Pomiędzy elementami zbioru danych x (wektor p-cech) wyznaczane są wartości funkcji podobieństw lub niepodobieństwa d (dissimilarity; częściej)

Wielkość: px
Rozpocząć pokaz od strony:

Download "Pomiędzy elementami zbioru danych x (wektor p-cech) wyznaczane są wartości funkcji podobieństw lub niepodobieństwa d (dissimilarity; częściej)"

Transkrypt

1 Wykłd 5 Dopsowywnie wielu sekwencji Multiple Sequence Alignment (MSA) Mcierze substytucji zleŝne od pozycji Position Specific Scoring Mtrix (PSSM) Porównnie róŝnych sekwencji T O J E S T T A S E K W E N C J A T A M T A J E S T T E Z S E K W E N C J A ITOTEZJESTSEKWENCJA T O J E S T T A S E K W E N C J A T A M T A J E S T T E Z S E K W E N C J A I T O J E S T S E K W E N C J A 2 Czym się róŝni MSA od PSA MSA dje większą dokłdność w dopsowniu sekwencji niŝ PSA. Rozstrzyg wątpliwości, eliminuje dopsowni przypdkowe MSA umoŝliwi znlezienie obszrów o wysokiej konserwcji przewŝnie o duŝym znczeniu strukturlnym i funkcjonlnym dl biłk DuŜo większ złoŝoność obliczeniow. Często stosowne lgorytmy heurystyczne zmist progrmowni dynmicznego. Metody Progrmownie dynmiczne Dopsownie hierrchiczne (klstrownie) Ukryte modele Mrkow (Hidden Mrkov Models HMM) Metody uczeni mszynowego Algorytmy genetyczne Metody wykorzystujące wiedzę filogenetyczną Dopsownie hierrchiczne Klstering czyli uczenie bez ndzoru Odległość pomiędzy elementmi Pomiędzy elementmi zbioru dnych x (wektor p-cech) wyznczne są wrtości funkcji podobieństw lub niepodobieństw d (dissimilrity; częściej) Njczęściej jest to kwdrt odległości: JeŜeli wpływ cech jest niezrównowŝny to moŝn zstosowć sumę wŝoną z cech (le w j =1 nie ozncz jednkowego wpływu bo zleŝy od rozkłdu pomiędzy cechmi): A.D. Bxevnis, B.F.F Quellette, Bioinformtyk, PWN 1

2 Z dołu-do-góry ( bottom-up ) Metody sclni w dendrogrmie Sposób wybierni reprezentcji podgrupy Pojedynczego łączeni (single linkge) mksimum podobieństw Metody sclni w dendrogrmie Pełnego łączeni (complete linkge) minimum podobieństw Metody sclni w dendrogrmie Średniego podobieństw w grupie (verge linkge) Porównnie dendrogrmów Drzewo filogenetyczne 2

3 Mcierze substytucji Mcierze substytucji log z prwdopodobieństw mutcji PAM120 proksym. z globlnego Point Accepted Muttions 120 mutcji/100 długości BLOSUM-62 z loklnego dop. BLOck SUbstitution Mtrix Co njmniej 62% identyczne Jk wyznczmy mcierz substytucji W kŝdej mcierzy substytucji częstotliwość q,b mutcji z do b wyzncz wrtości elementów mcierzy s,b, ; p to prwdopodobieństwo wystąpieni minokwsu w cłej bzie dnych sekwencji ln( q, b / p pb) s, b = λ gdzie λ jest jkimś współczynnikiem, chrkterystycznym dl typu mcierzy 16 Gdy mutcje zleŝą od połoŝeni w sekwencji Potrzeb mcierzy punktcji zleŝnej od pozycji (PSSM) Mcierze substytucji (typu PAM, BLOSUM) mogą być uŝywne do dopsowywni pr sekwencji Oceny odległości ewolucyjnej pomiędzy prą biłek Wyszukni w bzie dnych biłek podobnych do biłek wybrnych Nie są wystrczjące do stwierdzeni, czy dne biłko jest elementem określonej rodziny (zbioru) biłek. 3

4 Znjdownie biłek z określonej rodziny CEL: znmy zbiór biłek z jednej rodziny i znjdujemy biłk psujące Metody: Dopsownie do sekwencji konsensusowej (uśrednionej) rodziny Dopsownie do profilu rodziny Szuknie odcisku plc rodziny Metody probbilistyczne (np. ukryte modele Mrkow - HMM) Jk wyznczmy mcierz częstości zleŝną od pozycji (PSSM) ZłóŜmy, Ŝe mmy N sekwencji z jednej rodziny. Wyznczmy częstotliwość wystąpieni minokwsu n pozycji u dl tej rodziny sekwencji: q u, = n u, /N log( qu, / p ) m u, = λ p to prwdopodobieństwo wystąpieni minokwsu w cłej bzie dnych sekwencji. Podobnie jk w mcierzy substytucji wyznczmy element mcierzy PSSM (λ moŝn tu pominąć, choć stosowne w Psi-Blst): 20 PSSM Position Specific Scoring Mtrix Etpy konstrukcji: Wybór rodziny do profilu: BLAST n podstwie pojedynczej sekwencji BLAST z kolejnych sekwencji Obliczenie PSSM 21 Entropi W fizyce ENTROPIA jest mirą gęstości stnów. Stnowi mirę kierunku zchodzeni procesów smorzutnych. Ukłd fizyczny zwsze dąŝy do równomiernego rozkłdu (P i ) gęstości stnów (nieporządku): S = kb Pi ln( Pi ) ENTROPIA informcyjn (entropi Shnnon) jest mirą niepewności informcji (w bitch). H = P i log( P i ) i k B - stł Boltzmnn Im brdziej równomierny jest rozkłd jkiejś cechy tym mniej informcji mmy o jej potencjlnym wystąpieniu w określonej sytucji (np. n dnej pozycji w sekwencji) 22 Entropi Istotność informcji w mcierzy PSSM dl kolumny u moŝn ocenić obliczjąc jej ENTROPIĘ po wszystkich minokwsch (w bitch to log 2 ): H u = qu, log 2( qu, ) Przy równomiernym występowniu wszystkich minokwsów entropi jest mksymln. mx(h u ) = -20 * (1/20 * log 2 (1/20))= 20* (1/20 * log 2 (1/20) -1 ))= log 2 (20) 23 Informcj I u zwrt w sekwencji n pozycji u moŝe być obliczon jko: I u = H mx Hu = log 2 20 H gdyŝ mx(h u ) = log 2 20 Pod wrunkiem, Ŝe dysponujemy co njmniej 20 sekwencjmi (mniej np. 3 to Hmx=log 2 (3)). Mksymln wrtość I u ozncz brdzo dobrą konserwcję jkiegoś jednego minokwsu n pozycji u u 4

