parametr lnowej funkcj regresj opłat za dojazd na lotnsko względem odległośc lotnska od centrum masta; Oceń wpłw zmennch ne uwzględnonch w analze na różnce w welkośc opłat za dojazd na lotnsko; Wedząc dodatkowo, że standardow błąd ocen współcznnka regresj wnosł 0,6 oceń, cz współcznnk regresj opłat za dojazd względem odległośc do lotnska jest stotne dodatn. Przjmj pozom stotnośc α = 0,05. Zadane 36. Na podstawe analz danch losowej prób: X Y oszacowano m.n. funkcję regresj: ŷ = 3 x,5. Oblcz znterpretuj odchlene standardowe reszt oraz błąd standardow estmacj współcznnka regresj lnowej. Zwerfkuj hpotezę o stotnośc współcznnka regresj przjmując pozom stotnośc 0,05 oraz Σ (x x) = Zadane 37. W wnku oszacowana poptu na herbatę 8 różnch producentów (Y w ts. opakowań) względem wdatków producenta na reklamę (X w ts. zł) ustalono m.n. co następuje: ze wzrostem welkośc nakładów na reklamę o 1 ts. popt na herbatę rósł średno o,1 ts. opakowań; wraz woln modelu regresj wnosł 7,5 ts. opakowań; współcznnk korelacj lnowej bł równ 0,75. -Zapsz postać model regresj poptu na herbatę względem wsokośc wdatków na reklamę; -Oceń, prz pozome stotnośc 0,05, cz zależność korelacjna mędz badanm zmennm jest stotna poztwna. -Określ, w jakm stopnu zmenność poptu na herbatę wnka z różnc wdatków na reklamę poszczególnch producentów. Zadane 38. Producent napojów chłodzącch zgromadzł dane o welkośc zamóweń w hurtown (Y ts. ltrów) temperaturze o godz (cecha X) dla przpadkowo wbranch 10 dn lpca. Szacując funkcję regresj względem x uzskał następujące nformacje: - suma kwadratów odchleń wartośc zmennej zależnej od jej średnej wnoszącej 86 bła równa ; - suma kwadratów odchleń wartośc zmennej nezależnej od jej średnej równej 4 wnosła 38; - współcznnk regresj wnósł 6; - suma kwadratów reszt bła równa 17. a) Wznacz znterpretuj parametr strukturalne równana regresj. b) Oblcz znterpretuj odchlene standardowe składnka resztowego. c) Oceń stopeń dopasowana otrzmanej funkcj do danch emprcznch. d) Oblczć znterpretować standardow błąd współcznnka regresj. e) Cz współcznnk regresj jest stotne dodatn (przjmj α = 0,05). Zadane 39. W pewnm zakładze produkcjnm zbadano staż prac oraz wsokość zarobków 10 osób. Na podstawe ponższch wnków proszę: - 7 -

8 Oszacować parametr lnowego modelu regresj zarobków w zależnośc od stażu prac w tm zakładze oraz podać ch nterpretację. Cz badan model może bć narzędzem prognozowana? Jak wsoke są zarobk osob, której staż prac w tm zakładze wnos 30 lat? x =15,6 ; = 1850 ; s = 13, 74 ; s = 696, 8 ; r = 0, 985 ; x x Zadane 40. Zbadano 7 gospodarstw domowch ze względu na lczbę osób w rodzne (X) oraz przecętne mesęczne wdatk na zakup peczwa w zł (Y). Stwerdzono, co następuje: x = 3, 6 ; s = 0, 9; = 30 ; s = 7,5. Ponadto wadomo, że prz założenu lnowego modelu regresj; różnce w pozome wdatków w 81% wnkał z różnc welkośc rodzn. a) Oszacuj znterpretuj parametr strukturalne modelu, opsującego zależność przcznowo-skutkową, wedząc dodatkowo, że zależność mała charakter poztwn; b) Korzstając z wznaczonego równana regresj określ wdatk na peczwo rodzn 4-osobowch. Zadane 41. W badanu zależnośc pomędz maksmalną temperaturą w cągu dna (X) a loścą sprzedanch lodów ( w kg) frm Bajka w kolejnch dnach lpca 00 otrzmano następujące wnk: - średna temperatura wnosła 18 C z odchlenem standardowm 5 C; - średna sprzedaż lodów w cągu dna wnosła 5 ts. kg z odchlenem standardowm 1,5 ts. kg; - współcznnk korelacj lnowej wnósł 0,9; - suma kwadratów odchleń rzeczwstej teoretcznej (wnkającej z funkcj regresj) welkośc sprzedaż wnosła 91,15. a) Zapsz postać funkcj regresj lośc sprzedaż względem maksmalnej wsokośc temperatur. b) Oblcz znterpretuj odchlene standardowe składnka resztowego. Zadane 4. W pewnm zakładze produkcjnm postanowono sprawdzć, cz stneje zwązek mędz stażem prac (w latach prac) a wsokoścą otrzmanej nagrod rocznej (w tsącach złotch). W tm celu wlosowano 16 osób na podstawe uzskanch nformacj oszacowano następując model regresj lnowej wsokośc nagrod rocznej względem stażu prac: ˆ = 0,94x + 1, 96. Ponadto wadomo, że odchlene standardowe reszt wnosło 0,7 ts. zł, a odchlene standardowe stażu prac 1,97 roku. Znterpretuj współcznnk regresj. Sprawdź (na pozome stotnośc 0,05), cz staż prac wpłwa na wsokość otrzmanej prem rocznej. Zadane 43. W modelu regresj lnowej zadłużena (-ts. PLN) podmotów gospodarczch z ttułu kredtów (łączne z odsetkam) względem wartośc produkcj sprzedanej (x mln PLN) dla 80 podmotów z sektora produkcjnego otrzmano: cov(x) = -,88; x =5,5; S(x)=0,6; =183,0; S()=8,0 Podać wartość lczbową ŷ (x=9). Określć stopeń nedopasowana modelu. Czm może bć on spowodowan? Sprawdzć stotność współcznnka korelacj lnowej z prób 80 podmotów (α =0,01). Zadane 44. Pewen analtk bada współzależność zman cen dwóch walut. W oparcu o 30 obserwacj zbudował następując model regresj lnowej opsując zależność cen walut od cen walut x: ŷ = 5 x 00 R = 0,6 [1,467] [ 8] Przeprowadź ocenę jakośc tego modelu z punktu wdzena krterów możlwch do zastosowana prz podanch nformacjach. Przjąć pozom stotnośc 0,01 prz werfkacj stosownej hpotez. Ile wnos krtczn pozom stotnośc prz werfkacj hpotez o stotnośc współcznnka regresj? Prz jakm pozome nastąp zmana deczj? Zadane 45. W badanu zależnośc pomędz nakładam na reklamę ( x- ts. zł) a dochodam 1 bur podróż ( - ts.zł) otrzmano wektor reszt, uporządkowan wg rosnącch wartośc zmennej nezależnej: e =[0,1; 0,; -0,05; -0,1; 0,; -0,03; -0,; -0,1; 0,0; 0,01; 0,05; -0,1] Sprawdzć hpotezę o losowośc reszt (α=0,05). x - 8 -

