STATYSTYCZNA ANALIZA WYNIKÓW POMIARÓW

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "STATYSTYCZNA ANALIZA WYNIKÓW POMIARÓW"

Transkrypt

1 Zakład Metrolog Systemów Pomarowych P o l t e c h n k a P o z n ańska ul. Jana Pawła II POZAŃ (budynek Centrum Mechatronk, Bomechank anonżyner) tel fax STATYSTYCZA AALIZA WYIKÓW POMIARÓW POZAŃ 014

2 I. CEL ĆWICZEIA I ZAKRES ĆWICZEIA Celem ćwczena jest wykonane statystycznej analzy wynków pomarów oraz zapoznane studentów z pneumatycznym narzędzam pomarowym. II. PROGRAM ĆWICZEIA W ćwczenu zostane przeprowadzona statystyczna analza wynków pomarów part elementów (próby) pobranych z populacj o neznanych parametrach statystycznych tj. wartośc oczekwanej odchylenu standardowym. arzędzem pomarowym zastosowanym w ćwczenu jest pneumatyczny przyrząd pomarowy wyposażony w zależnośc od rodzaju merzonego przedmotu w średncówkę lub perśceń pomarowy. Każdy z przedmotów wchodzących w skład próby zostane jednokrotne zmerzony bez zwracana. Opracowane statystyczne obejmuje zadana opsane szczegółowo w nstrukcj wykonane krok po kroku oraz z wykorzystanem EXCELa. III. ZAKRES OBOWIĄZUJĄCEGO MATERIAŁU defncje populacj generalnej próby (losowej, reprezentacyjnej), sposób konstrukcj hstogramu, weloboku częstośc dystrybuanty emprycznej, defncje podstawowych parametrów statystycznych: wartość oczekwana, medana, warancja, odchylene standardowe, współczynnk asymetr, rozkłady statystyczne: normalny, Studenta, χ (ch kwadrat), estymatory estymacja punktowa (wartość średna x, odchylene średne s ) ) przedzał ufnośc dla pojedynczego wynku pomaru wartośc oczekwanej, test zgodnośc χ, umejętność korzystana z funkcj statystycznych zawartych w zakładce Analza danych programu Excel, defncje błędów, zasady elmnacj błędów nadmernych, budowa zasada dzałana pneumatycznych przyrządów pomarowych, statyczne właścwośc metrologczne przyrządów pomarowych: czułość, zakres pomarowy, podzałka przyrządu pomarowego, dzałka elementarna, wartość dzałk elementarnej, błąd wskazana. IV. LITERATURA 1. Bobrowsk D, Maćkowak-Łybacka K., Wybrane metody wnoskowana statystycznego. Wydawnctwo Poltechnk Poznańskej, Poznań Bourg D. M., Excel w nauce technce, Wydawnctwo Helon, Glwce, 006, str Tomask J., nn, Sprawdzane przyrządów do pomaru długośc kąta, Ofcyna Wydawncza Poltechnk Warszawskej, Warszawa 009, str Zelczak A., Pneumatyczne pomary długośc, Wydawnctwa Komunkacj Łącznośc, Warszawa, 00, str , V. OPIS STAOWISKA W skład stanowska pomarowego (rys 5.1) wchodzą: 1. Przyrząd pomarowy AEROPA C-IV (1) merzy odchyłk merzonego wymaru, wynk w µm,. Głowca pomarowa do bezstykowego pomaru wymarów zewnętrznych (perśceń pomarowy) (), 1

3 . Średncówka pneumatyczna (), 4. Zestaw wzorców ustawczych walcowych (4) perścenowych (5) do wzorcowana przyrządu pomarowego Rys.1. Schemat stanowska do statystycznej analzy wynków pomarów (ops w tekśce) 5.1. Czynnośc przygotowawcze 1) Zapoznać sę z, przeznaczenem, budową danym techncznym pneumatycznego przyrządu pomarowego AEROPA C-IV str. 5 nstrukcj. ) Włączyć zawór zaslana sprężonym powetrzem sprawdzć czy cśnene wynos 5 0,5 bara. ) Przeprowadzć wzorcowane przyrządu AEROPA C-IV wg następującej procedury: Rys.. Wdok pneumatycznego przyrządu do pomarów długośc AEROPA C-IV; 1 pokrętło regulacj czułośc, pokrętło Re gulacj 0, pokrętło zaworu pomocnczego H, 4 po krętła przełącznków elektrostykowych, 5 wymenna podzelna

4 a) Pomar częśc typu wałek założyć podzelnę Dűsenmeßrng (5) do pomarów wymarów zewnętrznych, sprawdzć czy zawór regulacj 0 jest zamknęty (pokrętło w skrajnym prawym położenu), wstawć w perśceń pomarowy wzorzec walcowy o średncy ø14 0,040 mm, pokrętłem regulacj czułośc (zakresu pomarowego) doprowadzć do położena wskazówk zgodnego z podaną na wzorcu wartoścą odchyłk ( 0,040 mm), wstawć w perśceń pomarowy wzorzec walcowy o średncy ø 14 0,08 mm, dokonać odczytu wskazana przyrządu, oblczyć różncę wskazań p odneść ją do różncy wymarów wzorców w 0,01 mm, jeżel p > w to należy powtórne wstawć w perśceń pomarowy wzorzec walcowy o średncy ø14 0,040 mm obracając w prawo pokrętłem (1) zmenć wskazane przyrządu na mnejsze np. 0 µm zaś pokrętłem 0 doprowadzć do wskazana 40 µm, powtórne umeścć w perścenu wzorzec o średncy ø 14 0,08 mm oblczyć różncę p, jeśl nadal p > w należy zmenć wskazane przyrządu według podanego opsu aż do uzyskana p w 0, jeżel p < w należy wstawć w perśceń pomarowy wzorzec walcowy o średncy ø14 0,040 mm obracając w lewo pokrętłem (1) zmenć wskazane przyrządu na wększe np. 50 µm, zaś pokrętłem 0 doprowadzć do wskazana 40 µm, po uzyskanu różncy wskazań w grancy nepewnośc pomaru przyrząd jest przygotowany do pomarów. b) Pomar częśc typu otwór (otwory w płyce) Uwaga: ależy przyjąć zakres pomarowy równy 100 µm, stąd odczytane wartośc odchyłek muszą być podzelone przez. sprawdzć czy zawór regulacj 0 jest zamknęty (pokrętło w skrajnym prawym położenu), wstawć średncówkę w perśceń wzorcowy o średncy ø14 0,019 mm, pokrętłem regulacj czułośc (zakresu pomarowego) doprowadzć do wskazana 0 µm, a następne pokrętłem 0 ustawć wskazówkę w położenu 18 µm, wstawć średncówkę w perśceń wzorcowy o średncy ø14 +0,019 mm, oblczyć różncę wskazań p odneść ją do różncy wymarów wzorców w 0,08 mm, jeżel p > w to należy powtórne wstawć średncówkę w perśceń wzorcowy o średncy ø14 0,018 mm, pokrętłem regulacj czułośc (zakresu pomarowego) doprowadzć do wskazana 0 µm, a następne pokrętłem 0 ustawć wskazówkę w położenu 18 µm. Różnca p w µm pownna ulec zmnejszenu. Jeżel będze wynosła klka µm celowym jest zamast ustawana wskazana na wymar 0 µm przyjąć mnejszą wartość np. 5 0 µm, w raze potrzeby należy wspomnane czynnośc wykonać klkakrotne, aż do osągnęca równośc p w 0. po uzyskanu różncy wskazań w grancy nepewnośc pomaru przyrząd jest przygotowany do pomarów.