5 Logo Rozmir = I u q u, BLAST Bsic Locl Alignment Serch Tool Eugene Myers, Stephen Altschul, Wrren Gish, Dvid J. Lipmn, nd Webb Miller, Journl of Moleculr Biology, Schneider, Stephens, NAR,1990 Zwycięstwo szybkości nd dokłdnością, uproszczenie lgorytmu Smith & Wtermn S&W zpewnił njlepsze rozwiąznie przy dnym zuŝyciu czsu komputerowego BLAST NIE. Zysk: ok. 50 x 25 BLAST BLAST bzuje n znjdowniu brdzo podobnych krótkich segmentów. Nie stosuje progrmowni dynmicznego. Jk to robi BLAST? Wykonuje dopsownie prmi - pomiędzy sekwencją zpytni i poszczególnymi sekwencjmi ze zbioru przeszukiwnego Porządkuje mlejąco sekwencje ze zbioru, wg. wrtości dopsowni loklnego S w stosunku do sekwencji zpytni Dl kŝdego S, uwzględnijąc długości sekwencji zpytni i wyniku, wylicz E-wrtość. Jest to oczekiwn liczb segmentów sekwencji, które uzyskją wynik dopsowni większy lub równy S. UŜytkownik bierze pod uwgę tylko tkie sekwencje, dl których E<<1. Wtedy nie m sznsy, Ŝe jkikolwiek segment (choćby jeden) wcle nie jest homologiczny, wyłącznie przypdkowo podobny. BLAST - lgorytm Usunąć segmenty o młej róŝnorodności lub powtórzenich w sekwencji zpytni Zbudowć listę słów k-literowych, występujących w sekwencji zpytni (biłk k 3, nukleotydy k 11), dl kolejnych wrtości k. Znleźć wszystkie moŝliwie dokłdnie psujące słow (włsny lgorytm heurystyczny) Zorgnizowć pozostłe, wysoko-punktujące słow w efektywne drzewo przeszukiwni Rozciągnąć dokłdne dopsowni n istotne loklne segmenty (HSP, high-scoring segment pir ) Wypisć wszystkie HSP w bzie dnych, które punktują wystrczjąco wysoko *Wówczs jest więcej niŝ jedno dopsownie loklne i TotlScore=MxScore+Inny_Score+ Sytucj * moŝe oznczc pseudo-gen. 5

6 Problem: E-wrtość Jk duŝ jest szns, Ŝe 2 sekwencje niehomologiczne zostną przypdkowo wskzne jko dobrze dopsowne przez lgorytm loklnego dopsowni? Inczej mówiąc: Jk wrtościow jest jkś znlezion sekwencj, wskzn (w oprciu o lgorytm dopsowni) jko homologiczn do sekwencji zpytni (query seq.)? Np. Im dłuŝsz sekwencj zpytni tym łtwiej coś loklnie trfić. E-wrtość Przyrównywn jest pr sekwencji, o długościch odpowiednio m i n. Zkłd się, Ŝe przeprowdzone byłoby dopsownie loklne segmentów pomiędzy prą sekwencji, bez przerw (nie m delecji lub insercji). W grnicy (dl duŝych wrtości m i n) liczb segmentów sekwencji, które uzyskją wysoką punktcję lgorytmu dopsowni, równą co njmniej S, wynosi (wrtość oczekiwn): E = K m n e - S gdzie K i są pewnymi prmetrmi, zleŝnymi od rozmiru przeszukiwnej przestrzeni i lgorytmu ocenini. Liczbę E nzywmy E-wrtością dl punktcji (score) S. PSI-BLAST Position-Specific Itertive BLAST Profil PSSM - Position-Specific Scoring Mtrix BLAST drzewo Dokłdność / nrzędzi Metody hierrchiczne nie dją gwrncji znlezieni jednego optymlnego dopsowni dl cłego zestwu sekwencji CLUSTAL 6

7 EFEKTY Dopsownie wielokrotne poprwi dokłdność dopsowni sekwencji o niskim podobieństwie Biłk o niskiej złoŝoności sekwencji i niejednozncznej strukturze Tkie biłk komplikują wyzncznie homologii Nisk złoŝoność Prion 7

8 8

Macierze substytucji. PAM - Point Accepted Mutations Margaret Dayhoff Macierze substytucji zależna od prawdopodobieństwa mutacji

Macierze substytucji. PAM - Point Accepted Mutations Margaret Dayhoff Macierze substytucji zależna od prawdopodobieństwa mutacji Wykłd 8 Mcierze substytucji Sekwencje pokrewne Mcierze substytucji PAM - Point Accepted Muttions Mrgret Dyhoff 1978 BLOSUM Mcierze substytucji zleżn od prwdopodobieństw mutcji Jeśli koniecznie chcemy je

Bardziej szczegółowo

Wykład 5 Dopasowywanie lokalne

Wykład 5 Dopasowywanie lokalne Wykład 5 Dopasowywanie lokalne Dopasowanie par (sekwencji) Dopasowanie globalne C A T W A L K C A T W A L K C O W A R D C X X O X W X A X R X D X Globalne dopasowanie Schemat punktowania (uproszczony)

Bardziej szczegółowo

PODSTAWY BIOINFORMATYKI WYKŁAD 4 DOPASOWANIE SEKWENCJI

PODSTAWY BIOINFORMATYKI WYKŁAD 4 DOPASOWANIE SEKWENCJI PODSTAWY BIOINFORMATYKI WYKŁAD 4 DOPASOWANIE SEKWENCJI DOPASOWANIE SEKWENCJI 1. Dopasowanie sekwencji - definicja 2. Wizualizacja dopasowania sekwencji 3. Miary podobieństwa sekwencji 4. Przykłady programów

Bardziej szczegółowo

Macierz. Wyznacznik macierzy. Układ równań liniowych

Macierz. Wyznacznik macierzy. Układ równań liniowych Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: Ŝółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk n kierunku Biologi w SGGW Zgdnieni.