9 Zadane 46. Na podstawe danch dotczącch dochodów 100 losowo wbranch frm ( x w mln zł) oraz wdatków tch frm na cele chartatwne ( w mln zł) uzskano następujące nformacje: ( ˆ = 96,66; ( ˆ ) = 47,34; x =40,1; = 340 cx = 3,5; sx = 3,57; ) Zapsać funkcję regresj lnowej wdatków na cele chartatwne względem dochodów frm, znterpretować jej parametr. Ocenć stopeń dopasowana modelu do danch emprcznch. Zadane 47. Funkcja trendu charakterzująca obrot (w ts. zł) jednej z pzzer w latach (dane kwartalne) bła następująca: ŷ t =1t +10 t=0,1,...,n-1 reszt et :,3,-1,0,0,-,-1,-1,1,1,,-1,-,-,-1,0,1 Znterpretować oszacowaną funkcję trendu Czm różnłab sę nterpretacja gdb t=1,,...n Zwerfkować hpotezę o stotnośc współcznnka funkcj trendu lnowego Ile wnos na podstawe modelu prognoza obrotów pzzer na 004 rok. Jak jest błąd tej prognoz? Cz sensowne błob prognozowane na podstawe tego modelu na rok 00? Zwerfkować założena dotczące losowośc odchleń wartośc emprcznch od teoretcznch oraz braku n autokorelacj składnka losowego modelu znając oblczoną wartość ( e t e t 1) = 40 t = 1 Zadane 48. Na podstawe danch rocznch dotczącch lczb meszkań w budowe w ts. (według stanu na konec okresu) oszacowano następujące równane trendu dla okresu : ˆ t = 6,8t + 66,17 ; t=1,,9 ocen punktowe standardowch błędów szacunku dla współcznnka regresj wrazu wolnego wnosł odpowedno: 1, 6,88 zaś suma kwadratów reszt 68,8. Wznacz prognozę lczb meszkań w budowe w ts. na konec 005 wraz z jej standardowm błędem. Zadane 49. Wkorzstując dane z zadana poprzednego, dotczące lczb meszkań w budowe, dokonaj estmacj przedzałowej współcznnka trendu (współcznnk ufnośc 0,99). Na podstawe otrzmanch przedzałów ufnośc odpowedz, cz oszacowane współcznnka trendu jest stotne (prz α=0,01). Odpowedź uzasadnj. Zadane 50. Na podstawe danch dla lat o welkośc produkcj pewnego wrobu ( ts. szt.) otrzmano lnową funkcję trendu ŷ = - 10 t + 413,4; t = 1,...; warancja reszt wnosła 9,61. Znterpretować parametr strukturalne funkcj trendu Wznaczć przedzał ufnośc dla współcznnka trendu prz 1-α = 0,95. Ocenć na pozome stotnośc 0,05, cz trend produkcj jest stotn. Cz zmana pozomu stotnośc wpłne na podjętą deczję werfkacjną? Zadane 51. W wnku oszacowana parametrów modelu zman spożca rżu w ostatnch 1 latach (dla t = 0, 1,,..., n-1) otrzmano następujące nformacje: - welkość spożca rosła z roku na rok przecętne o 0, kg, - teoretczna welkość spożca w perwszm badanm roku wnosła 6 kg, - warancja składnka resztowego wnosła 1,1 kg, ( t t ) = 143 t = 5, 5. Oszacuj z dokładnoścą do błędu prognoz oczekwan pozom spożca w czwartm roku po zakończenu obserwacj. Zadane 5. Na podstawe lczb urodzeń (w ts.) w Polsce w latach oszacowano lnową funkcję trendu: ˆ = 15,3t + 551, 9 + e, t = 1,,...,n. Wedząc, że: t = 10, ( ˆ ) = 415, 3, ( ˆ ) = 65315, 8 t oraz ( t t ) = 80proszę: Oblczć znterpretować współcznnk determnacj lnowej. Podać przewdwaną lczbę urodzeń w Polsce na rok beżąc oraz standardow błąd tej prognoz

10 Zadane 53. Zbadano zależność wsokośc dochodów na osobę w gospodarstwe domow (w dukatach) a lczbą dzec pozostającch na utrzmanu. Uzskane na podstawe badana 16 gospodarstw wnk prezentuje ponższ wdruk komputerow: Regresson Analss - Lnear model: Y = a+bx Dependent varable: dochod/1 osobę w dukatach Independent Varable: lczba dzec Standard T Prob. Parameter Estmate Error Value Level Intercept Slope Analss of Varance Source Sum of Squares Df Mean Square F-Rato Prob. Level Model Resdual Total (Corr.) Correlaton Coeffcent = R-squared = 9.87 percent Stnd. Error of Est. = Proszę zapsać oszacowane równane regresj lnowej, znterpretować jego parametr oraz zbadać, cz korelacja lnowa mędz wsokoścą dochodu na osobę a lczbą dzec w gospodarstwe domowm można uznać za statstczne stotną. Zadane 54. Na podstawe obserwacj stóp wzrostu PKB (zmenna Y) stóp podatku dochodowego (zmenna X) w 17 krajach oszacowano ponższ model regresj lnowej: Korzstając z tch nformacj należ: a)podać z jakm rzkem błędu I rodzaju można stwerdzć, że podatk stotne negatwne wpłwają na tempo wzrostu PKB b)ocenć stopeń dopasowana oszacowana modelu do danch emprcznch c)oszacować przedzałowo współcznnk regresj lnowej, przjmując 1-α =0,95-10