5 VI. ZADAIA DO WYKOAIA Zadane 1. Oblczene parametrów szeregu rozdzelczego a) wykonać czynnośc podane w pkt.5.1a,b, b) dokonać pomaru elementów stanowących próbę z populacj, wynk zameścć w edytowalnej tablcy 1 sprawozdana, c) oblczyć rozstęp, lczbę szerokość przedzałów klasowych, d) wykonać oblczena welkośc podanych w tablcy. Zadane. Hstogram, welobok częstośc, wykres dystrybuanty a) korzystając z wynków zameszczonych w tablcy narysować hstogram, welobok częstośc oraz wykres dystrybuanty emprycznej. Zadane. Oblczene parametrów rozkładu dla szeregów rozdzelczych b) oblczyć średną arytmetyczną x, c) oblczyć oblczyć warancję d) oblczyć asymetrę A rozkładu, e) wynk oblczeń wpsać do tablcy. s x oraz odchylene średne s x z próby, Zadane 4. Oblczene błędu oceny asymetr a) oblczyć błąd s A oceny asymetr. Zadane 5. Oblczene parametrów rozkładu statystyk χ a) oblczyć punktowe oceny parametrów rozkładu µ, σ, b) zapsać funkcję gęstośc (pkt. b) dystrybuantę (pkt. c) rozkładu emprycznego, Zadane 6. Sprawdzene hpotezy o normalnośc rozkładu zmennej losowej a) oblczyć wartośc standaryzowane zmennej losowej oraz prawdopodobeństwa w przedzałach, wynk oblczeń wpsać do tablcy 4, b) wykonać oblczena w podpunktach b) do e), c) przyjąć bądź odrzucć hpotezę o zgodnośc rozkładu emprycznego z rozkładem normalnym. Zadane 7. Oblczene granc przedzału rozkładu normalnego a) oblczyć welkośc wyszczególnone w punktach a) e) sprawozdana, b) oblczyć szerokośc przedzału ufnośc dla rozkładu normalnego (pkt. f) Studenta (pkt. g). Wnosk 4

6 VII. Przeznaczene, charakterystyka ops dzałana przyrządu AEROPA C IV Przyrząd AEROPA C IV przeznaczony jest do pomarów długośc metodą pneumatyczną. Ze względu na newelk zakres pomarowy zakres jego stosowana ograncza sę do pomaru odchyłek. 1. Dane technczne Zakres cśnena pomarowego p k od 54 do 11,8 kpa Zakres pomarowy 100µm, 00µm lub 00µm Wartośc dzałk elementarnej (odpowedno) 1µm, µm, 5 µm Wzmocnene (przełożene pomarowe) 800, 1400, 90 epewność pomaru ± 1 dzałka elementarna Cśnene zaslana częśc pomarowej przyrządu p st 147 kpa Zużyce powetrza 500 do 4500 l/h. Ops dzałana przyrządu Sprężone powetrze o cśnenu p s wypływa z przewodu sprężark przez główny zawór odcnający (rys. ), reduktor (1), fltr powetrza (), stablzator cśnena (), dyszę wlotową (4) (ustalającą czułość zakres pomarowy), otwarty podczas pomaru zawór pomocnczy (5) dyszę pomarową (6) na powerzchnę merzonego przedmotu (7). a zaworze redukcyjnym (1) nastawone zostaje cśnene wejścowe p z równe kpa, wymagane dla zaslana stablzatora cśnena (). W stablzatorze powetrze osąga stałe cśnene p st, zapewnające prawdłową pracę przyrządu pomarowego. Cśnene pomarowe p k pomędzy dyszą wlotową (4) dyszą pomarową (6) (cśnene w komorze pomarowej) jest marą szerokośc szczelny s pomędzy czołem dyszy pomarowej (6) powerzchną merzonego przedmotu. Wartość szczelny wskazywana jest na skal podzeln przyrządu (8). astawane punktu zerowego (9) pozwala skorygować wpływ czynnków zewnętrznych na układ pomarowy. astawny zawór pomocnczy (5) jest stosowany w przypadku ustawana punktów przełączana styków (11). Meszk cśnenowe (10) są połączone równolegle z komorą pomarową przekazują pneumatyczne merzone wartośc odchyłek poprzez styk elektryczne (11) obwodow sygnalzacyjnosterownczemu. Dzałane styków sygnalzowane jest zmaną lampek (1). Rys.. Wdok schemat budowy pneumatycznego przyrządu pomarowego AEROPA C-IV 5

7 . Zespoły przyrządu.1. Przyrząd wskazujący Przyrządem wskazującym jest precyzyjny manometr o wysokej klasy dokładnośc. Wskazówkę przyrządu porusza za pośrednctwem przekładn cęgnowej meszek anerodu poddany dzałanu cśnena pomarowego... Dysze regulacyjne Do nastawena parametrów przyrządu służy zawór glcowy (4) (dysza nastawna). Przekrój dyszy określa przełożene (czułość) oraz szybkość wskazań przyrządu. Przy małym przełożenu, tzn. przy dużym zakrese pomarowym ustalane sę wskazana trwa krócej nż w przypadku odwrotnym. Obrót w prawo zmnejsza przekrój dyszy, a węc zwększa przełożene. Obrót w lewo zwększa przekrój dyszy zmnejsza tym samym przełożene... astawane punktu zerowego astawane punktu zerowego 0" dokonywane jest za pomocą czułego zaworu glcowego (9). Obrót w lewo otwera a obrót w prawo zamyka zawór. astawane punktu zerowego służy do ustawana na skal przyrządu położena punktu początkowego zakresu pomarowego. Ponadto w przyrządze znajduje sę dysza pomocncza H służąca do nastawana punktów przełączana elektrostyków. 4. arzędza pomarowe Podstawowym narzędzam pomarowym (głowcam pomarowym) współpracującym z pneumatycznym przyrządam pomarowym są średncówk (rys. 4a) oraz perścene pomarowe (rys. 4b). Umożlwają one pomar bezstykowy elementów częśc maszyn. Do pomarów pneumatyczną metodą stykową stosowane są czujnk stykowe (rys 4c). a) b) c) Rys. 4. Schematy pneumatycznych narzędz pomarowych: a) średncówka, b) perśceń pomarowy, c) czujnk stykowy 6