Bardziej szczegółowo

( ) Lista 2 / Granica i ciągłość funkcji ( z przykładowymi rozwiązaniami)

( ) Lista 2 / Granica i ciągłość funkcji ( z przykładowymi rozwiązaniami) List / Grnic i ciągłość funkcji ( z przykłdowymi rozwiąznimi) Korzystjąc z definicji grnicy (ciągowej) funkcji uzsdnić podne równości: sin ) ( + ) ; b) ; c) + 5 Obliczyć grnice funkcji przy orz : + ) f

Bardziej szczegółowo

PODSTAWY BIOINFORMATYKI WYKŁAD 4 DOPASOWANIE SEKWENCJI

PODSTAWY BIOINFORMATYKI WYKŁAD 4 DOPASOWANIE SEKWENCJI PODSTAWY BIOINFORMATYKI WYKŁAD 4 DOPASOWANIE SEKWENCJI DOPASOWANIE SEKWENCJI 1. Dopasowanie sekwencji - definicja 2. Wizualizacja dopasowania sekwencji 3. Miary podobieństwa sekwencji 4. Przykłady programów

Bardziej szczegółowo

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach

WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach Mtemtyk I WYKŁD. ypy mcierzy, dziłni n mcierzch, mcierz ukłdu równń. Podstwowe widomości o mcierzch Ogóln postć ukłdu m równń liniowych lgebricznych z n niewidomymi x x n xn b x x n xn b, niewidome: x,

Bardziej szczegółowo

Politechnika Wrocławska. Dopasowywanie sekwencji Sequence alignment

Politechnika Wrocławska. Dopasowywanie sekwencji Sequence alignment Dopasowywanie sekwencji Sequence alignment Drzewo filogenetyczne Kserokopiarka zadanie: skopiować 300 stron. Co może pójść źle? 2x ta sama strona Opuszczona strona Nadmiarowa pusta strona Strona do góry

Bardziej szczegółowo

Przyrównanie sekwencji. Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu

Przyrównanie sekwencji. Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu Przyrównanie sekwencji Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu Sequence alignment - przyrównanie sekwencji Poszukiwanie ciągów znaków (zasad nukleotydowych lub reszt aminokwasowych),

Bardziej szczegółowo

PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD ,0. 3x 6 6 3x 6 6,

PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD ,0. 3x 6 6 3x 6 6, Zdnie PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD 04 Zbiorem wszystkich rozwiązń nierówności x 6 6 jest: A, 4 0, B 4,0 C,0 4, D 0,4 Odpowiedź: C Rozwiąznie Sposób I Nierówność A 6 jest równowżn lterntywie

Bardziej szczegółowo

O pewnych zgadnieniach optymalizacyjnych O pewnych zgadnieniach optymalizacyjnych

O pewnych zgadnieniach optymalizacyjnych O pewnych zgadnieniach optymalizacyjnych Spis tresci 1 Spis tresci 1 W wielu zgdnienich prktycznych brdzo wżne jest znjdownie optymlnego (czyli njlepszego z jkiegoś punktu widzeni) rozwiązni dnego problemu. Dl przykłdu, gdybyśmy chcieli podróżowć

Bardziej szczegółowo

Macierz. Wyznacznik macierzy. Układ równań liniowych

Macierz. Wyznacznik macierzy. Układ równań liniowych Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: żółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk Zgdnieni. Pojęci. Dziłni n mcierzch.

Bardziej szczegółowo

Wspomaganie obliczeń za pomocą programu MathCad

Wspomaganie obliczeń za pomocą programu MathCad Wprowdzenie do Mthcd' Oprcowł:M. Detk P. Stąpór Wspomgnie oliczeń z pomocą progrmu MthCd Definicj zmiennych e f g h 8 Przykłd dowolnego wyrŝeni Ay zdefinowc znienną e wyierz z klwitury kolejno: e: e f

Bardziej szczegółowo

PODSTAWY ALGEBRY MACIERZY. Operacje na macierzach

PODSTAWY ALGEBRY MACIERZY. Operacje na macierzach PODSTWY LGEBRY MCIERZY WIERSZ i, KOLUMN (j) Mcierz m,n, gdzie m to ilość wierszy, n ilość kolumn i,j element mcierzy z itego wiersz, jtej kolumny Opercje n mcierzch Równość mcierzy m,n = B m,n. def i,j

Bardziej szczegółowo

PRZYRÓWNANIE SEKWENCJI

PRZYRÓWNANIE SEKWENCJI http://theta.edu.pl/ Podstawy Bioinformatyki III PRZYRÓWNANIE SEKWENCJI 1 Sequence alignment - przyrównanie sekwencji Poszukiwanie ciągów znaków (zasad nukleotydowych lub reszt aminokwasowych), które posiadają

Bardziej szczegółowo

Wyznacznikiem macierzy kwadratowej A stopnia n nazywamy liczbę det A określoną następująco:

Wyznacznikiem macierzy kwadratowej A stopnia n nazywamy liczbę det A określoną następująco: Def.8. Wyzncznikiem mcierzy kwdrtowej stopni n nzywmy liczbę det określoną nstępująco:.det.det dl n n det det n det n, gdzie i j ozncz mcierz, którą otrzymujemy z mcierzy przez skreślenie i- tego wiersz

Bardziej szczegółowo

Pojęcia Działania na macierzach Wyznacznik macierzy

Pojęcia Działania na macierzach Wyznacznik macierzy Temt: Mcierze Pojęci Dziłni n mcierzch Wyzncznik mcierzy Symbolem gwizdki (*) oznczono zgdnieni przeznczone dl studentów wybitnie zinteresownych prezentowną temtyką. Ann Rjfur Pojęcie mcierzy Mcierz to

Bardziej szczegółowo

Porównywanie i dopasowywanie sekwencji

Porównywanie i dopasowywanie sekwencji Porównywanie i dopasowywanie sekwencji Związek bioinformatyki z ewolucją Wraz ze wzrostem dostępności sekwencji DNA i białek narodziła się nowa dyscyplina nauki ewolucja molekularna Ewolucja molekularna

Bardziej szczegółowo

2. Tensometria mechaniczna

2. Tensometria mechaniczna . Tensometri mechniczn Wstęp Tensometr jk wskzywłby jego nzw to urządzenie służące do pomiru nprężeń. Jk jednk widomo, nprężeni nie są wielkościmi mierzlnymi i stnowią jedynie brdzo wygodne pojęcie mechniki

Bardziej szczegółowo

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna 1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,

Bardziej szczegółowo

Porównywanie i dopasowywanie sekwencji

Porównywanie i dopasowywanie sekwencji Porównywanie i dopasowywanie sekwencji Związek bioinformatyki z ewolucją Wraz ze wzrostem dostępności sekwencji DNA i białek pojawiła się nowa możliwość śledzenia ewolucji na poziomie molekularnym Ewolucja

Bardziej szczegółowo

INSTRUKCJA. - Jak rozwiązywać zadania wysoko punktowane?

INSTRUKCJA. - Jak rozwiązywać zadania wysoko punktowane? INSTRUKCJA - Jk rozwiązywć zdni wysoko punktowne? Mturzysto! Zdni wysoko punktowne to tkie, z które możesz zdobyć 4 lub więcej punktów. Zdni z dużą ilość punktów nie zwsze są trudniejsze, często ich punktcj

Bardziej szczegółowo

Zadania. I. Podzielność liczb całkowitych

Zadania. I. Podzielność liczb całkowitych Zdni I. Podzielność liczb cłkowitych. Pewn liczb sześciocyfrow kończy się cyfrą 5. Jeśli tę cyfrę przestwimy n miejsce pierwsze ze strony lewej to otrzymmy nową liczbę cztery rzy większą od poprzedniej.

