Porównanie jakości nieliniowych modeli ekonometrycznych na podstawie testów trafności prognoz

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Porównanie jakości nieliniowych modeli ekonometrycznych na podstawie testów trafności prognoz"

Transkrypt

1 233 Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Wyższa Szkoła Bankowa w Toruniu Porównanie jakości nieliniowych modeli ekonomerycznych na podsawie esów rafności prognoz Sreszczenie. Arykuł przedsawia porównanie jakości modeli o różnych posaciach analiycznych (nieliniowych i liniowych) oparych na koncepcji modelowania zgodnego. Elemenem porównawczym są różnice w rafności prognoz orzymanych na podsawie różnych modeli. Analizy różnic rafności prognoz dokonano na podsawie esu Diebolda- -Mariano, a cała analiza zosała przeprowadzona na podsawie danych symulacyjnych. Słowa kluczowe: analiza porównawcza, różnice rafności prognoz, es Diebolda- -Mariano, modelowanie zgodne Wprowadzenie Celem arykułu jes zbadanie jakości modeli nieliniowych oparych na koncepcji modelowania zgodnego w konekście rafności prognoz orzymanych na podsawie ych modeli. W badaniu zosały porównane błędy prognoz ex pos modeli o różnych posaciach analiycznych: liniowy zgodny, poęgowy zgodny, wykładniczy zgodny,

2 234 model progowy TAR opary na koncepcji modelowania zgodnego. Rzeczywise zależności ekonomiczne mogą wykazywać charaker liniowy albo nieliniowy. Badacz nie posiada dokładnej wiedzy na ema rzeczywisej zależności między wykorzysywanymi w badaniu procesami ekonomicznymi. Różne eorie ekonomiczne dają pewne wskazówki posaci zależności, jednakże w eoriach ych przyjmuje się wiele założeń, kóre nie muszą być spełnione w rzeczywisości. Dlaego już na eapie specyfikacji modelu przyjmowane są subiekywne założenia badacza. Ponado bardzo częso na dane zjawisko ekonomiczne ma wpływ wiele czynników, kóre nie są uwzględniane w modelu ekonomerycznym z powodu np. braku odpowiednich danych empirycznych, braku możliwości lub znaczących rudności w mierzeniu ych czynników lub innych. Kolejne ważne czynniki, jakie muszą być brane pod uwagę w rakcie modelowania ekonomerycznego, o odpowiednie własności esymaorów, poprawna weryfikacja modelu oraz zadbanie o zależności o charakerze czyso saysycznym. W badaniu posawiono nasępujące hipoezy badawcze: 1. Modele ze srukurami auoregresyjnymi mogą być wykorzysane do opisu nieliniowych zależności. 2. Trafność prognozy nie zależy od przyjęej posaci analiycznej modelu. Niniejsze badanie zosało przeprowadzone na podsawie symulacji Mone Carlo. Scenariusz eksperymenu zakładał wygenerowanie pewnych zależności nieliniowych, a nasępnie opisanie i wykonanie prognozy na podsawie modeli o różnych posaciach analiycznych (liniową, poęgową, wykładniczą i progową). Wykorzysując es Diebolda-Mariano, porównano różnice w rafnościach ych prognoz, a wyniki zosały przedsawione w posaci wykresów oraz abel. 1. Scenariusz przeprowadzonego badania symulacyjnego W badaniu przeprowadzono 3 eksperymeny numeryczne. Scenariusze eksperymenów są nasępujące. Wygenerowano dwa procesy o srukurze auoregresyjnej pierwszego rzędu o posaciach:,. Na podsawie powyższych procesów wygenerowano 3 procesy o zadanych posaciach nieliniowych: eksperymen 1, eksperymen 2,

3 Porównanie jakości nieliniowych modeli ekonomerycznych 235 eksperymen 3. Powyższe nieliniowe procesy były opisywane za pomocą 4 ypów modeli: 1) liniowego zgodnego: 2) poęgowego zgodnego: 3) wykładniczego zgodnego:, 4) progowego TAR oparego na koncepcji modelowania zgodnego W nasępnym kroku, na podsawie powyższych modeli objaśniających wykonano prognozy na 20 okresów. Wyznaczono błędy ex pos prognoz, a nasępnie zbadano isoność różnic pomiędzy błędami prognoz za pomocą esu Diebolda- -Mariano. Porównano nasępujące pary błędów prognoz: liniowy zgodny z poęgowym zgodnym, liniowy zgodny z wykładniczym zgodnym, liniowy zgodny z progowym zgodnym. W każdym ze scenariuszy zmianie ulegały nasępujące paramery: liczba obserwacji n = {20, 60, 120, 300} oraz warość zakłócenia u ~ N(0, 1), N(0, 2), N(0, 3). Wyniki eksperymenów zaprezenowane są w formie abel oraz wykresów.,., 3. Koncepcja modelowania zgodnego 1 Koncepcja dynamicznego modelowania zgodnego 2, kóra uwzględnia w budowie zależności przyczynowo-skukowe oraz wewnęrzną srukurę wykorzysanych procesów, jes auorswa Profesora Zygmuna Zielińskiego. Przez zgodność 1 Opracowano na podsawie: P. Kufel, Błędy prognoz w ocenie jakości modeli analiza symulacyjna, Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu 2010, nr 18, s ; M. Błażejowski, P. Kufel, T. Kufel, Auomayczna procedura budowy specyfikacji zgodnego dynamicznego modelu ekonomerycznego w oprogramowaniu grel, Aca Universiais Nicolai Copernici, Ekonomia XXXIX, zeszy 389, Wydawnicwo UMK, Toruń 2009, s Por. Z. Zieliński, Zmienność w czasie srukuralnych paramerów modelu ekonomerycznego, Przegląd Saysyczny 1984, R. XXXI, z. 1/2, s ; L Talaga, Z. Zieliński, Analiza spekralna w modelowaniu ekonomerycznym, PWN, Warszawa 1986.