8 Przykład oblczenowy W produkcj tulejek pobrano 80-co elementową próbę. Wykonano pomary średncy otworu otrzymując wynk zameszczone w tablcy 1. ależy z prawdopodobeństwem 95% wyznaczyć przedzał obejmujący średną wartość średncy otworu. Tablca 1. Wynk pomaru średncy wewnętrznej tulejek 40,6 40,5 40,44 40,5 40,9 40,40 40,4 40, 40,7 40,5 40,44 40,5 40,0 40,4 40,1 40, 40,7 40,41 40,5 40,0 40, 40,8 40, 40, 40, 40,0 40,40 40,6 40,8 40, 40,4 40,5 40,8 40, 40,1 40, 40,4 40,4 40,0 40,0 40,9 40,40 40, 40,7 40,4 40,0 40,4 40,4 40,41 40,4 40,4 40,1 40,1 40,6 40,4 40,4 40,5 40,44 40,6 40,4 40,7 40,1 40,6 40,4 40,8 40,9 40,9 40,7 40,6 40,8 40,6 40,41 40,9 40,8 40,7 40,7 40,6 40,5 40, 40,6 Zadana szczegółowe 1. Oblczyć częstośc względne oraz wartośc emprycznej dystrybuanty zmennej losowej (średncy otworu x).. arysować hstogram, welobok częstośc wykres dystrybuanty rozkładu zmennej losowej (średncy otworu).. Oblczyć parametry rozkładu dla szeregów rozdzelczych. 4. Oblczyć błędy oceny asymetr. 5. Przedstawć funkcję gęstośc rozkładu normalnego oraz funkcję dystrybuanty. 6. Sprawdzć hpotezę o normalnośc rozkładu. 7. Przeprowadzć estymację przedzałową średnej arytmetycznej populacj na pozome. Rozwązane Ad.1. Tworząc szereg rozdzelczy należy zaobserwowane wartośc średncy w próbe uporządkować według przedzałów klasowych. Lczbę przedzałów klasowych ustala sę borąc pod uwagę lczność (lczebność) próby oraz różncę R (rozstęp) pomędzy najwększą najmnejszą wartoścą cechy (średncy) w próbe. Welkość R stanow marę rozproszena wartośc średncy. Ważną kwestą jest ustalene lczby k przedzałów klasowych. Jeżel jest zbyt duża, to lczba obserwacj należących do każdego z przedzałów może być zbyt mała wykres rozkładu może ulec zbyt dużym wypaczenom. atomast, jeśl lczba przedzałów jest zbyt mała, to ne zostaną uwdocznone charakterystyczne właścwośc rozkładu. Jest ona ustalana w zależnośc od lczebnośc próby oznaczonej, jako. W lteraturze można spotkać klka zasad doboru lczby przedzałów, mędzy nnym: lczba przedzałów klasowych pownna zawerać sę pomędzy 5 a 15, lczba przedzałów klasowych pownna spełnać nerówność 0,5 k dla 80 4,5 k 8, 9 7

9 wg Huntsbergera k 1+, log dla 80 k 6, de Brookes Carruthers proponują k < 5log dla 80 k < 9, 5 Do dalszych oblczeń przyjęto k 5. Szerokość przedzału klasowego h jest welkoścą zależną rozstępu R oraz od lczby przedzałów klasowych k. R x x 40, 44 40, 6 h max mn > 0, 06 k k 5 > mm Przyjęto h 0,04 mm. Dolna granca perwszego przedzału pownna być mnejsza od najmnejszej wartośc próby (np. o ½ szerokośc przedzału), a górna ustalona tak, by ostatn przedzał zawerał najwększą wartość. Przedzały klasowe są prawostronne domknęte (prawe grance należą do nch). Ogólne lczba przedzałów klasowych pomnożona przez szerokość przedzału mus być neznaczne wększa od rozstępu wyrażona lczbą dzałek elementarnych. W przykładze przyjęto wartość początkową równą 40,6 0,0 40,4 mm, stąd perwszy przedzał będze (40,4 40,8], drug (40,8 40,] mm td. Lczbę zdarzeń w poszczególnych przedzałach klasowych podano w tablcy 1. Tablca. Parametry częstoścowe przedzałów klasowych r przedzału Grance przedzału klasowego [mm] (40,4 40,8] (40,8 40,] (40, 40,6] (40,6 40,40] (40,40 40,44] Lczność Częstość względna n / 0,075 0,1 0,400 0,188 0,15 Częstość skumulowana 0,075 0,88 0,688 0,875 1,000 n Wartośc kontrolne n 80, 1 Ad.. W celu wykonana hstogramu na os odcętych odkładamy wartośc przedzałów klasowych. Szerokość przedzału klasowego stanow podstawę prostokąta, którego wysokość wyraża lczebność merzonych elementów w rozpatrywanym przedzale klasowym (tablca 1). a os rzędnych mogą być równeż podane wartośc częstośc względnych. a podstawe danych z tablcy 1 narysowano hstogram, welobok częstośc oraz welobok skumulowanych częstośc (wykres dystrybuanty emprycznej). 8

10 a) b) 5 0 Lczebność 1,0 0,9 0,8 Skumulowana częstość 5 0,7 0 0,6 0,5 15 0,4 10 0, 5 0, 0,1 0 0,0 40,80 40,0 40,60 40,400 40,440 40,80 40,0 40,60 40,400 40,440 40,480 Średnca [mm] Średnca [mm] Rys. 1.Wykresy:(a) hstogram, (b) dystrybuanta empryczna Ad.. Oblczena szczegółowe parametrów rozkładu a) średna W przypadku prób o lcznośc powyżej >5 celowe jest oblczene średnej arytmetycznej ze wzoru 1 x x n gdze x wartość zmennej w środku -tego przedzału klasowego (tablca ), 1 x x n b) warancja z próby 40, , ,4 + 40, , ,4mm 80 s x odchylene średne s x ( x x) n 0,159 sx 0,00191 s x 0, , 047 mm 80 c) asymetra (skośność) ( x x) A sx n 0, ,047 0,081 Tablca. Wartośc momentów rozkładu średnc otworów x nr przedzału Grance przedzału klasowego [mm] Środek przedzału x Lczność Moment 1-go rzędu Moment -go rzędu Moment -go rzędu n ( x x) n ( ) x ( ) x n x x n 1 (40,4 40,8] 40,6 6-0,6 0,041 0,004 (40,8 40,] 40,0 17-0,86 0,014 0,0015 (40, 40,6] 40,4-0,18 0,000 +0, (40,6 40,40] 40, ,540 0,005 +0, (40,40 40,44] 40, ,760 0,059 +0,00457 Suma Σm ,159 +0,

11 Ad.4. Oblczene błędów oceny asymetr 6( n 1) ( n + 1)( n + ) 6 79 s A 0, Jeżel rozkład średncy otworów jest normalny, to pownno być A 0. Można zauważyć, że oblczona wartość odbega od wartośc zerowej, jednak ne węcej nż o dwa odchylena standardowe, co pozwala przyjąć rozkład, jako normalny. Potwerdza to równeż wygląd hstogramu oraz weloboku częstośc. Ad.5. Funkcja gęstośc prawdopodobeństwa rozkładu normalnego ma postać f ( x) 1 exp σ π ( x µ ) σ Punktowe oceny parametrów µ σ rozkładu normalnego wynoszą x n µ x 40,4 mm, Po podstawenu danych przyjmuje postać oraz dystrybanta ( x x) n σ s 0,047 mm f ( x) ( 40,4) 1 x exp 0,047 π 0,047 ( x 40,4) x 1 F( x) exp dx 0,047 π 0,047 Ad.6. Sprawdzene hpotezy o normalnośc rozkładu zmennej losowej (średncy otworów) zastosowane testu zgodnośc χ (ch kwadrat) [1,] a) oblczene wartośc standaryzowanej zmennych losowych wg wzoru u x µ σ Oblczamy, korzystając z dystrybuanty [1], prawdopodobeństwa znalezena zmennej losowej standaryzowanej u znajdującej sę w przedzale (x -1 ; x ] p ( x < X < x ) ( F( u ) F( u )) P 1 1 Przykładowo prawdopodobeństwo oblczone dla przedzału (40,; 40,6] wynos p P ( 40, < X < 40,6) 40,6 40,4 40, 40,4 F F 0,047 0,047 [ F( 0,89) F( 0,56) ] ( 0,651 0,99) 0, 5 Wyjaśnena wymaga oblczene prawdopodobeństwa w perwszym ostatnm przedzale. Otóż prawdopodobeństwo dla perwszego przedzału jest równe wartośc dystrybuanty dla prawej grancy przedzału czyl dla obszaru od do prawej grancy. 10