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ew Pbisek Adm Wostko Piotr Pluciński Mtemtyk stosown i metody numeryczne Konspekt z wykłdu 0 Cłkownie numeryczne Wzory cłkowni numerycznego pozwlją n obliczenie przybliżonej wrtości cłki: I(f) = f(x) dx

Bardziej szczegółowo

Badanie regularności w słowach

Badanie regularności w słowach Przypdek sekwencyjny Mrcin Piątkowski Wydził Mtemtyki i Informtyki Uniwersytet Mikołj Kopernik Edsger Wybe Dijkstr (1930 2002) Computer science is no more bout computers thn stronomy is bout telescopes,

Bardziej szczegółowo

MATEMATYKA Wykład 4 (Funkcje) przyporządkowany został dokładnie jeden element

MATEMATYKA Wykład 4 (Funkcje) przyporządkowany został dokładnie jeden element MATEMATYKA Wykłd 4 (Funkcje) Pisząc f : (,b) R rozumiemy Ŝe kŝdemu (, b) przyporządkowny zostł dokłdnie jeden element y R. Wykresem funkcji nzywmy zbiór pr (,f()) n płszczyźnie skłdjącej się ze wszystkich

Bardziej szczegółowo

Metody określania macierzy przemieszczeń w modelowaniu przewozów pasażerskich. mgr inż. Szymon Klemba Warszawa, r.

Metody określania macierzy przemieszczeń w modelowaniu przewozów pasażerskich. mgr inż. Szymon Klemba Warszawa, r. Metody określni mcierzy przemieszczeń w modelowniu przewozów psżerskich mgr inż. Szymon Klemb Wrszw, 2.07.2013r. SPIS TREŚCI 1 Podstwy teoretyczne 2 Rol mcierzy przemieszczeń 3 Metody wyznczni mcierzy

Bardziej szczegółowo

Dopasowywanie sekwencji (ang. sequence alignment) Metody dopasowywania sekwencji. Homologia a podobieństwo sekwencji. Rodzaje dopasowania

Dopasowywanie sekwencji (ang. sequence alignment) Metody dopasowywania sekwencji. Homologia a podobieństwo sekwencji. Rodzaje dopasowania Wprowadzenie do Informatyki Biomedycznej Wykład 2: Metody dopasowywania sekwencji Wydział Informatyki PB Dopasowywanie sekwencji (ang. sequence alignment) Dopasowywanie (przyrównywanie) sekwencji polega

Bardziej szczegółowo

W CZASIE WYKŁADU TELEFONY KOMÓRKOWE POWINNY BYĆ WYŁĄCZONE LUB WYCISZONE MAPY

W CZASIE WYKŁADU TELEFONY KOMÓRKOWE POWINNY BYĆ WYŁĄCZONE LUB WYCISZONE MAPY W CZSIE WYKŁDU TELEFONY KOMÓRKOWE POWINNY YĆ WYŁĄCZONE LU WYCISZONE MPY GENETYCZNE FIZYCZNE Grficzn prezentcj genów w chromosomch z uwzględnieniem odległości pomiędzy nimi podnej w jednostkch mpowych.

Bardziej szczegółowo

2. Ciągi liczbowe. Definicja 2.1 Funkcję a : N R nazywamy ciągiem liczbowym. Wartość funkcji a(n) oznaczamy symbolem a

2. Ciągi liczbowe. Definicja 2.1 Funkcję a : N R nazywamy ciągiem liczbowym. Wartość funkcji a(n) oznaczamy symbolem a Ciągi liczbowe Defiicj Fukcję : N R zywmy iem liczbowym Wrtość fukcji () ozczmy symbolem i zywmy -tym lub ogólym wyrzem u Ciąg Przykłdy Defiicj róŝic zpisujemy rówieŝ w postci { } + Ciąg liczbowy { } zywmy

Bardziej szczegółowo

Bioinformatyka. (wykład monograficzny) wykład 5. E. Banachowicz. Zakład Biofizyki Molekularnej IF UAM

Bioinformatyka. (wykład monograficzny) wykład 5. E. Banachowicz. Zakład Biofizyki Molekularnej IF UAM Bioinformatyka (wykład monograficzny) wykład 5. E. Banachowicz Zakład Biofizyki Molekularnej IF UM http://www.amu.edu.pl/~ewas lgorytmy macierze punktowe (DotPlot) programowanie dynamiczne metody heurystyczne

Bardziej szczegółowo

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych Zstosownie multimetrów cyfrowych do pomiru podstwowych wielkości elektrycznych Cel ćwiczeni Celem ćwiczeni jest zpoznnie się z możliwościmi pomirowymi współczesnych multimetrów cyfrowych orz sposobmi wykorzystni

Bardziej szczegółowo

Modelowanie 3 D na podstawie fotografii amatorskich

Modelowanie 3 D na podstawie fotografii amatorskich Edwrd Nowk 1, Jonn Nowk Modelownie D n podstwie fotogrfii mtorskich 1. pecyfik fotogrmetrycznego oprcowni zdjęć mtorskich wynik z fktu, że n ogół dysponujemy smymi zdjęcimi - nierzdko są to zdjęci wykonne

Bardziej szczegółowo

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Akdemi órniczo-hutnicz im. Stnisłw Stszic w Krkowie Wydził Elektrotechniki, Automtyki, Informtyki i Inżynierii Biomedycznej Ktedr Elektrotechniki i Elektroenergetyki Rozprw Doktorsk Numeryczne lgorytmy

Bardziej szczegółowo

Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa

Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa Wykłd 2. Pojęcie cłki niewłściwej do rchunku prwdopodobieństw dr Mriusz Grządziel 4 mrc 24 Pole trpezu krzywoliniowego Przypomnienie: figurę ogrniczoną przez: wykres funkcji y = f(x), gdzie f jest funkcją

Bardziej szczegółowo

MATURA 2014 z WSiP. Zasady oceniania zadań

MATURA 2014 z WSiP. Zasady oceniania zadań MATURA z WSiP Mtemtyk Poziom podstwowy Zsdy ocenini zdń Copyright by Wydwnictw Szkolne i Pedgogiczne sp. z o.o., Wrszw Krtotek testu Numer zdni 6 7 8 9 6 7 8 9 Uczeń: Sprwdzn umiejętność (z numerem stndrdu)

Bardziej szczegółowo

Wykład 6 Dyfrakcja Fresnela i Fraunhofera

Wykład 6 Dyfrakcja Fresnela i Fraunhofera Wykłd 6 Dyfrkcj Fresnel i Frunhofer Zjwisko dyfrkcji (ugięci) świtł odkrył Grimldi (XVII w). Poleg ono n uginniu się promieni świetlnych przechodzących w pobliżu przeszkody (np. brzeg szczeliny). Wyjśnienie

Bardziej szczegółowo

mgh. Praca ta jest zmagazynowana w postaci energii potencjalnej,

mgh. Praca ta jest zmagazynowana w postaci energii potencjalnej, Wykłd z fizyki. Piot Posmykiewicz 49 6-4 Enegi potencjln Cłkowit pc wykonn nd punktem mteilnym jest ówn zminie jego enegii kinetycznej. Często jednk, jesteśmy zinteesowni znlezieniem pcy jką sił wykonł

Bardziej szczegółowo

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH Ćwiczenie Grżyn Nowick, Wldemr Nowicki BDNIE RÓWNOWG WSOWO-ZSDOWYC W ROZTWORC ELETROLITÓW MFOTERYCZNYC Zgdnieni: ktywność i współczynnik ktywności skłdnik roztworu. ktywność jonów i ktywność elektrolitu.