11 Zadane 55. Dla losowej prób 5 emertów w jednej z gmn Warszaw zebrano nformacje o wsokośc dochodów mesęcznch oraz wdatków na lek: a)zapsać oszacowan model regresj omówć jego parametr b)ocenć dopasowane modelu do danch na podstawe współcznnka R c)zwerfkować stotność współcznnka regresj lnowej dla populacj emertów w tej dzelnc (pozom stotnośc γ =0,05) d)oszacować przedzał ufnośc dla współcznnka regresj α prz współcznnku ufnośc 1- γ =0,95 e) Co można powedzeć o stotnośc wrazu wolnego funkcj regresj? f)wedząc, że przecętna wartość emertur wnosła 700 zł prz odchlenu standardowm 48 zł z g)dokładnoścą do standardowego błędu prognoz wznaczć oczekwan pozom wdatków emerta, któr dostawałb emerturę w wsokośc 800 zł. Jak błb błąd oszacowana przecętnej wartośc wdatków na lek emertów zarabającch 800 zł? h) Sprawdzć założena dotczące losowośc odchleń w modelu regresj - 11

Zadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane

Bardziej szczegółowo

Analiza korelacji i regresji

Analiza korelacji i regresji Analza korelacj regresj Zad. Pewen zakład produkcyjny zatrudna pracownków fzycznych. Ich wydajność pracy (Y w szt./h) oraz mesęczne wynagrodzene (X w tys. zł) przedstawa ponższa tabela: Pracownk y x A

Bardziej szczegółowo

Zad 2 Dynamika zatrudnienia mierzona indeksami łańcuchowymi w ostatnich pięciu latach kształtowały się następująco: Lata Indeksy ( w %)

Zad 2 Dynamika zatrudnienia mierzona indeksami łańcuchowymi w ostatnich pięciu latach kształtowały się następująco: Lata Indeksy ( w %) Analza dnamk Zad. 1 Indeks lczb studującch studentów w województwe śląskm w kolejnch pęcu latach przedstawał sę następująco: Lata 1 2 3 4 5 Indeks jednopodstawowe z roku t = 1 100,0 115,7 161,4 250,8 195,9

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

Współczynnik korelacji liniowej oraz funkcja regresji liniowej dwóch zmiennych

Współczynnik korelacji liniowej oraz funkcja regresji liniowej dwóch zmiennych Współcznnk korelacj lnowej oraz funkcja regresj lnowej dwóch zmennch S S r, cov współcznnk determnacj R r Współcznnk ndetermnacj ϕ r Zarówno współcznnk determnacj jak ndetermnacj po przemnożenu przez 00

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 1 Statystyka opsowa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 W statystyce opsowej mamy pełne nformacje

Bardziej szczegółowo

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np. Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej

Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej Rachunek prawdopodobeństwa statstka W 11: Analz zależnoścpomędz zmennm losowm Model regresj welokrotnej Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Model regresj lnowej Model regresj lnowej prostej

Bardziej szczegółowo

Egzamin ze statystyki/ Studia Licencjackie Stacjonarne/ Termin I /czerwiec 2010

Egzamin ze statystyki/ Studia Licencjackie Stacjonarne/ Termin I /czerwiec 2010 Egzamn ze statystyk/ Studa Lcencjacke Stacjonarne/ Termn /czerwec 2010 Uwaga: Przy rozwązywanu zadań, jeśl to koneczne, naleŝy przyjąć pozom stotnośc 0,01 współczynnk ufnośc 0,99 Zadane 1 PonŜsze zestawene

Bardziej szczegółowo

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010 EKONOMETRIA I Spotkane, dn. 5..2 Dr Katarzyna Beń Program ramowy: http://www.sgh.waw.pl/nstytuty/e/oferta_dydaktyczna/ekonometra_stacjonarne_nest acjonarne/ Zadana, dane do zadań, ważne nformacje: http://www.e-sgh.pl/ben/ekonometra

Bardziej szczegółowo

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5 L.Kowalsk zadaa ze statystyk opsowej-zestaw 5 Zadae 5. X cea (zł, Y popyt (tys. szt.. Mając dae ZADANIA Zestaw 5 x,5,5 3 3,5 4 4,5 5 y 44 43 43 37 36 34 35 35 Oblcz współczyk korelacj Pearsoa. Oblcz współczyk

Bardziej szczegółowo

WPŁYW AKCESJI POLSKI DO UNII EUROPEJSKIEJ NA ROZWÓJ ROLNICTWA EKOLOGICZNEGO. Lidia Luty

WPŁYW AKCESJI POLSKI DO UNII EUROPEJSKIEJ NA ROZWÓJ ROLNICTWA EKOLOGICZNEGO. Lidia Luty 74 LIDIA LUTY ROCZNIKI NAUKOWE EKONOMII ROLNICTWA I ROZWOJU OBSZARÓW WIEJSKICH, T. 11, z. 1, 214 WPŁYW AKCESJI POLSKI DO UNII EUROPEJSKIEJ NA ROZWÓJ ROLNICTWA EKOLOGICZNEGO Lda Lut Katedra Statstk Matematcznej

Bardziej szczegółowo

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są

Bardziej szczegółowo

Natalia Nehrebecka. Wykład 2

Natalia Nehrebecka. Wykład 2 Natala Nehrebecka Wykład . Model lnowy Postad modelu lnowego Zaps macerzowy modelu lnowego. Estymacja modelu Wartośd teoretyczna (dopasowana) Reszty 3. MNK przypadek jednej zmennej . Model lnowy Postad

Bardziej szczegółowo

Natalia Nehrebecka. Zajęcia 3

Natalia Nehrebecka. Zajęcia 3 St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 3 1. Dobroć dopasowana równana regresj. Współczynnk determnacj R Dk Dekompozycja warancj zmennej zależnej ż Współczynnk determnacj R. Zmenne cągłe a

Bardziej szczegółowo

65120/ / / /200

65120/ / / /200 . W celu zbadana zależnośc pomędzy płcą klentów ch preferencjam, wylosowano kobet mężczyzn zadano m pytane: uważasz za lepszy produkt frmy A czy B? Wynk były następujące: Odpowedź Kobety Mężczyźn Wolę

Bardziej szczegółowo

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego

Bardziej szczegółowo

Przypomnienie: wykłady i zadania kursu były zaczerpnięte z podręczników: Model statystyczny Format danych

Przypomnienie: wykłady i zadania kursu były zaczerpnięte z podręczników: Model statystyczny Format danych Wkład 13: (prota) regreja lnowa Model tattczn Format danch Przedzał ufnośc tet totnośc dla parametrów modelu Przpomnene: wkład zadana kuru bł zaczerpnęte z podręcznków: Stattka dla tudentów kerunków techncznch

Bardziej szczegółowo

0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4

0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4 Zad. 1. Dana jest unkcja prawdopodobeństwa zmennej losowej X -5-1 3 8 p 1 1 c 1 Wyznaczyć: a. stałą c b. wykres unkcj prawdopodobeństwa jej hstogram c. dystrybuantę jej wykres d. prawdopodobeństwa: P (

Bardziej szczegółowo

2012-10-11. Definicje ogólne

2012-10-11. Definicje ogólne 0-0- Defncje ogólne Logstyka nauka o przepływe surowców produktów gotowych rodowód wojskowy Utrzyywane zapasów koszty zwązane.n. z zarożene kaptału Brak w dostawach koszty zwązane.n. z przestoje w produkcj

Bardziej szczegółowo

Służą opisowi oraz przewidywaniu przyszłego kształtowania się zależności gospodarczych.