12 p x x s 40,8 40,4 0,047 u1 1,441 ( < X < 40,8) ( 1,441) 0, P F atomast prawdopodobeństwo dla ostatnego przedzału traktujemy jak obszar od lewej grancy do + x x 40,40 40,4 u5 + 1,04 s 0,047 p ( 40,40 < X < + ) 1 ( + 1,04 ) 0, P F Wynk oblczeń dla wszystkch przedzałów wszystkch zameszczono w tablcy 4. Tablca 4. Parametry częstoścowe przedzałów klasowych nr przedzału Grance przedzału klasowego [mm] Lczność n Przedzały standaryzowane (u, u +1 ] p np ( ) n ( n np ) np 1 (40,4; 40,8] 6 [- ;-1,44) 0,075 5,98 0,000 0,000 (40,8; 40,] 17 [-1,44; -0,5) 0,5 17,97 0,941 0,05 (40,; 40,6] [-0,5; 0,9) 0,5 8,15 14,794 0,56 4 (40,6; 40,40] 15 [0,9; 1,0) 0,5 0,0 7,080 1,40 5 (40,40; 40,44] 10 [1,0; ) 0,096 7,69 5, 0,69 Suma Σn 80 1,000 80,61 Jeżel lczność w którymś przedzale będze mnejsza od 5 to należy ten przedzał połączyć z sąsednm tak, aby suma lcznośc przedzałów była co najmnej równa 5. b) oblczene wartośc statystyk χ Statystyka χ stanow marę rozbeżnośc mędzy rozkładam emprycznym teoretycznym o dystrybuance F(x) k ( ) k n ( ) nteor n np χ 1 nteor 1 np gdze n lczność empryczna -tego przedzału, n teor teoretyczna lczność -tego przedzału, lczebność próby, p prawdopodobeństwo wyznaczone przez hpotetyczną dystrybuantę, że wartość zmennej losowej x zawarta jest w przedzale klasowym o środku w punkce Z tablc rozkładu χ dla pozomu stotnośc α 0,05 lczbe stopn swobody ν k r (k lczba przedzałów, r lczba parametrów rozkładu oszacowanych z próby) odczytujemy wartość krytyczną χ. 0,05; ν χ 0,05; x 5,991. Jeśl χ χ np 0, 05 ;ν to oznacza, że ne ma podstaw do odrzucena hpotezy o normalnym rozkładze średnc otworów. W przecwnym raze hpoteza ne jest zgodna z wynkam pomarów. 11

13 Ad.7. Oblczene granc przedzału rozkładu normalnego Jeśl z populacj (µ,σ) o neznanej wartośc średnej odchylenu standardowym zostane pobrana dostateczne duża lość prób 80-co elementowych o rozkładze normalnym, to wówczas przedzał ufnośc dla wartośc oczekwanej wynos x ε < µ < x + ε W celu oblczena granc przedzału ufnośc posługujemy sę tablcam rozkładu normalnego (dla 0). Dla przyjętego prawdopodobeństwa p 1 α 0,95 kwantyl rozkładu u α/ 1,960 a granca przedzału s 0,047 ε u α / 1,960 0, Można też posłużyć sę rozkładem Studenta (dokładnejsze oblczena) dla lczby stopn swobody ν (kwantyl rozkładu t α/,ν t 0,05,79 1,990) granca przedzału wynos ε t a przedzał opsuje nerówność s 0,047 1, α / ; ν 0, ,4 0,010 < a < 40,4 + 0,010 40, < a < 40,45 mm Ostateczne szerokość przedzału jest wyznaczona przez wartośc 40, 40,45 mm, a różnce dla różnych rozkładów bardzo newele sę różną. Wnosek końcowy Przedzał wartośc <40,, 40,45> mm pokrywa z prawdopodobeństwem 95% średną wartość średncy otworu x. Uwag na temat elmnacj wynków obarczonych błędam nadmernym. Analzując wynk pomarów welokrotnych, można zaobserwować wynk o wartoścach znaczne różnych od pozostałych. Można podejrzewać, że wynk te są obarczone błędam nadmernym (grubym), których przyczynam mogą być nezauważone podczas pomarów: zmany warunków pomarów, nesprawność aparatury, pomyłk osób wykonujących pomary błędy powstałe podczas przetwarzana wynków. Zakładając, że zbory wynków pomarów mają rozkład normalny, elmnację błędów nadmernych dokonuje sę następująco: dla otrzymanego z pomarów zboru wynków oblcza sę wartość średną odchylene średne, dla założonego pozomu ufnośc P 1 α (zwykle 0,99) wyznacza sę przedzał ufnośc merzonej welkośc, dla wartośc, które znajdują sę poza przedzałem ufnośc, zakłada sę hpotetyczne, że ne przynależą one do populacj, poneważ prawdopodobeństwo ch wystąpena jest zbyt małe że ne przypadek spowodował ch pojawene sę, lecz błąd nadmerny, czyl odrzuca sę je, 1

14 po odrzucenu wartośc obarczonych błędam nadmernym dalsze oblczena statystyczne wykonuje sę już normalnym znanym metodam. Szczegółowe zasady wykrywana wynków obarczonych błędam nadmernym zawarte są norme P

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne ś POLITECHNIKA POZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA PROWADZĄCY: mgr nż. Łukasz Amanowcz Systemy Ochrony Powetrza Ćwczena Laboratoryjne 2 TEMAT ĆWICZENIA: Oznaczane lczbowego rozkładu lnowych projekcyjnych

Bardziej szczegółowo

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np. Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas

Bardziej szczegółowo

± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości

± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości Podstawowe pojęca procesu pomarowego kreślene jakośc poznana rzeczywstośc Δ zmerzone rzeczywste 17 9 Zalety stosowana elektrycznych przyrządów 1/ 1. możlwość budowy czujnków zamenających werne każdą welkość

Bardziej szczegółowo

0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4

0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4 Zad. 1. Dana jest unkcja prawdopodobeństwa zmennej losowej X -5-1 3 8 p 1 1 c 1 Wyznaczyć: a. stałą c b. wykres unkcj prawdopodobeństwa jej hstogram c. dystrybuantę jej wykres d. prawdopodobeństwa: P (

Bardziej szczegółowo

65120/ / / /200

65120/ / / /200 . W celu zbadana zależnośc pomędzy płcą klentów ch preferencjam, wylosowano kobet mężczyzn zadano m pytane: uważasz za lepszy produkt frmy A czy B? Wynk były następujące: Odpowedź Kobety Mężczyźn Wolę

Bardziej szczegółowo

Parametry zmiennej losowej

Parametry zmiennej losowej Eonometra Ćwczena Powtórzene wadomośc ze statysty SS EK Defncja Zmenną losową X nazywamy funcję odwzorowującą przestrzeń zdarzeń elementarnych w zbór lczb rzeczywstych, taą że przecwobraz dowolnego zboru

Bardziej szczegółowo

Statystyka Inżynierska

Statystyka Inżynierska Statystyka Inżynerska dr hab. nż. Jacek Tarasuk AGH, WFIS 013 Wykład DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE Zmenna losowa, Funkcja rozkładu, Funkcja gęstośc, Dystrybuanta, Charakterystyk zmennej, Funkcje

Bardziej szczegółowo

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są

Bardziej szczegółowo

Planowanie eksperymentu pomiarowego I

Planowanie eksperymentu pomiarowego I POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak

Bardziej szczegółowo

Nieparametryczne Testy Istotności

Nieparametryczne Testy Istotności Neparametryczne Testy Istotnośc Wzory Neparametryczne testy stotnośc schemat postępowana punkt po punkce Formułujemy hpotezę główną odnoszącą sę do: zgodnośc populacj generalnej z jakmś rozkładem, lub:

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 1 Statystyka opsowa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 W statystyce opsowej mamy pełne nformacje

Bardziej szczegółowo

TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE

TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE POLITHNIKA RZSZOWSKA Katedra Podstaw lektronk Instrkcja Nr4 F 00/003 sem. letn TRANZYSTOR IPOLARNY HARAKTRYSTYKI STATYZN elem ćwczena jest pomar charakterystyk statycznych tranzystora bpolarnego npn lb