Bardziej szczegółowo

Przekształcenia automatów skończonych

Przekształcenia automatów skończonych Przeksztłceni utomtów skończonych Teori utomtów i języków formlnych Dr inŝ. Jnusz Mjewski Ktedr Informtyki Konstrukcj utomtu skończonego n podstwie wyrŝeni regulrnego (lgorytm Thompson) Wejście: wyrŝenie

Bardziej szczegółowo

Maciej Grzesiak. Iloczyn skalarny. 1. Iloczyn skalarny wektorów na płaszczyźnie i w przestrzeni. a b = a b cos ϕ. j) (b x. i + b y

Maciej Grzesiak. Iloczyn skalarny. 1. Iloczyn skalarny wektorów na płaszczyźnie i w przestrzeni. a b = a b cos ϕ. j) (b x. i + b y Mciej Grzesik Iloczyn sklrny. Iloczyn sklrny wektorów n płszczyźnie i w przestrzeni Iloczyn sklrny wektorów i b określmy jko b = b cos ϕ. Bezpośrednio z definicji iloczynu sklrnego mmy, że i i = j j =

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa Mtemtyk finnsow 15.0.010 r. Komisj Egzmincyjn dl Akturiuszy LII Egzmin dl Akturiuszy z 15 mrc 010 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoy egzminownej:... Czs egzminu: 100 minut 1

Bardziej szczegółowo

PODSTAWY BIOINFORMATYKI 8 DOPASOWYWANIE SEKWENCJI AMINOKWASÓW

PODSTAWY BIOINFORMATYKI 8 DOPASOWYWANIE SEKWENCJI AMINOKWASÓW PODSTAWY BIOINFORMATYKI 8 DOPASOWYWANIE SEKWENCJI AMINOKWASÓW DOPASOWYWANIE SEKWENCJI 1. Miary podobieństwa sekwencji aminokwasów 2. Zastosowanie programów: CLUSTAL OMEGA BLAST Copyright 2013, Joanna Szyda

Bardziej szczegółowo

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1 Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem

Bardziej szczegółowo

A A -1 A D A A D. ad bc A -1 A -1 A

A A -1 A D A A D. ad bc A -1 A -1 A d c b - D D b c d d bc - c b d bc d - I - d cb c c bd db bc d bc d d c b c b d bc d p q t c s t t s B B. B. B C C C C - C C C C B B Skąd moŝemy wybrć dowolnie. śeby utworzyć dw ortogonlne wektory weźmy

Bardziej szczegółowo

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule Fizyk Kurs przygotowwczy n studi inżynierskie mgr Kmil Hule Dzień 3 Lbortorium Pomir dlczego mierzymy? Pomir jest nieodłączną częścią nuki. Stopień znjomości rzeczy często wiąże się ze sposobem ich pomiru.

Bardziej szczegółowo

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań KONKURS MATEMATYCZNY dl uczniów gimnzjów w roku szkolnym 0/ II etp zwodów (rejonowy) 0 listopd 0 r. Propozycj punktowni rozwiązń zdń Uwg: Z kżde poprwne rozwiąznie inne niż przewidzine w propozycji punktowni

Bardziej szczegółowo

Ekstrakcja cech. PCA (Principal Component Analysis) Analiza składowych głównych. LDA (Linear Discriminant Analysis) Liniowa analiza dyskryminacyjna

Ekstrakcja cech. PCA (Principal Component Analysis) Analiza składowych głównych. LDA (Linear Discriminant Analysis) Liniowa analiza dyskryminacyjna Ekstrkcj cech Wprowdzenie Metody ekstrkcji cech PCA (Principl Component Anlysis) Anliz skłdowych głównych LDA (Liner Discriminnt Anlysis) Liniow nliz dyskrymincyjn MD (Multidimensionl cling) klownie wielowymirowe

Bardziej szczegółowo

METODYKA OCENY WŁAŚCIWOŚCI SYSTEMU IDENTYFIKACJI PARAMETRYCZNEJ OBIEKTU BALISTYCZNEGO

METODYKA OCENY WŁAŚCIWOŚCI SYSTEMU IDENTYFIKACJI PARAMETRYCZNEJ OBIEKTU BALISTYCZNEGO MODELOWANIE INŻYNIERSKIE ISNN 1896-771X 32, s. 151-156, Gliwice 2006 METODYKA OCENY WŁAŚCIWOŚCI SYSTEMU IDENTYFIKACJI PARAMETRYCZNEJ OBIEKTU BALISTYCZNEGO JÓZEF GACEK LESZEK BARANOWSKI Instytut Elektromechniki,

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI

PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI POZIOM PODSTAWOWY Arkusz I Instrukcj dl zdjącego 1. Sprwdź, czy rkusz egzmincyjny zwier 8 stron (zdni 1 3). Ewentulny brk zgłoś przewodniczącemu zespołu ndzorującego

Bardziej szczegółowo

usuwa niewymierność z mianownika wyrażenia typu

usuwa niewymierność z mianownika wyrażenia typu Wymgni edukcyjne n poszczególne oceny z mtemtyki Kls pierwsz zkres podstwowy. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje

Bardziej szczegółowo

3. Rozkład macierzy według wartości szczególnych

3. Rozkład macierzy według wartości szczególnych Rozkłd mcierzy wedłg wrtości szczególnych Wprowdzenie Przypomnimy podstwowe zleżności związne z zstosowniem metody nmnieszych kwdrtów do proksymci fnkci dyskretne Podstwowe równnie m nstępącą postć: +

Bardziej szczegółowo

Dopasowania par sekwencji DNA

Dopasowania par sekwencji DNA Dopasowania par sekwencji DNA Tworzenie uliniowień (dopasowań, tzw. alignmentów ) par sekwencji PSA Pairwise Sequence Alignment Dopasowania globalne i lokalne ACTACTAGATTACTTACGGATCAGGTACTTTAGAGGCTTGCAACCA

Bardziej szczegółowo

Małgorzata Żak. Zapisane w genach. czyli o zastosowaniu matematyki w genetyce

Małgorzata Żak. Zapisane w genach. czyli o zastosowaniu matematyki w genetyce Młgorzt Żk Zpisne w gench czyli o zstosowniu mtemtyki w genetyce by opisć: - występownie zjwisk msowych - sznse n niebieski kolor oczu potomk - odległość między genmi - położenie genu n chromosomie Rchunek

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka matematyczna.