Służą opisowi oraz przewidywaniu przyszłego kształtowania się zależności gospodarczych. MODEL EOOMERYCZY MODEL EOOMERYCZY DEFIICJA Modl konomtrczn jst równanm matmatcznm (lub układm równao), któr przdstawa zasadncz powązana loścow pomędz rozpatrwanm zjawskam konomcznm., uwzględnającm tlko

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobeństwo statystya.05.00 r. Zadane Zmenna losowa X ma rozład wyładnczy o wartośc oczewanej, a zmenna losowa Y rozład wyładnczy o wartośc oczewanej. Obe zmenne są nezależne. Oblcz E( Y X + Y =

Bardziej szczegółowo

Motto. Czy to nie zabawne, że ci sami ludzie, którzy śmieją się z science fiction, słuchają prognoz pogody oraz ekonomistów? (K.

Motto. Czy to nie zabawne, że ci sami ludzie, którzy śmieją się z science fiction, słuchają prognoz pogody oraz ekonomistów? (K. Motto Cz to nie zabawne, że ci sami ludzie, którz śmieją się z science fiction, słuchają prognoz pogod oraz ekonomistów? (K. Throop III) 1 Specfika szeregów czasowch Modele szeregów czasowch są alternatwą

Bardziej szczegółowo

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup Jednoczynnkowa Analza Waranc (ANOVA) Wykład 11 Przypomnene: wykłady zadana kursu były zaczerpnęte z podręcznków: Statystyka dla studentów kerunków techncznych przyrodnczych, J. Koronack, J. Melnczuk, WNT

Bardziej szczegółowo

dy dx stąd w przybliżeniu: y

dy dx stąd w przybliżeniu: y Przykłady do funkcj nelnowych funkcj Törnqusta Proszę sprawdzć uzasadnć, które z podanych zdań są prawdzwe, a które fałszywe: Przykład 1. Mesęczne wydatk na warzywa (y, w jednostkach penężnych, jp) w zależnośc

Bardziej szczegółowo

Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer

Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer Statystyka Opsowa 2014 część 2 Katarzyna Lubnauer Lteratura: 1. Statystyka w Zarządzanu Admr D. Aczel 2. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucjan Kowalsk. 4. Statystyka opsowa,

Bardziej szczegółowo

Badania sondażowe. Braki danych Konstrukcja wag. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa

Badania sondażowe. Braki danych Konstrukcja wag. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa Badana sondażowe Brak danych Konstrukcja wag Agneszka Zęba Zakład Badań Marketngowych Instytut Statystyk Demograf Szkoła Główna Handlowa 1 Błędy braku odpowedz Całkowty brak odpowedz (UNIT nonresponse)

Bardziej szczegółowo

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA Problemy jednoczesnego testowana welu hpotez statystycznych ch zastosowana w analze mkromacerzy DNA Konrad Furmańczyk Katedra Zastosowań Matematyk SGGW Plan referatu Testowane w analze mkromacerzy DNA

Bardziej szczegółowo

Metody predykcji analiza regresji

Metody predykcji analiza regresji Metody predykcj analza regresj TPD 008/009 JERZY STEFANOWSKI Instytut Informatyk Poltechnka Poznańska Przebeg wykładu. Predykcja z wykorzystanem analzy regresj.. Przypomnene wadomośc z poprzednch przedmotów..

Bardziej szczegółowo

ZESTAW ZADAŃ Z INFORMATYKI

ZESTAW ZADAŃ Z INFORMATYKI (Wpsue zdaąc przed rozpoczęcem prac) KOD ZDAJĄCEGO ZESTAW ZADAŃ Z INFORMATYKI CZĘŚĆ II (dla pozomu rozszerzonego) GRUDZIEŃ ROK 004 Czas prac 50 mnut Instrukca dla zdaącego. Proszę sprawdzć, cz zestaw zadań

Bardziej szczegółowo

Krzywa wieża w Pizie. SAS Data Step. Przykład (2) Wykład 13 Regresja liniowa

Krzywa wieża w Pizie. SAS Data Step. Przykład (2) Wykład 13 Regresja liniowa Bonformatyka - rozwój oferty edukacyjnej Unwersytetu Przyrodnczego we Wrocławu projekt realzowany w ramac Programu Operacyjnego Kaptał Ludzk współfnansowanego ze środków Europejskego Funduszu Społecznego

Bardziej szczegółowo

Zadanie 2. Dany jest szereg rozdzielczy przedziałowy, wyznaczyć następujące miary: 0 5 5 wariancja, odchylenie standardowe

Zadanie 2. Dany jest szereg rozdzielczy przedziałowy, wyznaczyć następujące miary: 0 5 5 wariancja, odchylenie standardowe Zadane 1. Dany jet zereg przedzałowy, wyznaczyć natępujące mary: x n średna arytmetyczna 1 10 warancja, odchylene tandardowe 15 domnanta 3 0 medana 4 35 kurtoza 5 0 6 15 Zadane. Dany jet zereg rozdzelczy

Bardziej szczegółowo

Analiza regresji modele ekonometryczne

Analiza regresji modele ekonometryczne Analza regresj modele ekonometryczne Klasyczny model regresj lnowej - przypadek jednej zmennej objaśnającej. Rozpatrzmy klasyczne zagadnene zależnośc pomędzy konsumpcją a dochodam. Uważa sę, że: - zależność

Bardziej szczegółowo

formularzy opisowych, ankiet lub innych dokumentów stanowi nieuporządkowany statystyczny, stanowi on podstawę dalszych

formularzy opisowych, ankiet lub innych dokumentów stanowi nieuporządkowany statystyczny, stanowi on podstawę dalszych Zebran materał statstczn w forme sprawozdań, formularz opsowch, anket lub nnch dokumentów stanow neuporządkowan surow materał statstczn, neprzdatn jeszcze do bezpośrednej analz, porównań wnosków. Materał