Bardziej szczegółowo

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup Jednoczynnkowa Analza Waranc (ANOVA) Wykład 11 Przypomnene: wykłady zadana kursu były zaczerpnęte z podręcznków: Statystyka dla studentów kerunków techncznych przyrodnczych, J. Koronack, J. Melnczuk, WNT

Bardziej szczegółowo

WYZNACZENIE CHARAKTERYSTYK DYNAMICZNYCH PRZETWORNIKÓW POMIAROWYCH

WYZNACZENIE CHARAKTERYSTYK DYNAMICZNYCH PRZETWORNIKÓW POMIAROWYCH Zakład Metrolog Systemów Pomarowych P o l t e c h n k a P o z n ańska ul. Jana Pawła II 6-965 POZNAŃ (budynek Centrum Mechatronk, Bomechank Nanonżyner) www.zmsp.mt.put.poznan.pl tel. +8 6 665 35 7 fa +8

Bardziej szczegółowo

Analiza struktury zbiorowości statystycznej

Analiza struktury zbiorowości statystycznej Analza struktury zborowośc statystycznej.analza tendencj centralnej. Średne klasyczne Średna arytmetyczna jest parametrem abstrakcyjnym. Wyraża przecętny pozom badanej zmennej (cechy) w populacj generalnej:

Bardziej szczegółowo

Zadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane

Bardziej szczegółowo

STATYSTYCZNA ANALIZA WYNIKÓW POMIARÓW

STATYSTYCZNA ANALIZA WYNIKÓW POMIARÓW Zakład Metrologii i Systemów Pomiarowych P o l i t e c h n i k a P o z n ańska ul. Jana Pawła II 24 60-965 POZNAŃ (budynek Centrum Mechatroniki, Biomechaniki i Nanoinżynierii) www.zmisp.mt.put.poznan.pl

Bardziej szczegółowo

STATYSTYCZNA ANALIZA WYNIKÓW POMIARÓW

STATYSTYCZNA ANALIZA WYNIKÓW POMIARÓW Zakład Metrologii i Systemów Pomiarowych P o l i t e c h n i k a P o z n ańska ul. Jana Pawła II 24 60-965 POZNAŃ (budynek Centrum Mechatroniki, Biomechaniki i Nanoinżynierii) www.zmisp.mt.put.poznan.pl

Bardziej szczegółowo

Natalia Nehrebecka. Wykład 2

Natalia Nehrebecka. Wykład 2 Natala Nehrebecka Wykład . Model lnowy Postad modelu lnowego Zaps macerzowy modelu lnowego. Estymacja modelu Wartośd teoretyczna (dopasowana) Reszty 3. MNK przypadek jednej zmennej . Model lnowy Postad

Bardziej szczegółowo

Proces narodzin i śmierci

Proces narodzin i śmierci Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do

Bardziej szczegółowo

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja) Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz

Bardziej szczegółowo

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru Pomary fzyczne - dokonywane tylko ze skończoną dokładnoścą. Powodem - nedoskonałość przyrządów pomarowych neprecyzyjność naszych zmysłów borących udzał w obserwacjach. Podawane samego tylko wynku pomaru

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne XXX OLIMPIADA FIZYCZNA ETAP III Zadane dośwadczalne ZADANIE D Nazwa zadana: Maszyna analogowa. Dane są:. doda półprzewodnkowa (krzemowa) 2. opornk dekadowy (- 5 Ω ), 3. woltomerz cyfrowy, 4. źródło napęca

Bardziej szczegółowo

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA Problemy jednoczesnego testowana welu hpotez statystycznych ch zastosowana w analze mkromacerzy DNA Konrad Furmańczyk Katedra Zastosowań Matematyk SGGW Plan referatu Testowane w analze mkromacerzy DNA

Bardziej szczegółowo

Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer

Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer Statystyka Opsowa 2014 część 2 Katarzyna Lubnauer Lteratura: 1. Statystyka w Zarządzanu Admr D. Aczel 2. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucjan Kowalsk. 4. Statystyka opsowa,

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY METODĄ STOKESA

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY METODĄ STOKESA WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY METODĄ STOKESA. Ops teoretyczny do ćwczena zameszczony jest na strone www.wtc.wat.edu.pl w dzale DYDAKTYKA FIZYKA ĆWICZENIA LABORATORYJNE.. Ops układu pomarowego

Bardziej szczegółowo

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.

Bardziej szczegółowo

Statystyka Opisowa 2014 część 1. Katarzyna Lubnauer

Statystyka Opisowa 2014 część 1. Katarzyna Lubnauer Statystyka Opsowa 2014 część 1 Katarzyna Lubnauer Lteratura: 1. Statystyka w Zarządzanu Admr D. Aczel 2. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucjan Kowalsk. 4. Statystyka opsowa,

Bardziej szczegółowo

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013 ZESZYTY NAUKOWE NSTYTUTU POJAZDÓW 5(96)/2013 Hubert Sar, Potr Fundowcz 1 WYZNACZANE MASOWEGO MOMENTU BEZWŁADNOŚC WZGLĘDEM OS PODŁUŻNEJ DLA SAMOCHODU TYPU VAN NA PODSTAWE WZORÓW DOŚWADCZALNYCH 1. Wstęp

Bardziej szczegółowo

Egzamin ze statystyki/ Studia Licencjackie Stacjonarne/ Termin I /czerwiec 2010

Egzamin ze statystyki/ Studia Licencjackie Stacjonarne/ Termin I /czerwiec 2010 Egzamn ze statystyk/ Studa Lcencjacke Stacjonarne/ Termn /czerwec 2010 Uwaga: Przy rozwązywanu zadań, jeśl to koneczne, naleŝy przyjąć pozom stotnośc 0,01 współczynnk ufnośc 0,99 Zadane 1 PonŜsze zestawene

Bardziej szczegółowo

Ćw. 1. Wyznaczanie wartości średniego statycznego współczynnika tarcia i sprawności mechanizmu śrubowego.

Ćw. 1. Wyznaczanie wartości średniego statycznego współczynnika tarcia i sprawności mechanizmu śrubowego. Laboratorum z Podstaw Konstrukcj Maszyn - 1 - Ćw. 1. Wyznaczane wartośc średnego statycznego współczynnka tarca sprawnośc mechanzmu śrubowego. 1. Podstawowe wadomośc pojęca. Połączene śrubowe jest to połączene

Bardziej szczegółowo

Zjawiska masowe takie, które mogą wystąpid nieograniczoną ilośd razy. Wyrazów Obcych)

Zjawiska masowe takie, które mogą wystąpid nieograniczoną ilośd razy. Wyrazów Obcych) Statystyka - nauka zajmująca sę metodam badana przedmotów zjawsk w ch masowych przejawach ch loścową lub jakoścową analzą z punktu wdzena nauk, do której zakresu należą.