Rachunek prawdopodobieństwa i statystyka matematyczna. Rchunek rwdoodobieństw i sttystyk mtemtyczn. Zd 8. {(, : i } Zleżność tą możn rzedstwić w ostci nstęującej interretcji grficznej: Arkdiusz Kwosk Rfł Kukliński Informtyk sem.4 gr. Srwdźmy, czy odne zmienne

Bardziej szczegółowo

Bioinformatyka Laboratorium, 30h. Michał Bereta

Bioinformatyka Laboratorium, 30h. Michał Bereta Bioinformatyka Laboratorium, 30h Michał Bereta mbereta@pk.edu.pl www.michalbereta.pl 1 Wyszukiwanie sekwencji Jak wyszukad z baz danych bioinformatycznych sekwencje podobne do sekwencji zadanej (ang. query

Bardziej szczegółowo

CAŁKOWANIE NUMERYCZNE

CAŁKOWANIE NUMERYCZNE Wprowdzenie Kwdrtury węzły równoodległe Kwdrtury Guss Wzory sumcyjne Trnsport, studi niestcjonrne I stopni, semestr I rok kdemicki 01/013 Instytut L-5, Wydził Inżynierii Lądowej, Politechnik Krkowsk Ew

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa

Analiza matematyczna i algebra liniowa Anliz mtemtyczn i lgebr liniow Mteriły pomocnicze dl studentów do wykłdów Mcierze liczbowe i wyznczniki. Ukłdy równń liniowych. Mcierze. Wyznczniki. Mcierz odwrotn. Równni mcierzowe. Rząd mcierzy. Ukłdy

Bardziej szczegółowo

ROLE OF CUSTOMER IN BALANCED DEVELOPMENT OF COMPANY

ROLE OF CUSTOMER IN BALANCED DEVELOPMENT OF COMPANY FOLIA UNIVERSITATIS AGRICULTURAE STETINENSIS Foli Univ. Agric. Stetin. 2007, Oeconomic 254 (47), 117 122 Jolnt KONDRATOWICZ-POZORSKA ROLA KLIENTA W ZRÓWNOWAŻONYM ROZWOJU FIRMY ROLE OF CUSTOMER IN BALANCED

Bardziej szczegółowo

Wyrównanie sieci niwelacyjnej

Wyrównanie sieci niwelacyjnej 1. Wstęp Co to jest sieć niwelcyjn Po co ją się wyrównje Co chcemy osiągnąć 2. Metod pośrednicząc Wyrównnie sieci niwelcyjnej Metod pośrednicząc i metod grpow Mmy sieć skłdjącą się z szereg pnktów. Niektóre

Bardziej szczegółowo

Wszystkim życzę Wesołych Świąt :-)

Wszystkim życzę Wesołych Świąt :-) Poniższe zdni pochodzą ze zbiorów: ) J. Rutkowski, Algebr bstrkcyjn w zdnich b) M. Bryński, J. Jurkiewicz, Zbiór zdń z lgebry Do kolokwium proszę też przejrzeć zdni z ćwiczeń. Wszystkim życzę Wesołych

Bardziej szczegółowo

Pochodne i całki, macierze i wyznaczniki

Pochodne i całki, macierze i wyznaczniki Cłk oznczon Cłk niewłściw Wzór Tylor Mcierze Pochodne i cłki, mcierze i wyznczniki Stnisłw Jworski Ktedr Ekonometrii i Sttystyki Zkłd Sttystyki Stnisłw Jworski Pochodne i cłki, mcierze i wyznczniki Cłk

Bardziej szczegółowo

Wstęp do Biologii Obliczeniowej

Wstęp do Biologii Obliczeniowej Wstęp do Biologii Obliczeniowej Zagadnienia na kolokwium Bartek Wilczyński 5. czerwca 2018 Sekwencje DNA i grafy Sekwencje w biologii, DNA, RNA, białka, alfabety, transkrypcja DNA RNA, translacja RNA białko,

Bardziej szczegółowo

4. RACHUNEK WEKTOROWY

4. RACHUNEK WEKTOROWY 4. RACHUNEK WEKTOROWY 4.1. Wektor zczepiony i wektor swoodny Uporządkowną prę punktów (A B) wyznczjącą skierowny odcinek o początku w punkcie A i końcu w punkcie B nzywmy wektorem zczepionym w punkcie

Bardziej szczegółowo

Dopasowanie sekwencji (sequence alignment)

Dopasowanie sekwencji (sequence alignment) Co to jest alignment? Dopasowanie sekwencji (sequence alignment) Alignment jest sposobem dopasowania struktur pierwszorzędowych DNA, RNA lub białek do zidentyfikowanych regionów w celu określenia podobieństwa;

Bardziej szczegółowo

LISTA02: Projektowanie układów drugiego rzędu Przygotowanie: 1. Jakie własności ma równanie 2-ego rzędu & x &+ bx&

LISTA02: Projektowanie układów drugiego rzędu Przygotowanie: 1. Jakie własności ma równanie 2-ego rzędu & x &+ bx& LISTA: Projektownie ukłdów drugiego rzędu Przygotownie: 1. Jkie włsności m równnie -ego rzędu & &+ b + c u jeśli: ) c>; b) c; c) c< Określ położenie biegunów, stbilność, oscylcje Zdni 1: Wyzncz bieguny.

Bardziej szczegółowo

( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu.

( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu. Elementy rchunku prwdopodoeństw f 0 f() - gęstość rozkłdu prwdopodoeństw X f d P< < = f( d ) F = f( tdt ) - dystryunt rozkłdu E( X) = tf( t) dt - wrtość średn D ( X) = E( X ) E( X) - wrncj = f () F ()

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysłw Smorwińskiego w Zespole Szkół Ekonomicznych w Kliszu Wymgni edukcyjne niezbędne do uzyskni poszczególnych śródrocznych i rocznych ocen klsyfikcyjnych z obowiązkowych zjęć

Bardziej szczegółowo

ZASTOSOWANIE RÓWNANIA NASGRO DO OPISU KRZYWYCH PROPAGACYJI PĘKNIĘĆ ZMĘCZENIOWYCH

ZASTOSOWANIE RÓWNANIA NASGRO DO OPISU KRZYWYCH PROPAGACYJI PĘKNIĘĆ ZMĘCZENIOWYCH Sylwester KŁYSZ *, **, nn BIEŃ **, Pweł SZBRCKI ** ** Instytut Techniczny ojsk Lotniczych, rszw * Uniwersytet rmińsko-mzurski, Olsztyn ZSTOSONIE RÓNNI NSGRO DO OPISU KRZYYCH PROPGCYJI PĘKNIĘĆ ZMĘCZENIOYCH

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Ktlog wymgń progrmowych n poszczególne stopnie szkolne Mtemtyk. Poznć, zrozumieć Ksztłcenie w zkresie podstwowym. Kls 2 Poniżej podjemy umiejętności, jkie powinien zdobyć uczeń z kżdego dziłu, by uzyskć

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 9. ZBIORY ROZMYTE Częstochow 204 Dr hb. inż. Grzegorz Dudek Wydził Elektryczny Politechnik Częstochowsk ZBIORY ROZMYTE Klsyczne pojęcie zbioru związne jest z logiką dwuwrtościową

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7)

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7) EGZAMIN MATURALNY OD ROKU SZKOLNEGO 01/015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A, A, A, A6, A7) GRUDZIEŃ 01 Klucz odpowiedzi do zdń zmkniętych Nr zdni 1 5 Odpowiedź

Bardziej szczegółowo

Bioinformatyka Laboratorium, 30h. Michał Bereta

Bioinformatyka Laboratorium, 30h. Michał Bereta Bioinformatyka Laboratorium, 30h Michał Bereta mbereta@pk.edu.pl www.michalbereta.pl 1 Często dopasować chcemy nie dwie sekwencje ale kilkanaście lub więcej 2 Istnieją dokładne algorytmy, lecz są one niewydajne

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka. Poziom rozszerzony. Listopad Wskazówki do rozwiązania zadania

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka. Poziom rozszerzony. Listopad Wskazówki do rozwiązania zadania Vdemecum i Testy GIELDAMATURALNA.PL ODBIERZ KOD DOSTĘPU* - Twój indywidulny klucz do wiedzy! *Kod n końcu klucz odpowiedzi Mtemtyk KRYTERIA OCENIANIA ODPOWIEDZI Próbn Mtur z OPERONEM Mtemtyk Poziom rozszerzony

Bardziej szczegółowo

2. Na ich rozwiązanie masz 90 minut. Piętnaście minut przed upływem tego czasu zostaniesz o tym poinformowany przez członka Komisji Konkursowej.

2. Na ich rozwiązanie masz 90 minut. Piętnaście minut przed upływem tego czasu zostaniesz o tym poinformowany przez członka Komisji Konkursowej. Kod uczni... MAŁOPOLSKI KONKURS MATEMATYCZNY dl uczniów gimnzjów Rok szkolny 03/0 ETAP SZKOLNY - 5 pździernik 03 roku. Przed Tobą zestw zdń konkursowych.. N ich rozwiąznie msz 90 minut. Piętnście minut

Bardziej szczegółowo

Nowy system wsparcia rodzin z dziećmi

Nowy system wsparcia rodzin z dziećmi o Nowy system wsprci rodzin z dziećmi Projekt współfinnsowny ze środków Unii Europejskiej w rmch Europejskiego Funduszu Społecznego Brbr Kowlczyk Cele systemu wsprci rodzin z dziećmi dobro dzieci potrzebujących

Bardziej szczegółowo

Ć W I C Z E N I E N R E-14

Ć W I C Z E N I E N R E-14 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA ELEKTRYCZNOŚCI I MAGNETYZMU Ć W I C Z E N I E N R E-14 WYZNACZANIE SZYBKOŚCI WYJŚCIOWEJ ELEKTRONÓW

Bardziej szczegółowo

Wymagania edukacyjne z matematyki FUNKCJE dopuszczającą dostateczną dobrą bardzo dobrą

Wymagania edukacyjne z matematyki FUNKCJE dopuszczającą dostateczną dobrą bardzo dobrą Wymgni edukcyjne z mtemtyki Kls IIC. Rok szkolny 013/014 Poziom podstwowy FUNKCJE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje przyporządkowni będące funkcjmi określ funkcję różnymi

Bardziej szczegółowo

MES-1 08 Element 3-węzłowy. Całkowanie numeryczne

MES-1 08 Element 3-węzłowy. Całkowanie numeryczne MES- 8 Element -węzłowy. Cłkownie numeryczne Elementy drugiego rzędu (kwdrtowe) Co nm dje interpolcj kwdrtow liniow kwdrtow Interpolcj kwdrtow pozwl n lepsze odzwierciedlenie nie tylko funkcji, le i jej

Bardziej szczegółowo

Dopasowanie sekwencji Sequence alignment. Bioinformatyka, wykłady 3 i 4 (19, 26.X.2010)

Dopasowanie sekwencji Sequence alignment. Bioinformatyka, wykłady 3 i 4 (19, 26.X.2010) Dopasowanie sekwencji Sequence alignment Bioinformatyka, wykłady 3 i 4 (19, 26.X.2010) krzysztof_pawlowski@sggw.pl terminologia alignment 33000 dopasowanie sekwencji 119 uliniowienie sekwencji 82 uliniowianie

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Wprowadzenie i biologiczne bazy danych. 1 Wprowadzenie... 3. 2 Wprowadzenie do biologicznych baz danych...

Spis treści. Przedmowa... XI. Wprowadzenie i biologiczne bazy danych. 1 Wprowadzenie... 3. 2 Wprowadzenie do biologicznych baz danych... Przedmowa... XI Część pierwsza Wprowadzenie i biologiczne bazy danych 1 Wprowadzenie... 3 Czym jest bioinformatyka?... 5 Cele... 5 Zakres zainteresowań... 6 Zastosowania... 7 Ograniczenia... 8 Przyszłe

Bardziej szczegółowo

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL 1

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL 1 Złącznik nr 3 Krt oceny merytorycznej wniosku o dofinnsownie projektu konkursowego PO KL Krt oceny merytorycznej wniosku o dofinnsownie projektu konkursowego PO KL 1 NR WNIOSKU KSI: POKL.05.02.01 00../..

Bardziej szczegółowo

Rozwiązania maj 2017r. Zadania zamknięte

Rozwiązania maj 2017r. Zadania zamknięte Rozwiązni mj 2017r. Zdni zmknięte Zd 1. 5 16 5 2 5 2 Zd 2. 5 2 27 2 23 2 2 2 2 Zd 3. 2log 3 2log 5log 3 log 5 log 9 log 25log Zd. 120% 8910 1,2 8910 2,2 8910 $%, 050 Zd 5. Njłtwiej jest zuwżyć że dl 1

Bardziej szczegółowo

prof. dr hab. inż. Marta Kasprzak Instytut Informatyki, Politechnika Poznańska Dopasowanie sekwencji

prof. dr hab. inż. Marta Kasprzak Instytut Informatyki, Politechnika Poznańska Dopasowanie sekwencji Bioinformatyka wykład 5: dopasowanie sekwencji prof. dr hab. inż. Marta Kasprzak Instytut Informatyk Politechnika Poznańska Dopasowanie sekwencji Badanie podobieństwa sekwencji stanowi podstawę wielu gałęzi

Bardziej szczegółowo

Podstawy układów logicznych

Podstawy układów logicznych Podstwy ukłdów logicznych Prw logiki /9 Alger Boole Prw logiki WyrŜeni i funkcje logiczne Brmki logiczne Alger Boole /9 Alger Boole' Powszechnie stosowne ukłdy cyfrowe (logiczne) prcują w oprciu o tzw.