Bardziej szczegółowo

Problem nośności granicznej płyt żelbetowych w ujęciu aktualnych przepisów normowych. Prof. dr hab. inż. Piotr Konderla, Politechnika Wrocławska

Problem nośności granicznej płyt żelbetowych w ujęciu aktualnych przepisów normowych. Prof. dr hab. inż. Piotr Konderla, Politechnika Wrocławska Proble nośnośc grancznej płt żelbetowch w ujęcu aktualnch przepsów norowch Prof. dr hab. nż. Potr Konderla Poltechnka Wrocławska 1. Wprowadzene Przedote analz jest płta żelbetowa zbrojona ortogonalne paraetrzowana

Bardziej szczegółowo

ANALIZA KORELACJI WYDATKÓW NA KULTURĘ Z BUDŻETU GMIN ORAZ WYKSZTAŁCENIA RADNYCH

ANALIZA KORELACJI WYDATKÓW NA KULTURĘ Z BUDŻETU GMIN ORAZ WYKSZTAŁCENIA RADNYCH Potr Mchalsk Węzeł Centralny OŻK-SB 25.12.2013 rok ANALIZA KORELACJI WYDATKÓW NA KULTURĘ Z BUDŻETU GMIN ORAZ WYKSZTAŁCENIA RADNYCH Celem ponższej analzy jest odpowedź na pytane: czy wykształcene radnych

Bardziej szczegółowo

Analiza struktury zbiorowości statystycznej

Analiza struktury zbiorowości statystycznej Analza struktury zborowośc statystycznej.analza tendencj centralnej. Średne klasyczne Średna arytmetyczna jest parametrem abstrakcyjnym. Wyraża przecętny pozom badanej zmennej (cechy) w populacj generalnej:

Bardziej szczegółowo

Proces narodzin i śmierci

Proces narodzin i śmierci Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do

Bardziej szczegółowo

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4. Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można

Bardziej szczegółowo

BADANIE ZALEśNOŚCI CECHY Y OD CECHY X - ANALIZA REGRESJI PROSTEJ

BADANIE ZALEśNOŚCI CECHY Y OD CECHY X - ANALIZA REGRESJI PROSTEJ WYKŁAD 3 BADANIE ZALEśNOŚCI CECHY Y OD CECHY X - ANALIZA REGRESJI PROSTEJ Było: Przykład. Z dziesięciu poletek doświadczalnych zerano plony ulw ziemniaczanych (cecha X) i oznaczono w nich procentową zawartość

Bardziej szczegółowo

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH Z a k ł a d U b e z p e c z e ń S p o ł e c z n y c h Wprowadzene Nnejsza ulotka adresowana jest zarówno do osób dopero ubegających

Bardziej szczegółowo

Dobór zmiennych objaśniających

Dobór zmiennych objaśniających Dobór zmennych objaśnających Metoda grafowa: Należy tak rozpąć graf na werzchołkach opsujących poszczególne zmenne, aby występowały w nm wyłączne łuk symbolzujące stotne korelacje pomędzy zmennym opsującym.

Bardziej szczegółowo

Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817

Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Zadanie 1: wiek 7 8 9 1 11 11,5 12 13 14 14 15 16 17 18 18,5 19 wzrost 12 122 125 131 135 14 142 145 15 1 154 159 162 164 168 17 Wykres

Bardziej szczegółowo

Wnioskowanie statystyczne dla korelacji i regresji.

Wnioskowanie statystyczne dla korelacji i regresji. STATYSTYKA MATEMATYCZNA WYKŁAD 6 Woskowae statstcze dla korelacj regresj. Aalza korelacj Założee: zmea losowa dwuwmarowa X, Y) ma rozkład ormal o współczku korelacj ρ. X, Y cech adae rówocześe. X X X...

Bardziej szczegółowo

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja) Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz

Bardziej szczegółowo

PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE

PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE Janusz Wątroba, StatSoft Polska Sp. z o.o. W nemal wszystkch dzedznach badań emprycznych mamy do czynena ze złożonoścą zjawsk procesów.

Bardziej szczegółowo

METODA UNITARYZACJI ZEROWANEJ Porównanie obiektów przy ocenie wielokryterialnej. Ranking obiektów.

METODA UNITARYZACJI ZEROWANEJ Porównanie obiektów przy ocenie wielokryterialnej. Ranking obiektów. Opracowane: Dorota Mszczyńska METODA UNITARYZACJI ZEROWANEJ Porównane obektów przy ocene welokryteralnej. Rankng obektów. Porównane wybranych obektów (warantów decyzyjnych) ze względu na różne cechy (krytera)

Bardziej szczegółowo

XXX OLIMPIADA FIZYCZNA ETAP I Zadania teoretyczne

XXX OLIMPIADA FIZYCZNA ETAP I Zadania teoretyczne XXX OLIPIADA FIZYCZNA TAP I Zadana teoretczne Nazwa zadana ZADANI T1 Na odstawe wsółczesnch badań wadomo że jądro atomowe może znajdować sę tlo w stanach o oreślonch energach odobne ja dobrze znan atom

Bardziej szczegółowo

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni. Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność

Bardziej szczegółowo

SYMULACJA KOMPUTEROWA NAPRĘŻEŃ DYNAMICZNYCH WE WRĘGACH MASOWCA NA FALI NIEREGULARNEJ

SYMULACJA KOMPUTEROWA NAPRĘŻEŃ DYNAMICZNYCH WE WRĘGACH MASOWCA NA FALI NIEREGULARNEJ Jan JANKOWSKI *), Maran BOGDANIUK *),**) SYMULACJA KOMPUTEROWA NAPRĘŻEŃ DYNAMICZNYCH WE WRĘGACH MASOWCA NA FALI NIEREGULARNEJ W referace przedstawono równana ruchu statku w warunkach falowana morza oraz

Bardziej szczegółowo

± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości

± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości Podstawowe pojęca procesu pomarowego kreślene jakośc poznana rzeczywstośc Δ zmerzone rzeczywste 17 9 Zalety stosowana elektrycznych przyrządów 1/ 1. możlwość budowy czujnków zamenających werne każdą welkość

Bardziej szczegółowo

Materiały do wykładu 7 ze Statystyki

Materiały do wykładu 7 ze Statystyki Materał do wkładu 7 ze Statstk Aalza ZALEŻNOŚCI pomędz CECHAMI (Aalza KORELACJI REGRESJI) korelacj wkres rozrzutu (korelogram) rodzaje zależośc (brak, elowa, lowa) pomar sł zależośc lowej (współczk korelacj

Bardziej szczegółowo

Wyznacz łączne zmiany wartości, ilości i cen sprzedaży w październiku i listopadzie oraz zinterpretuj otrzymane wyniki.