4 236 rozumie się zgodność harmonicznej srukury procesu objaśnianego z łączną harmoniczną srukurą procesów objaśniających oraz procesu reszowego, kóry jes niezależny od procesów objaśniających. Inaczej mówiąc: funkcja gęsości spekralnej procesu objaśnianego oraz łączna funkcja gęsości spekralnej procesów objaśniających oraz procesu reszowego są równe lub równoległe względem osi częsości. Model jes zawsze zgodny, gdy wszyskie wykorzysywane procesy mają własności białoszumowe: Funkcja gęsości spekralnej procesu o własnościach białego szumu jes sała względem osi częsości. Również funkcja gęsości spekralnej dla kombinacji liniowej procesów o własnościach białego szumu jes sała względem osi częsości, zaem obie e funkcje będą równoległe względem osi częsości, czyli aki model jes zgodny. Niech Y i X i (i = 1,..., k) oznaczają odpowiednio proces endogeniczny i wekor procesów objaśniających, dla kórych modele podsawowe, opisujące ich wewnęrzną srukurę, są nasępujące: modele opisujące składniki niesacjonarne: Y = P y + S y + η y, X i = P xi + S x i + η x i, (2) gdzie: P y, P xi wielomianowe funkcje zmiennej czasowej dla odpowiednich procesów, S y, S xi składniki sezonowe o sałej lub zmiennej ampliudzie wahań dla odpowiednich procesów, η y, η xi sacjonarne auoregresyjne procesy odnoszące się do odpowiednich procesów; modele auoregresyjne: (1) B(u)η y = ε y, A i (u)η xi = ε x i, (3) gdzie: B(u), A i (u) sacjonarne auoregresyjne operaory, dla kórych wszyskie pierwiaski równania B(u) = 0 i A i (u) = 0 leżą poza okręgiem jednoskowym, ε y, ε xi białe szumy dla odpowiednich procesów. Rzeczywise procesy ekonomiczne można przedsawić za pomocą srukur auoregresyjnych, ponieważ świadczy o ym ich charaker i przebieg 3. Znajomość wewnęrznej srukury wszyskich badanych procesów umożliwia budowę dynamicznego modelu zgodnego na podsawie zależności dla białoszumowych składników opisanej modelem (1). Model zgodny dla rzeczywisych procesów Y i X i uzyskuje się przez nasępujące podsawienia: do równania (1) podsawia się białe szumy z równań (3), nasępnie z równań (2) wyznacza się auoregresyjne procesy η y, η xi i wsawia się je 3 Por. C. Granger, The Typical Specral Shape of Economic Variable, Economerica 1966, nr 34, s

5 Porównanie jakości nieliniowych modeli ekonomerycznych 237 do poprzednio orzymanego równania. Po dalszych przekszałceniach orzymuje się nasępujący model: W modelu (4) proces reszowy ε jes aki sam jak w modelu (1). Oznacza o, że warunek zgodności srukur harmonicznych obu sron równania zosał spełniony. Model zgodny (4) zawiera wszyskie wewnęrzne składniki poszczególnych procesów, uwzględnione na eapie specyfikacji, do kórych zalicza się składniki sezonowe, rendowe oraz auoregresyjne. (4) 3. Tes Diebolda-Mariano W badaniu symulacyjnym do porównania różnic rafności prognoz wykorzysano es Diebolda-Mariano, zaprezenowany w roku W eście ym badane są prognozy opare na dwóch konkurujących ze sobą modelach. Niech będzie prognozą orzymaną z modelu pierwszego, a z modelu drugiego. Wówczas jes błędem ex pos prognozy modelu pierwszego, a jes błędem ex pos prognozy dla modelu drugiego. Ponado niech oraz będą warościami funkcji sray g, za kórą najczęściej przyjmuje się funkcję kwadraową lub warość bezwzględną. Hipoeza zerowa sawiana w eście Diebolda-Mariano jes nasępująca: H 0 : E[g(e 1 )] = E[g(e 2 )] lub równoważnie H 0 : E[d ] = 0, gdzie d = g(e 1 ) g(e 2 ). Hipoeza alernaywna może przyjmować jedną z rzech form, w zależności od rodzaju esu: dwusronnego, prawosronnego lub lewosronnego. Zakładając dodakowo, że szereg jes sacjonarny, orzymuje się asympoycznie rozkład normalny:, gdzie jes średnią różnic funkcji sra, naomias jes warością gęsości spekralnej dla częsoliwości równej 0, a γ d (τ) = E[(d µ)(d τ µ)] jes auokowariancją rzędu τ. W dużej próbie rozkład d _ jes w przybliżeniu rozkładem normalnym o średniej µ i wariancji 2 f d (0)/T. Oczywise jes wyznaczenie saysyki posiadającej rozkład N(0, 1)

6 238 o posaci, gdzie jes zgodnym esymaorem i jes równy sumie warości odpowiednich auokowariancji, zdefiniowanych jako. W przeprowadzonym badaniu wykorzysano kwadraową funkcję sray g. Implemenację esu Diebolda-Mariano wykonano w oprogramowaniu grel. 4. Wyniki przeprowadzonego badania Wyniki przeprowadzonego badania zaprezenowane są na wykresach oraz w abelach. Wykresy 1-3 przedsawiają rozkład empirycznego poziomu isoności dla esu Diebolda-Mariano dla prognoz orzymanych z modelu linowego zgodnego oraz modeli nieliniowych poęgowego, wykładniczego oraz progowego dla poszczególnych eksperymenów. Wykres 1. Warości empirycznego poziomu isoności dla esu Diebolda-Mariano pomiędzy prognozami orzymanymi z modelu liniowego i poęgowego (lewy), liniowego i wykładniczego (środkowy), liniowego i progowego (prawy) dla eksperymenu 1 Wykres 2. Warości empirycznego poziomu isoności dla esu Diebolda-Mariano pomiędzy prognozami orzymanymi z modelu liniowego i poęgowego (lewy), liniowego i wykładniczego (środkowy), liniowego i progowego (prawy) dla eksperymenu 2

7 Porównanie jakości nieliniowych modeli ekonomerycznych 239 Wykres 3. Warości empirycznego poziomu isoności dla esu Diebolda-Mariano pomiędzy prognozami orzymanymi z modelu liniowego i poęgowego (lewy), liniowego i wykładniczego (środkowy), liniowego i progowego (prawy) dla eksperymenu 3 Tabele 1-3 przedsawiają udział modeli, dla kórych brak jes podsaw do odrzucenia hipoezy zerowej esu Diebolda-Mariano, mówiącej o braku różnic między prognozami dla poszczególnych par prognoz z uwzględnieniem liczby obserwacji oraz sopnia zakłócenia. Tabela 1. Udział modeli, dla kórych brak jes podsaw do odrzucenia hipoezy zerowej esu Diebolda-Mariano dla par prognoz względem liczby obserwacji i sopnia zakłócenia dla eksperymenu 1 (w %) n σ = 1 σ = 2 σ = 3 σ = 1 σ = 2 σ = 3 σ = 1 σ = 2 σ = 3 n = 20 97,60 97,28 97,60 99,42 99,40 99,42 99,40 99,52 99,40 n = 60 96,18 95,54 96,18 99,52 99,48 99,52 99,82 99,72 99,82 n = ,28 94,48 94,28 99,40 99,58 99,40 99,94 99,90 99,94 n = ,94 93,90 93,94 99,62 99,50 99,62 100,00 100,00 100,00 Poęgowy zgodny Wykładniczy zgodny Progowy zgodny Tabela 2. Udział modeli, dla kórych brak jes podsaw do odrzucenia hipoezy zerowej esu Diebolda-Mariano dla par prognoz względem liczby obserwacji i sopnia zakłócenia dla eksperymenu 2 (w %) n σ = 1 σ = 2 σ = 3 σ = 1 σ = 2 σ = 3 σ = 1 σ = 2 σ = 3 n = 20 98,88 98,72 98,88 98,64 98,24 98,64 99,58 99,52 99,58 n = 60 98,74 98,74 98,74 98,64 98,50 98,64 99,94 99,92 99,94 n = ,64 98,78 98,64 98,34 98,72 98,34 100,00 100,00 100,00 n = ,18 98,54 98,18 98,30 98,32 98,30 100,00 100,00 100,00 Poęgowy zgodny Wykładniczy zgodny Progowy zgodny