Bardziej szczegółowo

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru Pomary fzyczne - dokonywane tylko ze skończoną dokładnoścą. Powodem - nedoskonałość przyrządów pomarowych neprecyzyjność naszych zmysłów borących udzał w obserwacjach. Podawane samego tylko wynku pomaru

Bardziej szczegółowo

2012-10-11. Definicje ogólne

2012-10-11. Definicje ogólne 0-0- Defncje ogólne Logstyka nauka o przepływe surowców produktów gotowych rodowód wojskowy Utrzyywane zapasów koszty zwązane.n. z zarożene kaptału Brak w dostawach koszty zwązane.n. z przestoje w produkcj

Bardziej szczegółowo

POMIAR WSPÓŁCZYNNIKÓW ODBICIA I PRZEPUSZCZANIA

POMIAR WSPÓŁCZYNNIKÓW ODBICIA I PRZEPUSZCZANIA Ćwczene O5 POMIAR WSPÓŁCZYNNIKÓW ODBICIA I PRZEPUSZCZANIA 1. Cel zakres ćwczena Celem ćwczena jest poznane metod pomaru współczynnków odbca przepuszczana próbek płaskch 2. Ops stanowska laboratoryjnego

Bardziej szczegółowo

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe

Bardziej szczegółowo

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY. Zakład Budowy i Eksploatacji Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY. Zakład Budowy i Eksploatacji Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY Zakład Budowy Eksploatacj Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA Temat ćwczena: PRAKTYCZNA REALIZACJA PRZEMIANY ADIABATYCZNEJ.

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej

Bardziej szczegółowo

Zestaw przezbrojeniowy na inne rodzaje gazu. 1 Dysza 2 Podkładka 3 Uszczelka

Zestaw przezbrojeniowy na inne rodzaje gazu. 1 Dysza 2 Podkładka 3 Uszczelka Zestaw przezbrojenowy na nne rodzaje gazu 8 719 002 262 0 1 Dysza 2 Podkładka 3 Uszczelka PL (06.04) SM Sps treśc Sps treśc Wskazówk dotyczące bezpeczeństwa 3 Objaśnene symbol 3 1 Ustawena nstalacj gazowej

Bardziej szczegółowo

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego

Bardziej szczegółowo

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ],

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ], STATECZNOŚĆ SKARP W przypadku obektu wykonanego z gruntów nespostych zaprojektowane bezpecznego nachylena skarp sprowadza sę do przekształcena wzoru na współczynnk statecznośc do postac: tgφ tgα = n gdze:

Bardziej szczegółowo

PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA WAHANIA SEZONOWE

PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA WAHANIA SEZONOWE STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 36 Krzysztof Dmytrów * Marusz Doszyń ** Unwersytet Szczecńsk PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA

Bardziej szczegółowo

dy dx stąd w przybliżeniu: y

dy dx stąd w przybliżeniu: y Przykłady do funkcj nelnowych funkcj Törnqusta Proszę sprawdzć uzasadnć, które z podanych zdań są prawdzwe, a które fałszywe: Przykład 1. Mesęczne wydatk na warzywa (y, w jednostkach penężnych, jp) w zależnośc

Bardziej szczegółowo

Tablica Galtona. Mechaniczny model rozkładu normalnego (M10)

Tablica Galtona. Mechaniczny model rozkładu normalnego (M10) Tablca Galtoa. Mechaczy model rozkładu ormalego (M) I. Zestaw przyrządów: Tablca Galtoa, komplet kulek sztuk. II. Wykoae pomarów.. Wykoać 8 pomarów, wrzucając kulk pojedyczo.. Uporządkować wyk pomarów,

Bardziej szczegółowo

Współczynnik przenikania ciepła U v. 4.00

Współczynnik przenikania ciepła U v. 4.00 Współczynnk przenkana cepła U v. 4.00 1 WYMAGANIA Maksymalne wartośc współczynnków przenkana cepła U dla ścan, stropów, stropodachów, oken drzw balkonowych podano w załącznku do Rozporządzena Mnstra Infrastruktury

Bardziej szczegółowo

AUTOMATYKA I STEROWANIE W CHŁODNICTWIE, KLIMATYZACJI I OGRZEWNICTWIE L3 STEROWANIE INWERTEROWYM URZĄDZENIEM CHŁODNICZYM W TRYBIE PD ORAZ PID

AUTOMATYKA I STEROWANIE W CHŁODNICTWIE, KLIMATYZACJI I OGRZEWNICTWIE L3 STEROWANIE INWERTEROWYM URZĄDZENIEM CHŁODNICZYM W TRYBIE PD ORAZ PID ĆWICZENIE LABORAORYJNE AUOMAYKA I SEROWANIE W CHŁODNICWIE, KLIMAYZACJI I OGRZEWNICWIE L3 SEROWANIE INWEREROWYM URZĄDZENIEM CHŁODNICZYM W RYBIE PD ORAZ PID Wersja: 03-09-30 -- 3.. Cel ćwczena Celem ćwczena

Bardziej szczegółowo

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...

Bardziej szczegółowo

LABORATORIUM METROLOGII TECHNIKA POMIARÓW (M-1)

LABORATORIUM METROLOGII TECHNIKA POMIARÓW (M-1) LABORATORIUM METROLOGII TECHNIKA POMIARÓW (M-) wwwmuepolslpl/~wwwzmape Opracował: Dr n Jan Około-Kułak Sprawdzł: Dr hab n Janusz Kotowcz Zatwerdzł: Dr hab n Janusz Kotowcz Cel wczena Celem wczena jest

Bardziej szczegółowo

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B W przypadku gdy e występuje statystyczy rozrzut wyków (wszystke pomary dają te sam wyk epewość pomaru wyzaczamy w y sposób. Główą przyczyą epewośc pomaru jest epewość

Bardziej szczegółowo

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 2(88)/2012

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 2(88)/2012 ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW (88)/01 Hubert Sar, Potr Fundowcz 1 WYZNACZANIE ASOWEGO OENTU BEZWŁADNOŚCI WZGLĘDE OSI PIONOWEJ DLA SAOCHODU TYPU VAN NA PODSTAWIE WZORU EPIRYCZNEGO 1. Wstęp asowy moment

Bardziej szczegółowo

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A Analza rodzajów skutków krytycznośc uszkodzeń FMECA/FMEA według MIL STD - 629A Celem analzy krytycznośc jest szeregowane potencjalnych rodzajów uszkodzeń zdentyfkowanych zgodne z zasadam FMEA na podstawe

Bardziej szczegółowo

SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY

SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY Opsowa analza struktury zjawsk masowych Demografa statystyka PROJEKT DOFINANSOWANY ZE ŚRODKÓW NARODOWEGO BANKU POLSKIEGO URZĄD STATYSTYCZNY

Bardziej szczegółowo

Badania sondażowe. Braki danych Konstrukcja wag. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa

Badania sondażowe. Braki danych Konstrukcja wag. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa Badana sondażowe Brak danych Konstrukcja wag Agneszka Zęba Zakład Badań Marketngowych Instytut Statystyk Demograf Szkoła Główna Handlowa 1 Błędy braku odpowedz Całkowty brak odpowedz (UNIT nonresponse)

Bardziej szczegółowo

Natalia Nehrebecka. Zajęcia 3

Natalia Nehrebecka. Zajęcia 3 St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 3 1. Dobroć dopasowana równana regresj. Współczynnk determnacj R Dk Dekompozycja warancj zmennej zależnej ż Współczynnk determnacj R. Zmenne cągłe a

Bardziej szczegółowo

Zawartość. Zawartość

Zawartość. Zawartość Opr. dr inż. Grzegorz Biesok. Wer. 2.05 2011 Zawartość Zawartość 1. Rozkład normalny... 3 2. Rozkład normalny standardowy... 5 3. Obliczanie prawdopodobieństw dla zmiennych o rozkładzie norm. z parametrami

Bardziej szczegółowo

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki)

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki) Podstawy aalzy epewośc pomarowych (I Pracowa Fzyk) Potr Cygak Zakład Fzyk Naostruktur Naotecholog Istytut Fzyk UJ Pok. 47 Tel. 0-663-5838 e-mal: potr.cygak@uj.edu.pl Potr Cygak 008 Co to jest błąd pomarowy?