Wyznacz łączne zmiany wartości, ilości i cen sprzedaży w październiku i listopadzie oraz zinterpretuj otrzymane wyniki. ZAD.1. Dane dotyczące zależności pomiędzy wielkością plonów w q/ha (y), a zużyciem określonego nawozu w kg/ha dla 7 niezależnych upraw przedstawia tabela: y X 17 11 19 15 19 20 20 25 20 24 22 39 23 41

Bardziej szczegółowo

Teoria i praktyka. Wyższa Szkoła Turystyki i Ekologii. Fizyka. WSTiE Sucha Beskidzka Fizyka

Teoria i praktyka. Wyższa Szkoła Turystyki i Ekologii. Fizyka. WSTiE Sucha Beskidzka Fizyka Nepewośc pomarowe. Teora praktka. Prowadząc: Dr ż. Adrzej Skoczeń Wższa Szkoła Turstk Ekolog Wdzał Iformatk, rok I Fzka 014 03 30 WSTE Sucha Beskdzka Fzka 1 Iformacje teoretcze zameszczoe a slajdach tej

Bardziej szczegółowo

BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ

BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ Matematka statstka matematcza dla rolków w SGGW Aa Rajfura, KDB WYKŁAD 2 BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ Matematka statstka matematcza dla rolków w SGGW Aa Rajfura, KDB Przkład.

Bardziej szczegółowo

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A Analza rodzajów skutków krytycznośc uszkodzeń FMECA/FMEA według MIL STD - 629A Celem analzy krytycznośc jest szeregowane potencjalnych rodzajów uszkodzeń zdentyfkowanych zgodne z zasadam FMEA na podstawe

Bardziej szczegółowo

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.

Bardziej szczegółowo

PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA WAHANIA SEZONOWE

PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA WAHANIA SEZONOWE STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 36 Krzysztof Dmytrów * Marusz Doszyń ** Unwersytet Szczecńsk PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA

Bardziej szczegółowo

Stosowana Analiza Regresji

Stosowana Analiza Regresji prostej Stosowana Wykład I 5 Października 2011 1 / 29 prostej Przykład Dane trees - wyniki pomiarów objętości (Volume), średnicy (Girth) i wysokości (Height) pni drzew. Interesuje nas zależność (o ile

Bardziej szczegółowo

Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu

Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu PRACE KOMISJI GEOGRAFII PRZEMY SŁU Nr 7 WARSZAWA KRAKÓW 2004 Akadema Pedagogczna, Kraków Kształtowane sę frm nformatycznych jako nowych elementów struktury przestrzennej przemysłu Postępujący proces rozwoju

Bardziej szczegółowo

Zasady budowania prognoz ekonometrycznych

Zasady budowania prognoz ekonometrycznych Zasad budowania prognoz ekonometrcznch Klasczne założenia teorii predkcji 1. Znajomość modelu kształtowania się zmiennej prognozowanej Znajomość postaci analitcznej wstępującch zależności międz zmiennmi

Bardziej szczegółowo

BADANIE STABILNOŚCI WSPÓŁCZYNNIKA BETA AKCJI INDEKSU WIG20

BADANIE STABILNOŚCI WSPÓŁCZYNNIKA BETA AKCJI INDEKSU WIG20 Darusz Letkowsk Unwersytet Łódzk BADANIE STABILNOŚCI WSPÓŁCZYNNIKA BETA AKCJI INDEKSU WIG0 Wprowadzene Teora wyboru efektywnego portfela nwestycyjnego zaproponowana przez H. Markowtza oraz jej rozwnęca

Bardziej szczegółowo

Konstrukcja gier sprawiedliwych i niesprawiedliwych poprzez. określanie prawdopodobieństwa.

Konstrukcja gier sprawiedliwych i niesprawiedliwych poprzez. określanie prawdopodobieństwa. Fundacja Centrum Edukacj Obyatelskej, ul. Noakoskego 10, 00-666 Warszaa, e-mal: ceo@ceo.org.l; Akadema ucznoska, Tel. 22 825 04 96, e-mal: au@ceo.org.l; ęcej nformacj:.akademaucznoska.l 1 Konstrukcja ger

Bardziej szczegółowo

Uchwała nr L/1044/05 Rady Miasta Katowice. z dnia 21 listopada 2005r.

Uchwała nr L/1044/05 Rady Miasta Katowice. z dnia 21 listopada 2005r. Uchwała nr L/1044/05 Rady Masta Katowce z dna 21 lstopada 2005r. w sprawe określena wysokośc stawek podatku od środków transportowych na rok 2006 obowązujących na terene masta Katowce Na podstawe art.18

Bardziej szczegółowo

. Wtedy E V U jest równa

. Wtedy E V U jest równa Prawdopodobeństwo statystyka 7.0.0r. Zadae Dwuwymarowa zmea losowa Y ma rozkład cągły o gęstośc gdy ( ) 0 y f ( y) 0 w przecwym przypadku. Nech U Y V Y. Wtedy E V U jest rówa 8 7 5 7 8 8 5 Prawdopodobeństwo

Bardziej szczegółowo

Planowanie eksperymentu pomiarowego I

Planowanie eksperymentu pomiarowego I POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak

Bardziej szczegółowo

Statystyka Inżynierska

Statystyka Inżynierska Statystyka Inżynerska dr hab. nż. Jacek Tarasuk AGH, WFIS 013 Wykład DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE Zmenna losowa, Funkcja rozkładu, Funkcja gęstośc, Dystrybuanta, Charakterystyk zmennej, Funkcje

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5 MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając

Bardziej szczegółowo

Egzamin ze statystyki, Studia Licencjackie Stacjonarne. TEMAT C grupa 1 Czerwiec 2007

Egzamin ze statystyki, Studia Licencjackie Stacjonarne. TEMAT C grupa 1 Czerwiec 2007 Egzamin ze statystyki, Studia Licencjackie Stacjonarne TEMAT C grupa 1 Czerwiec 2007 (imię, nazwisko, nr albumu).. Przy rozwiązywaniu zadań, jeśli to konieczne, naleŝy przyjąć poziom istotności 0,01 i

Bardziej szczegółowo

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,

Bardziej szczegółowo

Egzamin ze Statystyki, Studia Licencjackie Stacjonarne czerwiec 2007 Temat A

Egzamin ze Statystyki, Studia Licencjackie Stacjonarne czerwiec 2007 Temat A (imię, nazwisko, nr albumu).. Przy rozwiązywaniu zadań, jeśli to konieczne, naleŝy przyjąć poziom istotności 0,01 i współczynnik ufności 0,95. Zadanie 1 W 005 roku przeprowadzono badanie ankietowe, którego