8 240 Tabela 3. Udział modeli, dla kórych brak jes podsaw do odrzucenia hipoezy zerowej esu Diebolda-Mariano dla par prognoz względem liczby obserwacji i sopnia zakłócenia dla eksperymenu 3 (w %) n σ = 1 σ = 2 σ = 3 σ = 1 σ = 2 σ = 3 σ = 1 σ = 2 σ = 3 n = 20 98,10 98,08 98,10 98,16 98,08 98,16 99,64 99,78 99,64 n = 60 98,04 97,72 98,04 98,12 98,00 98,12 99,98 99,94 99,98 n = ,50 97,04 97,50 97,80 97,50 97,80 99,98 100,00 99,98 n = ,04 96,34 96,04 96,78 96,80 96,78 100,00 100,00 100,00 Poęgowy zgodny Wykładniczy zgodny Progowy zgodny Podsumowanie i wnioski Przeprowadzone badanie symulacyjne, polegające na opisie i prognozowaniu zależności nieliniowych wysępujące między zjawiskami ekonomicznymi za pomocą modeli oparych na różnych posaciach analiycznych, daje podsawy do wyciągnięcia nasępujących wniosków. Tes Diebolda-Mariano, badający różnice między prognozami oparymi na różnych modelach, wykazał w bardzo wysokim sopniu, że nie wysępują isone różnice prognoz między modelem liniowym a poęgowym, liniowym a wykładniczym oraz linowym a progowym. Należy u zaznaczyć, że nie jes brana pod uwagę rafność poszczególnych prognoz. Tes porównuje jedynie różnice między prognozami, czyli mogły one być ak samo dobre, jak i ak samo złe. Należy również podkreślić, że specyfikacja wszyskich modeli zosała opara na koncepcji modelowania zgodnego, kóra zapewnia reszy o własnościach białego szumu. Na podsawie przeprowadzonego badania oraz prac m.in. Kufla 4 można swierdzić, że isnieje dowolność wyboru posaci analiycznej modelu w celu prognozowania. Niewielkie różnice między rafnością prognoz skłaniają do wykorzysania modeli o prosszych i mniej skomplikowanych posaciach analiycznych. Rekomenduje się wykorzysanie auomaycznej procedury modelowania zgodnego zaimplemenowanej w oprogramowaniu grel 5 jako narzędzia do opisu i prognozowania rzeczywisych procesów ekonomicznych. 4 P. Kufel, Liniowy zgodny dynamiczny model ekonomeryczny jako predykor nieliniowych zależności, Współczesne problemy modelowania i prognozowania zjawisk społeczno-gospodarczych, Wydawnicwo UE w Krakowie, Kraków 2009; P. Kufel, wyd. cy. 5 Por. M. Błażejowski, P. Kufel, T. Kufel, wyd. cy.

9 Porównanie jakości nieliniowych modeli ekonomerycznych 241 Lieraura Błażejowski M., Kufel P., Kufel T., Auomayczna procedura budowy specyfikacji zgodnego dynamicznego modelu ekonomerycznego w oprogramowaniu grel, Aca Universiais Nicolai Copernici, Ekonomia XXXIX, zeszy 389, Wydawnicwo UMK, Toruń Diebold F., Mariano R., Comparing Predicive Accuracy, Journal of Business & Economic Saisics 1995, vol. 1, nr 3. Doornik J., Hendry D., Ineracive Mone Carlo Experimenaion in Economerics using. PcNaive 2, TCL, London Enders W., Applied Economeric Time Series, Wiley Series in Probabilisy and Saisics, wyd. 2, John Wiley & Sons, New York Granger C., The Typical Specral Shape of an Economic Variable, Economerica 1966, nr 34. Kufel P., Liniowy zgodny dynamiczny model ekonomeryczny jako predykor nieliniowych zależności, Współczesne problemy modelowania i prognozowania zjawisk społeczno-gospodarczych, Wydawnicwo UE w Krakowie, Kraków Kufel P., Błędy prognoz w ocenie jakości modeli analiza symulacyjna, Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu 2010, nr 18. Talaga L., Zieliński Z., Analiza spekralna w modelowaniu ekonomerycznym, PWN, Warszawa Zieliński Z., Zmienność w czasie srukuralnych paramerów modelu ekonomerycznego, Przegląd Saysyczny 1984, R. XXXI, z. 1/2. Zieliński Z., Liniowe modele ekonomeryczne jako narzędzie opisu i analizy przyczynowych zależności zjawisk ekonomicznych, Wydawnicwo UMK, Toruń 1991.

Ocena efektywności procedury Congruent Specyfication dla małych prób

Ocena efektywności procedury Congruent Specyfication dla małych prób 243 Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Wyższa Szkoła Bankowa w Toruniu Ocena efekywności procedury Congruen Specyficaion dla małych prób Sreszczenie. Procedura specyfikacji

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml

Bardziej szczegółowo

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,

Bardziej szczegółowo

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar.

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar. EKONOMERIA wykład Prof. dr hab. Eugeniusz Ganar eganar@mail.wz.uw.edu.pl Przedziały ufności Dla paramerów srukuralnych modelu: P bˆ j S( bˆ z prawdopodobieńswem parameru b bˆ S( bˆ, ( m j j j, ( m j b

Bardziej szczegółowo

licencjat Pytania teoretyczne:

licencjat Pytania teoretyczne: Plan wykładu: 1. Wiadomości ogólne. 2. Model ekonomeryczny i jego elemeny 3. Meody doboru zmiennych do modelu ekonomerycznego. 4. Szacownie paramerów srukuralnych MNK. Weryfikacja modelu KMNK 6. Prognozowanie

Bardziej szczegółowo

specyfikacji i estymacji modelu regresji progowej (ang. threshold regression).

specyfikacji i estymacji modelu regresji progowej (ang. threshold regression). 4. Modele regresji progowej W badaniach empirycznych coraz większym zaineresowaniem cieszą się akie modele szeregów czasowych, kóre pozwalają na objaśnianie nieliniowych zależności między poszczególnymi

Bardziej szczegółowo

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych Poliechnika Częsochowska Wydział Inżynierii Mechanicznej i Informayki Sprawozdanie #2 z przedmiou: Prognozowanie w sysemach mulimedialnych Andrzej Siwczyński Andrzej Rezler Informayka Rok V, Grupa IO II

Bardziej szczegółowo

Strukturalne podejście w prognozowaniu produktu krajowego brutto w ujęciu regionalnym

Strukturalne podejście w prognozowaniu produktu krajowego brutto w ujęciu regionalnym Jacek Baóg Uniwersye Szczeciński Srukuralne podejście w prognozowaniu produku krajowego bruo w ujęciu regionalnym Znajomość poziomu i dynamiki produku krajowego bruo wyworzonego w poszczególnych regionach

Bardziej szczegółowo

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015 Sudia Ekonomiczne. Zeszyy Naukowe Uniwersyeu Ekonomicznego w Kaowicach ISSN 2083-86 Nr 29 205 Alicja Ganczarek-Gamro Uniwersye Ekonomiczny w Kaowicach Wydział Informayki i Komunikacji Kaedra Demografii

Bardziej szczegółowo

Jacek Kwiatkowski Magdalena Osińska. Procesy zawierające stochastyczne pierwiastki jednostkowe identyfikacja i zastosowanie.