Bardziej szczegółowo

WYKŁAD 5 TEORIA ESTYMACJI II

WYKŁAD 5 TEORIA ESTYMACJI II WYKŁAD 5 TEORIA ESTYMACJI II Teoria estymacji (wyznaczanie przedziałów ufności, błąd badania statystycznego, poziom ufności, minimalna liczba pomiarów). PRÓBA Próba powinna być reprezentacyjna tj. jak

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje

Bardziej szczegółowo

Wyznaczanie długości fali światła metodą pierścieni Newtona

Wyznaczanie długości fali światła metodą pierścieni Newtona 013 Katedra Fzyk SGGW Ćwczene 368 Nazwsko... Data... Nr na lśce... Imę... Wydzał... Dzeń tyg.... Ćwczene 368: Godzna.... Wyznaczane długośc fal śwatła metodą perścen Newtona Cechowane podzałk okularu pomarowego

Bardziej szczegółowo

3. ŁUK ELEKTRYCZNY PRĄDU STAŁEGO I PRZEMIENNEGO

3. ŁUK ELEKTRYCZNY PRĄDU STAŁEGO I PRZEMIENNEGO 3. ŁUK ELEKTRYCZNY PRĄDU STŁEGO I PRZEMIENNEGO 3.1. Cel zakres ćwczena Celem ćwczena jest zapoznane sę z podstawowym właścwoścam łuku elektrycznego palącego sę swobodne, w powetrzu o cśnentmosferycznym.

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobeństwo statystya.05.00 r. Zadane Zmenna losowa X ma rozład wyładnczy o wartośc oczewanej, a zmenna losowa Y rozład wyładnczy o wartośc oczewanej. Obe zmenne są nezależne. Oblcz E( Y X + Y =

Bardziej szczegółowo

METODA UNITARYZACJI ZEROWANEJ Porównanie obiektów przy ocenie wielokryterialnej. Ranking obiektów.

METODA UNITARYZACJI ZEROWANEJ Porównanie obiektów przy ocenie wielokryterialnej. Ranking obiektów. Opracowane: Dorota Mszczyńska METODA UNITARYZACJI ZEROWANEJ Porównane obektów przy ocene welokryteralnej. Rankng obektów. Porównane wybranych obektów (warantów decyzyjnych) ze względu na różne cechy (krytera)

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

Wykład 3 Hipotezy statystyczne

Wykład 3 Hipotezy statystyczne Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza

Bardziej szczegółowo

WikiWS For Business Sharks

WikiWS For Business Sharks WkWS For Busness Sharks Ops zadana konkursowego Zadane Opracowane algorytmu automatyczne przetwarzającego zdjęce odręczne narysowanego dagramu na tablcy lub kartce do postac wektorowej zapsanej w formace

Bardziej szczegółowo

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4. Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można

Bardziej szczegółowo

Wyznaczanie współczynnika sztywności zastępczej układu sprężyn

Wyznaczanie współczynnika sztywności zastępczej układu sprężyn Wyznaczane zastępczej sprężyn Ćwczene nr 10 Wprowadzene W przypadku klku sprężyn ze sobą połączonych, można mu przypsać tzw. współczynnk zastępczej k z. W skrajnych przypadkach sprężyny mogą być ze sobą

Bardziej szczegółowo

Rozwiązania (lub wskazówki do rozwiązań) większości zadań ze skryptu STATYSTYKA: MATERIAŁY POMOCNICZE DO ZAJĘĆ oraz EGZAMINÓW Z LAT

Rozwiązania (lub wskazówki do rozwiązań) większości zadań ze skryptu STATYSTYKA: MATERIAŁY POMOCNICZE DO ZAJĘĆ oraz EGZAMINÓW Z LAT Rozwązana (lub wskazówk do rozwązań) wększośc zadań ze skryptu STATYSTYKA: MATERIAŁY POMOCNICZE DO ZAJĘĆ oraz EGZAMINÓW Z LAT 01-014 ZMIENNA LOSOWA I JEJ ROZKŁAD Zadane 1/ str. 4 a/ zmenna może przyjmować

Bardziej szczegółowo

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH RÓWNOWAŻNOŚĆ METOD BADAWCZYCH Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Równoważność metod??? 2 Zgodność wyników analitycznych otrzymanych z wykorzystaniem porównywanych

Bardziej szczegółowo

Grupa: Elektrotechnika, wersja z dn Studia stacjonarne, II stopień, sem.1 Laboratorium Techniki Świetlnej

Grupa: Elektrotechnika, wersja z dn Studia stacjonarne, II stopień, sem.1 Laboratorium Techniki Świetlnej ul.potrowo 3a http://lumen.ee.put.poznan.pl Grupa: Elektrotechnka, wersja z dn. 29.03.2016 Studa stacjonarne, stopeń, sem.1 Laboratorum Technk Śwetlnej Ćwczene nr 6 Temat: Badane parametrów fotometrycznych

Bardziej szczegółowo

ZAJĘCIA 3. Pozycyjne miary dyspersji, miary asymetrii, spłaszczenia i koncentracji

ZAJĘCIA 3. Pozycyjne miary dyspersji, miary asymetrii, spłaszczenia i koncentracji ZAJĘCIA Pozycyjne ary dyspersj, ary asyetr, spłaszczena koncentracj MIARY DYSPERSJI: POZYCYJNE, BEZWZGLĘDNE Rozstęp dwartkowy (ędzykwartylowy) Rozstęp dwartkowy określa rozpętośd tej częśc obszaru zennośc

Bardziej szczegółowo

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp

Bardziej szczegółowo

System Przeciwdziałania Powstawaniu Bezrobocia na Terenach Słabo Zurbanizowanych SPRAWOZDANIE Z BADAŃ Autor: Joanna Wójcik

System Przeciwdziałania Powstawaniu Bezrobocia na Terenach Słabo Zurbanizowanych SPRAWOZDANIE Z BADAŃ   Autor: Joanna Wójcik Opracowane w ramach projektu System Przecwdzałana Powstawanu Bezroboca na Terenach Słabo Zurbanzowanych ze środków Europejskego Funduszu Społecznego w ramach Incjatywy Wspólnotowej EQUAL PARTNERSTWO NA

Bardziej szczegółowo

Problematyka walidacji metod badań w przemyśle naftowym na przykładzie benzyn silnikowych

Problematyka walidacji metod badań w przemyśle naftowym na przykładzie benzyn silnikowych NAFTA-GAZ luty 013 ROK LXIX Zygmunt Burnus Instytut Nafty Gazu, Kraków Problematyka waldacj metod badań w przemyśle naftowym na przykładze benzyn slnkowych Wprowadzene Waldacja metody badawczej to szereg

Bardziej szczegółowo

BADANIE POWTARZALNOŚCI PRZYRZĄDU POMIAROWEGO

BADANIE POWTARZALNOŚCI PRZYRZĄDU POMIAROWEGO Zakład Metrologii i Systemów Pomiarowych P o l i t e c h n i k a P o z n ańska ul Jana Pawła II 24 60-965 POZNAŃ budynek Centrum Mechatroniki, iomechaniki i Nanoinżynierii) wwwzmispmtputpoznanpl tel +48

Bardziej szczegółowo

Pomiary parametrów akustycznych wnętrz.