Bardziej szczegółowo

Wielkość dziennego obrotu w tys. zł. (y) Liczba ekspedientek (x) 6 2 4 5,5 6,6

Wielkość dziennego obrotu w tys. zł. (y) Liczba ekspedientek (x) 6 2 4 5,5 6,6 Zad. 1. Zbadano wydajność odmiany pomidorów na 100 poletkach doświadczalnych. W wyniku przeliczeń otrzymano przeciętną wydajność na w tonach na hektar x=30 i s 2 x =7. Przyjmując, że rozkład plonów pomidora

Bardziej szczegółowo

OGŁOSZENIE TARYFA DLA ZBIOROWEGO ZAOPATRZENIA W WODĘ I ZBIOROWEGO ODPROWADZANIA ŚCIEKÓW. Taryfa obowiązuje od 01.01.2014 do 31.12.

OGŁOSZENIE TARYFA DLA ZBIOROWEGO ZAOPATRZENIA W WODĘ I ZBIOROWEGO ODPROWADZANIA ŚCIEKÓW. Taryfa obowiązuje od 01.01.2014 do 31.12. OGŁOSZENIE Zgodne z Uchwałą Nr XXXIII/421/2013 Rady Mejskej w Busku-Zdroju z dna 14 lstopada 2013 r. w sprawe zatwerdzena taryf za zborowe zaopatrzene w wodę zborowe odprowadzane śceków dla Mejskego Przedsęborstwa

Bardziej szczegółowo

Weryfikacja hipotez parametrycznych. Test Value = % Confidence Interval of the

Weryfikacja hipotez parametrycznych. Test Value = % Confidence Interval of the Weryfkacja hpotez parametrycznych Zadane 1 Wadomo, ze meseczne wydatk na srodk czystosc w gospodarstwach domowych sa zmenna losowa o rozkladze normalnym z odchylenem standardowym równym 4 zl. Wsród 10

Bardziej szczegółowo

Parametry zmiennej losowej

Parametry zmiennej losowej Eonometra Ćwczena Powtórzene wadomośc ze statysty SS EK Defncja Zmenną losową X nazywamy funcję odwzorowującą przestrzeń zdarzeń elementarnych w zbór lczb rzeczywstych, taą że przecwobraz dowolnego zboru

Bardziej szczegółowo

Model ASAD. ceny i płace mogą ulegać zmianom (w odróżnieniu od poprzednio omawianych modeli)

Model ASAD. ceny i płace mogą ulegać zmianom (w odróżnieniu od poprzednio omawianych modeli) Model odstawowe założena modelu: ceny płace mogą ulegać zmanom (w odróżnenu od poprzedno omawanych model) punktem odnesena analzy jest obserwacja pozomu produkcj cen (a ne stopy procentowej jak w modelu

Bardziej szczegółowo

Rozwiązania (lub wskazówki do rozwiązań) większości zadań ze skryptu STATYSTYKA: MATERIAŁY POMOCNICZE DO ZAJĘĆ oraz EGZAMINÓW Z LAT

Rozwiązania (lub wskazówki do rozwiązań) większości zadań ze skryptu STATYSTYKA: MATERIAŁY POMOCNICZE DO ZAJĘĆ oraz EGZAMINÓW Z LAT Rozwązana (lub wskazówk do rozwązań) wększośc zadań ze skryptu STATYSTYKA: MATERIAŁY POMOCNICZE DO ZAJĘĆ oraz EGZAMINÓW Z LAT 01-014 ZMIENNA LOSOWA I JEJ ROZKŁAD Zadane 1/ str. 4 a/ zmenna może przyjmować

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobeństwo statystyka 0.06.0 r. Zadae. Ura zawera kul o umerach: 0,,,,. Z ury cągemy kulę, zapsujemy umer kulę wrzucamy z powrotem do ury. Czyość tę powtarzamy, aż kula z każdym umerem zostae wycągęta

Bardziej szczegółowo

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych 3.1. Estymacja parametrów i ocena dopasowania modeli z jedną zmienną 23. Właściciel komisu w celu zbadania

Bardziej szczegółowo

INFORMATYKA W SELEKCJI

INFORMATYKA W SELEKCJI IFORMATYKA W SELEKCJI IFORMATYKA W SELEKCJI - zagadnena. Dane w prac hodowlanej praca z dużm zborem danch (Ecel). Podstaw prac z relacjną bazą danch w programe MS Access 3. Sstem statstczne na przkładze

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

REGRESJA (postać liniowa funkcji) - ROZWIĄZANIA Komentarze kursywą, rozwiązania oraz treści zadań pismem prostym.

REGRESJA (postać liniowa funkcji) - ROZWIĄZANIA Komentarze kursywą, rozwiązania oraz treści zadań pismem prostym. REGRESJA (postać liniowa funkcji) - ROZWIĄZANIA Komentarze kursywą, rozwiązania oraz treści zadań pismem prostym. Zadanie 1 W celu ustalenia zależności między liczbą braków a wielkością produkcji części

Bardziej szczegółowo

WSKAŹNIK OCENY HIC SAMOCHODU OSOBOWEGO W ASPEKCIE BEZPIECZEŃSTWA RUCHU DROGOWEGO

WSKAŹNIK OCENY HIC SAMOCHODU OSOBOWEGO W ASPEKCIE BEZPIECZEŃSTWA RUCHU DROGOWEGO WSKAŹNIK OCENY SAMOCHODU OSOBOWEGO W ASPEKCIE BEZPIECZEŃSTWA RUCHU DROGOWEGO Dagmara KARBOWNICZEK 1, Kazmerz LEJDA, Ruch cała człoweka w samochodze podczas wypadku drogowego zależy od sztywnośc nadwoza

Bardziej szczegółowo

Ćwiczenia IV

Ćwiczenia IV Ćwiczenia IV - 17.10.2007 1. Spośród podanych macierzy X wskaż te, których nie można wykorzystać do estymacji MNK parametrów modelu ekonometrycznego postaci y = β 0 + β 1 x 1 + β 2 x 2 + ε 2. Na podstawie

Bardziej szczegółowo

aij - wygrana gracza I bij - wygrana gracza II

aij - wygrana gracza I bij - wygrana gracza II M.Mszczsk KBO UŁ, Badana operacjne I (cz.) (wkład B 7) GRY KONFLIKTOWE GRY -OSOBOWE O SUMIE WYPŁT ZERO I. DEFINICJE TWIERDZENI Konflktowe gr dwuosobowe opsuje macerz wpłat ( a ) [ ] mxn j,b j gdze: aj