Jacek Kwiatkowski Magdalena Osińska. Procesy zawierające stochastyczne pierwiastki jednostkowe identyfikacja i zastosowanie. DYNAMICZNE MODELE EKONOMETRYCZNE Jacek Kwiakowski Magdalena Osińska Uniwersye Mikołaja Kopernika Procesy zawierające sochasyczne pierwiaski jednoskowe idenyfikacja i zasosowanie.. Wsęp Większość lieraury

Bardziej szczegółowo

TESTOWANIE EGZOGENICZNOŚCI ZMIENNYCH W MODELACH EKONOMETRYCZNYCH

TESTOWANIE EGZOGENICZNOŚCI ZMIENNYCH W MODELACH EKONOMETRYCZNYCH STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Mariusz Doszyń TESTOWANIE EGZOGENICZNOŚCI ZMIENNYCH W MODELACH EKONOMETRYCZNYCH Od pewnego czasu w lieraurze ekonomerycznej pojawiają się

Bardziej szczegółowo

ANALIZA POWIĄZAŃ MIĘDZY INDEKSAMI GIEŁDY FRANCUSKIEJ, HOLENDERSKIEJ I BELGIJSKIEJ Z WYKORZYSTANIEM MODELU KOREKTY BŁĘDEM

ANALIZA POWIĄZAŃ MIĘDZY INDEKSAMI GIEŁDY FRANCUSKIEJ, HOLENDERSKIEJ I BELGIJSKIEJ Z WYKORZYSTANIEM MODELU KOREKTY BŁĘDEM Sudia Ekonomiczne. Zeszyy Naukowe Uniwersyeu Ekonomicznego w Kaowicach ISSN 083-86 Nr 89 06 Uniwersye Ekonomiczny w Kaowicach Wydział Ekonomii Kaedra Meod Saysyczno-Maemaycznych w Ekonomii pawel.prenzena@edu.ueka.pl

Bardziej szczegółowo

Pobieranie próby. Rozkład χ 2

Pobieranie próby. Rozkład χ 2 Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI

DYNAMIKA KONSTRUKCJI 10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej

Bardziej szczegółowo

Niestacjonarne zmienne czasowe własności i testowanie

Niestacjonarne zmienne czasowe własności i testowanie Maeriał dla sudenów Niesacjonarne zmienne czasowe własności i esowanie (sudium przypadku) Nazwa przedmiou: ekonomeria finansowa I (22204), analiza szeregów czasowych i prognozowanie (13201); Kierunek sudiów:

Bardziej szczegółowo

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH SaSof Polska, el. 12 428 43 00, 601 41 41 51, info@sasof.pl, www.sasof.pl WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH Joanna Maych, Krajowy Depozy Papierów

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1 PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA 1 PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: mgr inż. ŻANETA PRUSKA DODATEK SOLVER 2 Sprawdzić czy w zakładce Dane znajduję się Solver 1. Kliknij przycisk Microsof Office, a nasępnie kliknij przycisk Opcje

Bardziej szczegółowo

Metody analizy i prognozowania szeregów czasowych

Metody analizy i prognozowania szeregów czasowych Meody analizy i prognozowania szeregów czasowych Wsęp 1. Modele szeregów czasowych 2. Modele ARMA i procedura Boxa-Jenkinsa 3. Modele rendów deerminisycznych i sochasycznych 4. Meody dekompozycji szeregów

Bardziej szczegółowo

Prognozowanie średniego miesięcznego kursu kupna USD

Prognozowanie średniego miesięcznego kursu kupna USD Prognozowanie średniego miesięcznego kursu kupna USD Kaarzyna Halicka Poliechnika Białosocka, Wydział Zarządzania, Kaedra Informayki Gospodarczej i Logisyki, e-mail: k.halicka@pb.edu.pl Jusyna Godlewska

Bardziej szczegółowo

Natalia Iwaszczuk, Piotr Drygaś, Piotr Pusz, Radosław Pusz PROGNOZOWANIE GOSPODARCZE

Natalia Iwaszczuk, Piotr Drygaś, Piotr Pusz, Radosław Pusz PROGNOZOWANIE GOSPODARCZE Naalia Iwaszczuk, Pior Drygaś, Pior Pusz, Radosław Pusz PROGNOZOWANIE GOSPODARCZE Wyd-wo, Rzeszów 03 dr hab., prof. nadzw. Naalia Iwaszczuk, AGH Akademia Górniczo-Hunicza im. Sanisława Saszica w Krakowie

Bardziej szczegółowo

Metody badania wpływu zmian kursu walutowego na wskaźnik inflacji

Metody badania wpływu zmian kursu walutowego na wskaźnik inflacji Agnieszka Przybylska-Mazur * Meody badania wpływu zmian kursu waluowego na wskaźnik inflacji Wsęp Do oceny łącznego efeku przenoszenia zmian czynników zewnęrznych, akich jak zmiany cen zewnęrznych (szoki

Bardziej szczegółowo

ĆWICZENIE NR 43 U R I (1)

ĆWICZENIE NR 43 U R I (1) ĆWCZENE N 43 POMY OPO METODĄ TECHNCZNĄ Cel ćwiczenia: wyznaczenie warości oporu oporników poprzez pomiary naężania prądu płynącego przez opornik oraz napięcia na oporniku Wsęp W celu wyznaczenia warości

Bardziej szczegółowo

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,

Bardziej szczegółowo

PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM

PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM prof. dr hab. Paweł Dimann 1 Znaczenie prognoz w zarządzaniu firmą Zarządzanie firmą jes nieusannym procesem podejmowania decyzji, kóry może być zdefiniowany

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK

PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK 1 PROGNOZOWANIE I SYMULACJE 2 hp://www.oucome-seo.pl/excel2.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodaek Solver jes dosępny w menu Narzędzia. Jeżeli Solver nie jes dosępny

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODEE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Joanna Małgorzaa andmesser Szkoła Główna

Bardziej szczegółowo

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Marcin Gajewski Uniwersye Łódzki 4.12.2008 Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Niezabazpieczony UIP)

Bardziej szczegółowo

PREDYKCJA KURSU EURO/DOLAR Z WYKORZYSTANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WYBRANE MODELE EKONOMETRYCZNE I PERCEPTRON WIELOWARSTWOWY

PREDYKCJA KURSU EURO/DOLAR Z WYKORZYSTANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WYBRANE MODELE EKONOMETRYCZNE I PERCEPTRON WIELOWARSTWOWY B A D A N I A O P E R A C J N E I D E C Z J E Nr 2004 Aleksandra MAUSZEWSKA Doroa WIKOWSKA PREDKCJA KURSU EURO/DOLAR Z WKORZSANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WBRANE MODELE EKONOMERCZNE I PERCEPRON WIELOWARSWOW