Pomiary parametrów akustycznych wnętrz. Pomary parametrów akustycznych wnętrz. Ocena obektywna wnętrz pod względem akustycznym dokonywana jest na podstawe wartośc następujących parametrów: czasu pogłosu, wczesnego czasu pogłosu ED, wskaźnków

Bardziej szczegółowo

STANDARDOWE TECHNIKI KOMPRESJI SYGNAŁÓW

STANDARDOWE TECHNIKI KOMPRESJI SYGNAŁÓW STANDARDOWE TECHNIKI KOMPRESJI SYGNAŁÓW Źródło Kompresja Kanał transmsj sek wdeo 60 Mbt 2 mn muzyk (44 00 próbek/sek, 6 btów/próbkę) 84 Mbt Dekompresja Odborca. Metody bezstratne 2. Metody stratne 2 Kodowane

Bardziej szczegółowo

WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA RÓŻNICOWEGO

WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA RÓŻNICOWEGO I PRACOWNIA FIZYCZNA, INSYU FIZYKI UMK, ORUŃ Instrukca do ćwczena nr WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA RÓŻNICOWEGO 1. Cel ćwczena Celem ćwczena est poznane ruchu harmonczneo eo praw,

Bardziej szczegółowo

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH Z a k ł a d U b e z p e c z e ń S p o ł e c z n y c h Wprowadzene Nnejsza ulotka adresowana jest zarówno do osób dopero ubegających

Bardziej szczegółowo

WSKAŹNIK OCENY HIC SAMOCHODU OSOBOWEGO W ASPEKCIE BEZPIECZEŃSTWA RUCHU DROGOWEGO

WSKAŹNIK OCENY HIC SAMOCHODU OSOBOWEGO W ASPEKCIE BEZPIECZEŃSTWA RUCHU DROGOWEGO WSKAŹNIK OCENY SAMOCHODU OSOBOWEGO W ASPEKCIE BEZPIECZEŃSTWA RUCHU DROGOWEGO Dagmara KARBOWNICZEK 1, Kazmerz LEJDA, Ruch cała człoweka w samochodze podczas wypadku drogowego zależy od sztywnośc nadwoza

Bardziej szczegółowo

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA Krzysztof Serżęga Wyższa Szkoła Informatyk Zarządzana w Rzeszowe Streszczene Artykuł porusza temat zwązany

Bardziej szczegółowo

Laboratorium ochrony danych

Laboratorium ochrony danych Laboratorum ochrony danych Ćwczene nr Temat ćwczena: Cała skończone rozszerzone Cel dydaktyczny: Opanowane programowej metody konstruowana cał skończonych rozszerzonych GF(pm), poznane ch własnośc oraz

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Dane zbierane podczas pomiarów zawsze układają się w pewien określony sposób. To w jaki, zależy przede wszystkim od zjawiska, które jest obserwowane. Sposób, w jaki układają

Bardziej szczegółowo

IV WYKŁAD STATYSTYKA. 26/03/2014 B8 sala 0.10B Godz. 15:15

IV WYKŁAD STATYSTYKA. 26/03/2014 B8 sala 0.10B Godz. 15:15 IV WYKŁAD STATYSTYKA 26/03/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 4 Populacja generalna, próba, losowanie próby, estymatory Statystyka (populacja generalna, populacja próbna, próbka mała, próbka duża, reprezentatywność,

Bardziej szczegółowo

STATYSTYKA

STATYSTYKA Wykład 1 20.02.2008r. 1. ROZKŁADY PRAWDOPODOBIEŃSTWA 1.1 Rozkład dwumianowy Rozkład dwumianowy, 0 1 Uwaga: 1, rozkład zero jedynkowy. 1 ; 1,2,, Fakt: Niech,, będą niezależnymi zmiennymi losowymi o jednakowym

Bardziej szczegółowo

Minister Edukacji Narodowej Pani Katarzyna HALL Ministerstwo Edukacji Narodowej al. J. Ch. Szucha 25 00-918 Warszawa Dnia 03 czerwca 2009 r.

Minister Edukacji Narodowej Pani Katarzyna HALL Ministerstwo Edukacji Narodowej al. J. Ch. Szucha 25 00-918 Warszawa Dnia 03 czerwca 2009 r. Mnster Edukacj arodowej Pan Katarzyna HALL Mnsterstwo Edukacj arodowej al. J. Ch. Szucha 25 00-918 arszawa Dna 03 czerwca 2009 r. TEMAT: Propozycja zmany art. 30a ustawy Karta auczycela w forme lstu otwartego

Bardziej szczegółowo

Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy

Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Wykład Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Zbiorowość statystyczna - zbiór elementów lub wyników jakiegoś procesu powiązanych ze sobą logicznie (tzn. posiadających wspólne cechy

Bardziej szczegółowo

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie

Bardziej szczegółowo

Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi

Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska D syst D śr m 1 3 5 2 4 6 śr j D 1

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

WSPOMAGANE KOMPUTEROWO POMIARY CZĘSTOTLIWOŚCI CHWILOWEJ SYGNAŁÓW IMPULSOWYCH

WSPOMAGANE KOMPUTEROWO POMIARY CZĘSTOTLIWOŚCI CHWILOWEJ SYGNAŁÓW IMPULSOWYCH Metrologa Wspomagana Komputerowo - Zegrze, 9-22 05.997 WSPOMAGANE KOMPUTEROWO POMIARY CZĘSTOTLIWOŚCI CHWILOWEJ SYGNAŁÓW IMPULSOWYCH dr nż. Jan Ryszard Jask, dr nż. Elgusz Pawłowsk POLITECHNIKA lubelska

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

DIAGNOSTYKA WYMIENNIKÓW CIEPŁA Z UWIARYGODNIENIEM WYNIKÓW POMIARÓW EKPLOATACYJNYCH

DIAGNOSTYKA WYMIENNIKÓW CIEPŁA Z UWIARYGODNIENIEM WYNIKÓW POMIARÓW EKPLOATACYJNYCH RYNEK CIEŁA 03 DIANOSYKA YMIENNIKÓ CIEŁA Z UIARYODNIENIEM YNIKÓ OMIARÓ EKLOAACYJNYCH Autorzy: rof. dr hab. nż. Henryk Rusnowsk Dr nż. Adam Mlejsk Mgr nż. Marcn ls Nałęczów, 6-8 paźdzernka 03 SĘ Elementam

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Praktyczne wykorzystanie zależności między twardością Brinella a wytrzymałością stali konstrukcyjnych

Praktyczne wykorzystanie zależności między twardością Brinella a wytrzymałością stali konstrukcyjnych Wydzał Budownctwa Lądowego Wodnego Katedra Konstrukcj Metalowych Praktyczne wykorzystane zależnośc mędzy twardoścą Brnella a wytrzymałoścą stal konstrukcyjnych - korzyśc realzacj projektu GRANT PLUS -

Bardziej szczegółowo

Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne)

Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Przygotował: Dr inż. Wojciech Artichowicz Katedra Hydrotechniki PG Zima 2014/15 1 TABLICE ROZKŁADÓW... 3 ROZKŁAD

Bardziej szczegółowo

1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ

1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ Ćwczene nr 1 cz.3 Dyfuzja pary wodnej zachodz w kerunku od środowska o wyższej temperaturze do środowska chłodnejszego. Para wodna dyfundująca przez przegrody budowlane w okrese zmowym napotyka na coraz

Bardziej szczegółowo

ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH

ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH Grzegorz PRZEKOTA ZESZYTY NAUKOWE WYDZIAŁU NAUK EKONOMICZNYCH ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH Zarys treśc: W pracy podjęto problem dentyfkacj cykl gełdowych.

Bardziej szczegółowo

Pomiary dawek promieniowania wytwarzanego w liniowych przyspieszaczach na użytek radioterapii

Pomiary dawek promieniowania wytwarzanego w liniowych przyspieszaczach na użytek radioterapii Pomary dawek promenowana wytwarzanego w lnowych przyspeszaczach na użytek radoterap Włodzmerz Łobodzec Zakład Radoterap Szptala m. S. Leszczyńskego w Katowcach Cel radoterap napromenene obszaru PTV zaplanowaną,

Bardziej szczegółowo