Bardziej szczegółowo

Wykłady Jacka Osiewalskiego. z Ekonometrii. CZĘŚĆ PIERWSZA: Modele Regresji. zebrane ku pouczeniu i przestrodze

Wykłady Jacka Osiewalskiego. z Ekonometrii. CZĘŚĆ PIERWSZA: Modele Regresji. zebrane ku pouczeniu i przestrodze Wykłady Jacka Osewalskego z Ekonometr zebrane ku pouczenu przestrodze UWAGA!! (lstopad 003) to jest wersja neautoryzowana, spsana przeze mne dawno temu od tego czasu ne przejrzana; ma status wersj roboczej,

Bardziej szczegółowo

Statystyka. Wykład 9. Magdalena Alama-Bućko. 24 kwietnia Magdalena Alama-Bućko Statystyka 24 kwietnia / 34

Statystyka. Wykład 9. Magdalena Alama-Bućko. 24 kwietnia Magdalena Alama-Bućko Statystyka 24 kwietnia / 34 Statystyka Wykład 9 Magdalena Alama-Bućko 24 kwietnia 2017 Magdalena Alama-Bućko Statystyka 24 kwietnia 2017 1 / 34 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia

Bardziej szczegółowo

Uchwała Nr XXVI 11/176/2012 Rada Gminy Jeleśnia z dnia 11 grudnia 2012

Uchwała Nr XXVI 11/176/2012 Rada Gminy Jeleśnia z dnia 11 grudnia 2012 RADA GMNY JELEŚNA Uchwała Nr XXV 11/176/2012 Rada Gmny Jeleśna z dna 11 grudna 2012 w sprawe zatwerdzena taryfy na odprowadzane śceków dostarczane wody przedstawonej przez Zakład Gospodark Komunalnej w

Bardziej szczegółowo

Kwantowa natura promieniowania elektromagnetycznego

Kwantowa natura promieniowania elektromagnetycznego Efekt Comptona. Kwantowa natura promenowana elektromagnetycznego Zadane 1. Foton jest rozpraszany na swobodnym elektrone. Wyznaczyć zmanę długośc fal fotonu w wynku rozproszena. Poneważ układ foton swobodny

Bardziej szczegółowo

PODSTAWOWE MIERNIKI DYNAMIKI ZJAWISK

PODSTAWOWE MIERNIKI DYNAMIKI ZJAWISK PODSTAWOWE MIERNIKI DYNAMIKI ZJAWISK Założena Nech oznacza ozom (warość) badanego zjawska (zmennej) w kolejnch momenach czasu T0, gdze T 0 0,1,..., n 1 oznacza worz szereg czasow. zbór numerów czasu. Cąg

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej

Bardziej szczegółowo

ANALIZA WPŁYWU OBSERWACJI NIETYPOWYCH NA WYNIKI MODELOWANIA REGIONALNEJ WYDAJNOŚCI PRACY

ANALIZA WPŁYWU OBSERWACJI NIETYPOWYCH NA WYNIKI MODELOWANIA REGIONALNEJ WYDAJNOŚCI PRACY STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 36, T. 1 Barbara Batóg *, Jacek Batóg ** Unwersytet Szczecńsk ANALIZA WPŁYWU OBSERWACJI NIETYPOWYCH NA WYNIKI MODELOWANIA REGIONALNEJ WYDAJNOŚCI

Bardziej szczegółowo

STATYSTYKA I stopień ZESTAW ZADAŃ

STATYSTYKA I stopień ZESTAW ZADAŃ Stattka ZADAIA STATYSTYKA I topeń ZESTAW ZADAŃ dr Adam Sojda. Aalza truktur jedowmarowego rozkładu emprczego..... Badae wpółzależośc w dwuwmarowm rozkładze emprczm. 8 3. Aalza zeregów czaowch.... 4. Aalza

Bardziej szczegółowo

Zjawiska masowe takie, które mogą wystąpid nieograniczoną ilośd razy. Wyrazów Obcych)

Zjawiska masowe takie, które mogą wystąpid nieograniczoną ilośd razy. Wyrazów Obcych) Statystyka - nauka zajmująca sę metodam badana przedmotów zjawsk w ch masowych przejawach ch loścową lub jakoścową analzą z punktu wdzena nauk, do której zakresu należą.

Bardziej szczegółowo

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie. Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane

Bardziej szczegółowo

NAFTA-GAZ marzec 2011 ROK LXVII. Wprowadzenie. Tadeusz Kwilosz

NAFTA-GAZ marzec 2011 ROK LXVII. Wprowadzenie. Tadeusz Kwilosz NAFTA-GAZ marzec 2011 ROK LXVII Tadeusz Kwlosz Instytut Nafty Gazu, Oddzał Krosno Zastosowane metody statystycznej do oszacowana zapasu strategcznego PMG, z uwzględnenem nepewnośc wyznaczena parametrów

Bardziej szczegółowo

Regulacje i sądownictwo przeszkody w konkurencji między firmami w Europie Środkowej i Wschodniej

Regulacje i sądownictwo przeszkody w konkurencji między firmami w Europie Środkowej i Wschodniej Łukasz Goczek * Regulacje sądownctwo przeszkody w konkurencj mędzy frmam w Europe Środkowej Wschodnej Wstęp Celem artykułu jest analza przeszkód dla konkurencj pomędzy frmam w Europe Środkowej Wschodnej.

Bardziej szczegółowo

SZEREG CZASOWY Y zjawisko badane w różnych okresach lub momentach czasu. Dynamika zjawiska to zmiana zjawiska w czasie. Przykład. Y średni kurs akcji

SZEREG CZASOWY Y zjawisko badane w różnych okresach lub momentach czasu. Dynamika zjawiska to zmiana zjawiska w czasie. Przykład. Y średni kurs akcji SZEREG CZASOWY Y zjawisko badane w różnch okresach lub momentach czasu. Dnamika zjawiska to zmiana zjawiska w czasie. Przkład. Y średni kurs akcji firm OPTMUS na giełdzie Okres: notowania od 1.03.2010

Bardziej szczegółowo

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne ś POLITECHNIKA POZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA PROWADZĄCY: mgr nż. Łukasz Amanowcz Systemy Ochrony Powetrza Ćwczena Laboratoryjne 2 TEMAT ĆWICZENIA: Oznaczane lczbowego rozkładu lnowych projekcyjnych

Bardziej szczegółowo