Bardziej szczegółowo

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU Pomiar paramerów sygnałów napięciowych. POMIAR PARAMERÓW SYGNAŁOW NAPIĘCIOWYCH MEODĄ PRÓKOWANIA I CYFROWEGO PRZEWARZANIA SYGNAŁU Cel ćwiczenia Poznanie warunków prawidłowego wyznaczania elemenarnych paramerów

Bardziej szczegółowo

Wykład 5 Elementy teorii układów liniowych stacjonarnych odpowiedź na dowolne wymuszenie

Wykład 5 Elementy teorii układów liniowych stacjonarnych odpowiedź na dowolne wymuszenie Wykład 5 Elemeny eorii układów liniowych sacjonarnych odpowiedź na dowolne wymuszenie Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska

Bardziej szczegółowo

WYBRANE TESTY NIEOBCIĄŻONOŚCI MIAR RYZYKA NA PRZYKŁADZIE VALUE AT RISK

WYBRANE TESTY NIEOBCIĄŻONOŚCI MIAR RYZYKA NA PRZYKŁADZIE VALUE AT RISK Przemysław Jeziorski Uniwersye Ekonomiczny w Kaowicach Wydział Informayki i Komunikacji Zakład Demografii i Saysyki Ekonomicznej przemyslaw.jeziorski@ue.kaowice.pl WYBRANE TESTY NIEOBCIĄŻONOŚCI MIAR RYZYKA

Bardziej szczegółowo

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz Noaki do wykładu 005 Kombinowanie prognoz - dlaczego należy kombinować prognozy? - obejmowanie prognoz - podsawowe meody kombinowania prognoz - przykłady kombinowania prognoz gospodarki polskiej - zalecenia

Bardziej szczegółowo

Badanie funktorów logicznych TTL - ćwiczenie 1

Badanie funktorów logicznych TTL - ćwiczenie 1 adanie funkorów logicznych TTL - ćwiczenie 1 1. Cel ćwiczenia Zapoznanie się z podsawowymi srukurami funkorów logicznych realizowanych w echnice TTL (Transisor Transisor Logic), ich podsawowymi paramerami

Bardziej szczegółowo

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin., Oeconomica 2015, 323(81)4,

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin., Oeconomica 2015, 323(81)4, FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Sein., Oeconomica 205, 323(8)4, 25 32 Joanna PERZYŃSKA WYBRANE MIERNIKI TRAFNOŚCI PROGNOZ EX POST W WYZNACZANIU PROGNOZ

Bardziej szczegółowo

Metody prognozowania: Szeregi czasowe. Dr inż. Sebastian Skoczypiec. ver Co to jest szereg czasowy?

Metody prognozowania: Szeregi czasowe. Dr inż. Sebastian Skoczypiec. ver Co to jest szereg czasowy? Meody prognozowania: Szeregi czasowe Dr inż. Sebasian Skoczypiec ver. 11.20.2009 Co o jes szereg czasowy? Szereg czasowy: uporządkowany zbiór warości badanej cechy lub warości określonego zjawiska, zaobserwowanych

Bardziej szczegółowo

Mariusz Plich. Spis treści:

Mariusz Plich. Spis treści: Spis reści: Modele wielorównaniowe - mnożniki i symulacje. Podsawowe pojęcia i klasyfikacje. Czynniki modelowania i sposoby wykorzysania modelu 3. ypy i posacie modeli wielorównaniowych 4. Przykłady modeli

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 2005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Kaarzyna Kuziak Akademia Ekonomiczna

Bardziej szczegółowo

Statystyka od podstaw z systemem SAS Dr hab. E. Frątczak, ZAHZiAW, ISiD, KAE. Część VII. Analiza szeregu czasowego

Statystyka od podstaw z systemem SAS Dr hab. E. Frątczak, ZAHZiAW, ISiD, KAE. Część VII. Analiza szeregu czasowego Część VII. Analiza szeregu czasowego 1 DEFINICJA SZEREGU CZASOWEGO Szeregiem czasowym nazywamy zbiór warości cechy w uporządkowanych chronologicznie różnych momenach (okresach) czasu. Oznaczając przez

Bardziej szczegółowo

ψ przedstawia zależność

ψ przedstawia zależność Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi

Bardziej szczegółowo

Magdalena Osińska, Marcin Fałdziński Uniwersytet Mikołaja Kopernika w Toruniu. Modele GARCH i SV z zastosowaniem teorii wartości ekstremalnych

Magdalena Osińska, Marcin Fałdziński Uniwersytet Mikołaja Kopernika w Toruniu. Modele GARCH i SV z zastosowaniem teorii wartości ekstremalnych DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarim Nakowe 4 6 września 2007 w Torni Kaedra Ekonomerii i Saysyki Uniwersye Mikołaja Kopernika w Torni Magdalena Osińska Marcin Fałdziński Uniwersye

Bardziej szczegółowo

POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE

POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE Anea Kłodzińska, Poliechnika Koszalińska, Zakład Ekonomerii POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE Sopy procenowe w analizach ekonomicznych Sopy procenowe

Bardziej szczegółowo

Analiza rynku projekt

Analiza rynku projekt Analiza rynku projek A. Układ projeku 1. Srona yułowa Tema Auor 2. Spis reści 3. Treść projeku 1 B. Treść projeku 1. Wsęp Po co? Na co? Dlaczego? Dlaczego robię badania? Jakimi meodami? Dla Kogo o jes

Bardziej szczegółowo

Daniel Papla Akademia Ekonomiczna we Wrocławiu. Wykorzystanie modelu DCC-MGARCH w analizie zmian zależności wybranych akcji GPW w Warszawie

Daniel Papla Akademia Ekonomiczna we Wrocławiu. Wykorzystanie modelu DCC-MGARCH w analizie zmian zależności wybranych akcji GPW w Warszawie DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 27 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Akademia Ekonomiczna we Wrocławiu Wykorzysanie

Bardziej szczegółowo

Krzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20

Krzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20 Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Wydział Zarządzania i Informayki Kaedra Inwesycji Finansowych i Zarządzania Ryzykiem Krzyszof Pionek Weryfikacja modeli Blacka-Scholesa oraz AR-GARCH

Bardziej szczegółowo

MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH

MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu Wsęp MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH Nowoczesne echniki zarządzania ryzykiem rynkowym

Bardziej szczegółowo

Testowanie współzależności w rozwoju gospodarczym

Testowanie współzależności w rozwoju gospodarczym The Wroclaw School of Banking Research Journal ISSN 1643-7772 I eissn 2392-1153 Vol. 15 I No. 5 Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu ISSN 1643-7772 I eissn 2392-1153 R. 15 I Nr 5 Tesowanie

Bardziej szczegółowo

OeconomiA copernicana. Małgorzata Madrak-Grochowska, Mirosława Żurek Uniwersytet Mikołaja Kopernika w Toruniu

OeconomiA copernicana. Małgorzata Madrak-Grochowska, Mirosława Żurek Uniwersytet Mikołaja Kopernika w Toruniu OeconomiA copernicana 2011 Nr 4 Małgorzaa Madrak-Grochowska, Mirosława Żurek Uniwersye Mikołaja Kopernika w Toruniu TESTOWANIE PRZYCZYNOWOŚCI W WARIANCJI MIĘDZY WYBRANYMI INDEKSAMI RYNKÓW AKCJI NA ŚWIECIE

Bardziej szczegółowo

Wykład 6. Badanie dynamiki zjawisk

Wykład 6. Badanie dynamiki zjawisk Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy

Bardziej szczegółowo

ZASTOSOWANIE TESTU PERRONA DO BADANIA PUNKTÓW ZWROTNYCH INDEKSÓW GIEŁDOWYCH: WIG, WIG20, MIDWIG I TECHWIG

ZASTOSOWANIE TESTU PERRONA DO BADANIA PUNKTÓW ZWROTNYCH INDEKSÓW GIEŁDOWYCH: WIG, WIG20, MIDWIG I TECHWIG Doroa Wikowska, Anna Gasek Kaedra Ekonomerii i Informayki SGGW dwikowska@mors.sggw.waw.pl ZASTOSOWANIE TESTU PERRONA DO BADANIA PUNKTÓW ZWROTNYC INDEKSÓW GIEŁDOWYC: WIG, WIG2, MIDWIG I TECWIG Sreszczenie:

Bardziej szczegółowo

ŹRÓDŁA FLUKTUACJI REALNEGO EFEKTYWNEGO KURSU EUR/ PLN

ŹRÓDŁA FLUKTUACJI REALNEGO EFEKTYWNEGO KURSU EUR/ PLN METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XII/, 0, sr. 389 398 ŹRÓDŁA FLUKTUACJI REALNEGO EFEKTYWNEGO KURSU EUR/ PLN Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków Gospodarczych

Bardziej szczegółowo

Pomiar ryzyka odchylenia od benchmarku w warunkach zmiennej w czasie strategii inwestycyjnej OFE - kotynuacja. Wojciech Otto Uniwersytet Warszawski

Pomiar ryzyka odchylenia od benchmarku w warunkach zmiennej w czasie strategii inwestycyjnej OFE - kotynuacja. Wojciech Otto Uniwersytet Warszawski Pomiar ryzyka odchylenia od benchmarku w warunkach zmiennej w czasie sraegii inwesycyjnej OFE - koynuacja Wojciech Oo Uniwersye Warszawski Refera przygoowany na Ogólnopolską Konferencję Naukową Zagadnienia

Bardziej szczegółowo

dr inż. MARCIN MAŁACHOWSKI Instytut Technik Innowacyjnych EMAG

dr inż. MARCIN MAŁACHOWSKI Instytut Technik Innowacyjnych EMAG dr inż. MARCIN MAŁACHOWSKI Insyu Technik Innowacyjnych EMAG Wykorzysanie opycznej meody pomiaru sężenia pyłu do wspomagania oceny paramerów wpływających na możliwość zaisnienia wybuchu osiadłego pyłu węglowego

Bardziej szczegółowo

Alicja Ganczarek Akademia Ekonomiczna w Katowicach. Analiza niezależności przekroczeń VaR na wybranym segmencie rynku energii

Alicja Ganczarek Akademia Ekonomiczna w Katowicach. Analiza niezależności przekroczeń VaR na wybranym segmencie rynku energii DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Akademia Ekonomiczna w Kaowicach Analiza

Bardziej szczegółowo

Harmonogram czyszczenia z osadów sieci wymienników ciepła w trakcie eksploatacji instalacji na przykładzie destylacji rurowo-wieżowej

Harmonogram czyszczenia z osadów sieci wymienników ciepła w trakcie eksploatacji instalacji na przykładzie destylacji rurowo-wieżowej Mariusz Markowski, Marian Trafczyński Poliechnika Warszawska Zakład Aparaury Przemysłowe ul. Jachowicza 2/4, 09-402 Płock Harmonogram czyszczenia z osadów sieci wymienników ciepła w rakcie eksploaaci insalaci

Bardziej szczegółowo

PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH

PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Barbara Baóg Iwona Foryś PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH Wsęp Koszy dosarczenia wody

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 27 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaa Kopernika w Toruniu Małgorzaa Borzyszkowska Uniwersye Gdański

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Poliechnika Gdańska Wydział Elekroechniki i Auomayki Kaedra Inżynierii Sysemów Serowania Podsawy Auomayki Repeyorium z Podsaw auomayki Zadania do ćwiczeń ermin T15 Opracowanie: Kazimierz Duzinkiewicz,

Bardziej szczegółowo

ĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym

ĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym ĆWIZENIE 4 Badanie sanów nieusalonych w obwodach, i przy wymuszeniu sałym. el ćwiczenia Zapoznanie się z rozpływem prądów, rozkładem w sanach nieusalonych w obwodach szeregowych, i Zapoznanie się ze sposobami

Bardziej szczegółowo

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne

Bardziej szczegółowo

DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH

DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH Franciszek SPYRA ZPBE Energopomiar Elekryka, Gliwice Marian URBAŃCZYK Insyu Fizyki Poliechnika Śląska, Gliwice DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH

ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH Pior KISIELEWSKI, Łukasz SOBOTA ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH W arykule przedsawiono zasosowanie eorii masowej obsługi do analizy i modelowania wybranych sysemów

Bardziej szczegółowo

MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW

MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW Wprowadzenie Współczesne zarządzanie ryzykiem

Bardziej szczegółowo

Efekty agregacji czasowej szeregów finansowych a modele klasy Sign RCA

Efekty agregacji czasowej szeregów finansowych a modele klasy Sign RCA Joanna Górka * Efeky agregacji czasowej szeregów finansowych a modele klasy Sign RCA Wsęp Wprowadzenie losowego parameru do modelu auoregresyjnego zwiększa możliwości aplikacyjne ego modelu, gdyż pozwala

Bardziej szczegółowo

Analiza szeregów czasowych w Gretlu (zajęcia 8)

Analiza szeregów czasowych w Gretlu (zajęcia 8) Analiza szeregów czasowych w Grelu (zajęcia 8) Grel jes dość dobrym narzędziem do analizy szeregów czasowych. Już w samej podsawie Grela znajdziemy sporo zaimplemenowanych echnik służących do obróbki danych

Bardziej szczegółowo

EFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE

EFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE Paweł Kobus, Rober Pierzykowski Kaedra Ekonomerii i Informayki SGGW e-mail: pawel.kobus@saysyka.info EFEKT DŹWIGNI NA GPW W WARSZAWIE Sreszczenie: Do modelowania asymerycznego wpływu dobrych i złych informacji

Bardziej szczegółowo

3. Modele tendencji czasowej w prognozowaniu

3. Modele tendencji czasowej w prognozowaniu II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa

Bardziej szczegółowo

MODELOWANIE I PROGNOZOWANIE EKONOMETRYCZNE W LOGISTYCE PRZEDSIĘBIORSTWA MODELING AND ECONOMETRIC PREDICTION IN LOGISTICS COMPANY

MODELOWANIE I PROGNOZOWANIE EKONOMETRYCZNE W LOGISTYCE PRZEDSIĘBIORSTWA MODELING AND ECONOMETRIC PREDICTION IN LOGISTICS COMPANY Sysemy Logisyczne Wojsk nr 44/06 MODELOWANIE I PROGNOZOWANIE EKONOMETRYCZNE W LOGISTYCE PRZEDSIĘBIORSTWA MODELING AND ECONOMETRIC PREDICTION IN LOGISTICS COMPANY Agnieszka DUDA a.duda@aon.edu.pl Akademia

Bardziej szczegółowo

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna

Bardziej szczegółowo

Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015

Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015 Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015 Nr indeksu... Imię i Nazwisko... Nr grupy ćwiczeniowej... Imię i Nazwisko prowadzącego... 1. Specyfikacja modelu

Bardziej szczegółowo

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR LORTORIUM PODSTWY ELEKTRONIKI adanie ramki X-OR 1.1 Wsęp eoreyczny. ramka XOR ramka a realizuje funkcję logiczną zwaną po angielsku EXLUSIVE-OR (WYŁĄZNIE LU). Polska nazwa brzmi LO. Funkcję EX-OR zapisuje

Bardziej szczegółowo

PUNKTOWA I PRZEDZIAŁOWA PREDYKCJA PRZEWOZÓW PASAŻERÓW W ŻEGLUDZE PROMOWEJ NA BAŁTYKU W LATACH 2008 2010

PUNKTOWA I PRZEDZIAŁOWA PREDYKCJA PRZEWOZÓW PASAŻERÓW W ŻEGLUDZE PROMOWEJ NA BAŁTYKU W LATACH 2008 2010 STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Chrisian Lis PUNKTOWA I PRZEDZIAŁOWA PREDYKCJA PRZEWOZÓW PASAŻERÓW W ŻEGLUDZE PROMOWEJ NA BAŁTYKU W LATACH 2008 2010 Wprowadzenie Przedmioem

Bardziej szczegółowo

Wykład 6. Badanie dynamiki zjawisk

Wykład 6. Badanie dynamiki zjawisk Wykład 6 Badanie dynamiki zjawisk TREND WYODRĘBNIANIE SKŁADNIKÓW SZEREGU CZASOWEGO 1. FUNKCJA TRENDU METODA ANALITYCZNA 2. ŚREDNIE RUCHOME METODA WYRÓWNYWANIA MECHANICZNEGO średnie ruchome zwykłe średnie

Bardziej szczegółowo

Transakcje insiderów a ceny akcji spółek notowanych na Giełdzie Papierów Wartościowych w Warszawie S.A.

Transakcje insiderów a ceny akcji spółek notowanych na Giełdzie Papierów Wartościowych w Warszawie S.A. Agaa Srzelczyk Transakcje insiderów a ceny akcji spółek noowanych na Giełdzie Papierów Warościowych w Warszawie S.A. Wsęp Inwesorzy oczekują od każdej noowanej na Giełdzie Papierów Warościowych spółki

Bardziej szczegółowo

Krzysztof Piontek MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR

Krzysztof Piontek MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR Inwesycje finansowe i ubezpieczenia endencje świaowe a rynek polski Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR Wsęp Konieczność

Bardziej szczegółowo

MODELE AUTOREGRESYJNE JAKO INSTRUMENT ZARZĄDZANIA ZAPASAMI NA PRZYKŁADZIE ELEKTROWNI CIEPLNEJ

MODELE AUTOREGRESYJNE JAKO INSTRUMENT ZARZĄDZANIA ZAPASAMI NA PRZYKŁADZIE ELEKTROWNI CIEPLNEJ Agaa MESJASZ-LECH * MODELE AUTOREGRESYJNE JAKO INSTRUMENT ZARZĄDZANIA ZAPASAMI NA PRZYKŁADZIE ELEKTROWNI CIEPLNEJ Sreszczenie W arykule przedsawiono wyniki analizy ekonomerycznej miesięcznych warości w

Bardziej szczegółowo

Krzysztof Borowski, Paweł Skrzypczyński Szkoła Główna Handlowa. Analiza spektralna indeksów giełdowych DJIA i WIG. 1. Wprowadzenie

Krzysztof Borowski, Paweł Skrzypczyński Szkoła Główna Handlowa. Analiza spektralna indeksów giełdowych DJIA i WIG. 1. Wprowadzenie Krzyszof Borowski, Paweł Skrzypczyński Szkoła Główna Handlowa Analiza spekralna indeksów giełdowych DJIA i WIG 1 Wprowadzenie We współczesnych analizach ekonomicznych doyczących pomiaru cyklu koniunkuralnego

Bardziej szczegółowo

Zastosowanie technologii SDF do lokalizowania źródeł emisji BPSK i QPSK

Zastosowanie technologii SDF do lokalizowania źródeł emisji BPSK i QPSK Jan M. KELNER, Cezary ZIÓŁKOWSKI Wojskowa Akademia Techniczna, Wydział Elekroniki, Insyu Telekomunikacji doi:1.15199/48.15.3.14 Zasosowanie echnologii SDF do lokalizowania źródeł emisji BPSK i QPSK Sreszczenie.

Bardziej szczegółowo

Aktualizacja współczynników równoważności pojazdów ciężarowych i autobusów

Aktualizacja współczynników równoważności pojazdów ciężarowych i autobusów Akualizacja współczynników równoważności pojazdów ciężarowych i auobusów dawid ryś Poliechnika Gdańska dawid.rys@wilis.pg.gda.pl józef judycki Poliechnika Gdańska jozef.judycki@wilis.pg. gda.pl pior jaskuła

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika Zależność

Bardziej szczegółowo

ANALIZA HARMONICZNA RZECZYWISTYCH PRZEBIEGÓW DRGAŃ

ANALIZA HARMONICZNA RZECZYWISTYCH PRZEBIEGÓW DRGAŃ Ćwiczenie 8 ANALIZA HARMONICZNA RZECZYWISTYCH PRZEBIEGÓW DRGAŃ. Cel ćwiczenia Analiza złożonego przebiegu drgań maszyny i wyznaczenie częsoliwości składowych harmonicznych ego przebiegu.. Wprowadzenie

Bardziej szczegółowo

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 389 TORUŃ 2009

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 389 TORUŃ 2009 A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 389 TORUŃ 2009 Uniwersye Mikołaja Kopernika w Toruniu Kaedra Ekonomerii i Saysyki

Bardziej szczegółowo

Ćw. S-II.2 CHARAKTERYSTYKI SKOKOWE ELEMENTÓW AUTOMATYKI

Ćw. S-II.2 CHARAKTERYSTYKI SKOKOWE ELEMENTÓW AUTOMATYKI Dr inż. Michał Chłędowski PODSAWY AUOMAYKI I ROBOYKI LABORAORIUM Ćw. S-II. CHARAKERYSYKI SKOKOWE ELEMENÓW AUOMAYKI Cel ćwiczenia Celem ćwiczenia jes zapoznanie się z pojęciem charakerysyki skokowej h(),

Bardziej szczegółowo

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków

Bardziej szczegółowo

Dr hab. Jerzy Czesław Ossowski Wybrane elementy ekonometrii stosowanej cz. II Istotność zmiennych modelu, autokorelacja i modele multiplikatywne

Dr hab. Jerzy Czesław Ossowski Wybrane elementy ekonometrii stosowanej cz. II Istotność zmiennych modelu, autokorelacja i modele multiplikatywne Dr hab. Jerzy Czesław Ossowski Wybrane elemeny ekonomerii sosowanej cz. II Isoność zmiennych modelu, auokorelacja i modele muliplikaywne Ekonomeria-ćw.cz-SSW dr hab. Jerzy Czesław Ossowski Kaedra Nauk

Bardziej szczegółowo

Identyfikacja wahań koniunkturalnych gospodarki polskiej

Identyfikacja wahań koniunkturalnych gospodarki polskiej Rozdział i Idenyfikacja wahań koniunkuralnych gospodarki polskiej dr Rafał Kasperowicz Uniwersye Ekonomiczny w Poznaniu Kaedra Mikroekonomii Sreszczenie Celem niniejszego opracowania jes idenyfikacja wahao

Bardziej szczegółowo

Silniki cieplne i rekurencje

Silniki cieplne i rekurencje 6 FOTO 33, Lao 6 Silniki cieplne i rekurencje Jakub Mielczarek Insyu Fizyki UJ Chciałbym Pańswu zaprezenować zagadnienie, kóre pozwala, rozważając emaykę sprawności układu silników cieplnych, zapoznać

Bardziej szczegółowo

1.1. Bezpośrednie transformowanie napięć przemiennych

1.1. Bezpośrednie transformowanie napięć przemiennych Rozdział Wprowadzenie.. Bezpośrednie ransformowanie napięć przemiennych Bezpośrednie ransformowanie napięć przemiennych jes formą zmiany paramerów wielkości fizycznych charakeryzujących energię elekryczną

Bardziej szczegółowo

WARTOŚĆ ZAGROŻONA OPCJI EUROPEJSKICH SZACOWANA PRZEDZIAŁOWO. SYMULACJE

WARTOŚĆ ZAGROŻONA OPCJI EUROPEJSKICH SZACOWANA PRZEDZIAŁOWO. SYMULACJE Daniel Iskra Uniwersye Ekonomiczny w Kaowicach WARTOŚĆ ZAGROŻONA OPCJI EUROPEJSKICH SZACOWANA PRZEDZIAŁOWO. SYMULACJE Wprowadzenie Jednym z aspeków współczesnej ekonomii jes zarządzanie ryzykiem związanym

Bardziej szczegółowo

ZASTOSOWANIE WYBRANYCH MODELI ADAPTACYJNYCH W PROGNOZOWANIU BRAKUJĄCYCH DANYCH W SZEREGACH ZE ZŁOŻONĄ SEZONOWOŚCIĄ DLA LUK NIESYSTEMATYCZNYCH

ZASTOSOWANIE WYBRANYCH MODELI ADAPTACYJNYCH W PROGNOZOWANIU BRAKUJĄCYCH DANYCH W SZEREGACH ZE ZŁOŻONĄ SEZONOWOŚCIĄ DLA LUK NIESYSTEMATYCZNYCH METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XV/4, 214, sr. 181 194 ZASTOSOWANIE WYBRANYCH MODELI ADAPTACYJNYCH W PROGNOZOWANIU BRAKUJĄCYCH DANYCH W SZEREGACH ZE ZŁOŻONĄ SEZONOWOŚCIĄ DLA LUK NIESYSTEMATYCZNYCH

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 2005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika Empiryczna

Bardziej szczegółowo

ANALIZA ODPOWIEDZI UKŁADÓW KONSTRUKCYJNYCH NA WYMUSZENIE W POSTACI SIŁY O DOWOLNYM PRZEBIEGU CZASOWYM

ANALIZA ODPOWIEDZI UKŁADÓW KONSTRUKCYJNYCH NA WYMUSZENIE W POSTACI SIŁY O DOWOLNYM PRZEBIEGU CZASOWYM Budownicwo Mariusz Poński ANALIZA ODPOWIEDZI UKŁADÓW KONSTRUKCYJNYCH NA WYMUSZENIE W POSTACI SIŁY O DOWOLNYM PRZEBIEGU CZASOWYM Wprowadzenie Coraz większe ograniczenia czasowe podczas wykonywania projeków

Bardziej szczegółowo

Modelowanie i analiza szeregów czasowych

Modelowanie i analiza szeregów czasowych Modelowanie i analiza szeregów czasowych Małgorzaa Doman Plan zajęć Część. Modelowanie szeregów jednowymiarowych.. Szeregi jednowymiarowe własności i diagnozowanie. Modele auoregresji i średniej ruchomej

Bardziej szczegółowo

Macierz X ma wymiary: 27 wierszy (liczba obserwacji) x 6 kolumn (kolumna jednostkowa i 5 kolumn ze zmiennymi objaśniającymi) X

Macierz X ma wymiary: 27 wierszy (liczba obserwacji) x 6 kolumn (kolumna jednostkowa i 5 kolumn ze zmiennymi objaśniającymi) X ROZWIĄZANIA ZADAO Zadanie EKONOMETRIA_dw_.xls Na podsawie danych zamieszczonych w arkuszu Zadanie. Podad posad analiyczną modelu ekonomerycznego wielkości produkcji w przemyśle od PO - liczby pracujących

Bardziej szczegółowo

Stała potencjalnego wzrostu w rachunku kapitału ludzkiego

Stała potencjalnego wzrostu w rachunku kapitału ludzkiego 252 Dr Wojciech Kozioł Kaedra Rachunkowości Uniwersye Ekonomiczny w Krakowie Sała poencjalnego wzrosu w rachunku kapiału ludzkiego WSTĘP Prowadzone do ej pory badania naukowe wskazują, że poencjał kapiału

Bardziej szczegółowo

WPŁYW PODATNOŚCI GŁÓWKI SZYNY NA ROZKŁAD PRZEMIESZCZEŃ WZDŁUŻNYCH PRZY HAMOWANIU POCIĄGU 1

WPŁYW PODATNOŚCI GŁÓWKI SZYNY NA ROZKŁAD PRZEMIESZCZEŃ WZDŁUŻNYCH PRZY HAMOWANIU POCIĄGU 1 A R C H I W U M I N S T Y T U T U I N Ż Y N I E R I I L Ą D O W E J Nr 5 ARCHIVES OF INSTITUTE OF CIVIL ENGINEERING 017 WPŁYW PODATNOŚCI GŁÓWKI SZYNY NA ROZKŁAD PRZEMIESZCZEŃ WZDŁUŻNYCH PRZY HAMOWANIU

Bardziej szczegółowo

Zarządzanie ryzykiem. Lista 3

Zarządzanie ryzykiem. Lista 3 Zaządzanie yzykiem Lisa 3 1. Oszacowano nasępujący ozkład pawdopodobieńswa dla sóp zwou z akcji A i B (Tabela 1). W chwili obecnej Akcja A ma waość ynkową 70, a akcja B 50 zł. Ile wynosi pięciopocenowa

Bardziej szczegółowo