Bardziej szczegółowo

Wyznacznik macierzy. - wyznacznik macierzy A

Wyznacznik macierzy. - wyznacznik macierzy A Wzncznik mcierz Uwg Wzncznik definiujem tlko dl mcierz kwdrtowch:,,,,,, =,,,,,, n n n n nn n,,, det = n,,, n n nn - mcierz - wzncznik mcierz Wzncznik mcierz to wzncznik n wektorów, które stnowią kolumn

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka. Poziom rozszerzony. Listopad Wskazówki do rozwiązania zadania

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka. Poziom rozszerzony. Listopad Wskazówki do rozwiązania zadania Vdemecum i Testy GIELDAMATURALNA.PL ODBIERZ KOD DOSTĘPU* - Twój indywidulny klucz do wiedzy! *Kod n końcu klucz odpowiedzi Mtemtyk KRYTERIA OCENIANIA ODPOWIEDZI Próbn Mtur z OPERONEM Mtemtyk Poziom rozszerzony

Bardziej szczegółowo

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Ćwiczenie 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ 9.. Opis teoretyczny Soczewką seryczną nzywmy przezroczystą bryłę ogrniczoną dwom powierzchnimi serycznymi o promienich R i

Bardziej szczegółowo

Jest błędem odwołanie się do zmiennej, której nie przypisano wcześniej żadnej wartości.

Jest błędem odwołanie się do zmiennej, której nie przypisano wcześniej żadnej wartości. Zmienne Po nieco intuicyjnych początkch, zjmiemy się obiektmi, n których opier się progrmownie są to zmienne. Zmienne Progrmy operują n zmiennych. Ndwnie im wrtości odbyw się poprzez instrukcję podstwieni.

Bardziej szczegółowo

3. F jest lewostronnie ciągła

3. F jest lewostronnie ciągła Def. Zmienną losową nzywmy funkcję X: tką, że x R : { : X( ) < x }. Ozn.: zmist pisd A = { : X( ) < x } piszemy A = { X < x } zdrzenie poleg n tym, że X( )

Bardziej szczegółowo

DZIAŁ 2. Figury geometryczne

DZIAŁ 2. Figury geometryczne 1 kl. 6, Scenriusz lekcji Pole powierzchni bryły DZAŁ 2. Figury geometryczne Temt w podręczniku: Pole powierzchni bryły Temt jest przeznczony do relizcji podczs 2 godzin lekcyjnych. Zostł zplnowny jko

Bardziej szczegółowo

ZADANIA ZAMKNIĘTE. Zadanie 1 (1p). Ile wynosi 0,5% kwoty 120 mln zł? A. 6 mln zł B. 6 tys. zł C. 600 tys. zł D. 60 tys. zł

ZADANIA ZAMKNIĘTE. Zadanie 1 (1p). Ile wynosi 0,5% kwoty 120 mln zł? A. 6 mln zł B. 6 tys. zł C. 600 tys. zł D. 60 tys. zł TRZECI SEMESTR LICEUM OGÓLNOKSZTAŁCĄCEGO DLA DOROSŁYCH PRACA KONTROLNA Z MATEMATYKI ROZSZERZONEJ O TEMACIE: Liczby rzeczywiste i wyrżeni lgebriczne Niniejsz prc kontroln skłd się z zdń zmkniętych ( zdń)

Bardziej szczegółowo

WSTĘP DO INFORMATYKI

WSTĘP DO INFORMATYKI Akdemi Górniczo-Hutnicz Wydził Elektrotechniki, Automtyki, Informtyki i Inżynierii Biomedycznej WSTĘP DO INFORMATYKI SYSTEMY KODOWANIA ORAZ REPREZENTACJA I ARYTMETYKA LICZB Adrin Horzyk www.gh.edu.pl SYSTEMY

Bardziej szczegółowo

O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI

O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI ZESZYTY NAUKOWE 7-45 Zenon GNIAZDOWSKI O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI Streszczenie W prcy omówiono grupę permutcji osi krtezjńskiego ukłdu odniesieni reprezentowną przez mcierze permutcji,

Bardziej szczegółowo

Dopasowanie sekwencji Sequence alignment. Bioinformatyka, wykłady 3 i 4 (16, 23.X.2012)

Dopasowanie sekwencji Sequence alignment. Bioinformatyka, wykłady 3 i 4 (16, 23.X.2012) Dopasowanie sekwencji Sequence alignment Bioinformatyka, wykłady 3 i 4 (16, 23.X.2012) krzysztof_pawlowski@sggw.pl terminologia alignment 33000 dopasowanie sekwencji 119 uliniowienie sekwencji 82 uliniowianie

Bardziej szczegółowo

Dopasowanie sekwencji c.d. Sequence alignment. Bioinformatyka, wykład 5 (6.XI.2012) krzysztof_pawlowski@sggw.pl

Dopasowanie sekwencji c.d. Sequence alignment. Bioinformatyka, wykład 5 (6.XI.2012) krzysztof_pawlowski@sggw.pl Dopasowanie sekwencji c.d. Sequence alignment Bioinformatyka, wykład 5 (6.XI.2012) krzysztof_pawlowski@sggw.pl Dopasowanie sekwencji - znaczenie Podobieństwo porównywanych sekwencji (similarity) może świadczyć

Bardziej szczegółowo

Podstawy Techniki Cyfrowej Układy komutacyjne

Podstawy Techniki Cyfrowej Układy komutacyjne Podstwy Techniki Cyfrowej Ukłdy komutcyjne Ukłdy kombincyjne, umożliwijące przełącznie (komutcję) sygnłów cyfrowych, nzyw się ukłdmi ukłdmi komutcyjnymi. Do podstwowych ukłdów komutcyjnych zlicz się multipleksery

Bardziej szczegółowo

WENTYLACJA PRZESTRZENI POTENCJALNIE ZAGROŻONYCH WYBUCHEM MIESZANIN GAZOWYCH

WENTYLACJA PRZESTRZENI POTENCJALNIE ZAGROŻONYCH WYBUCHEM MIESZANIN GAZOWYCH Ochron przeciwwybuchow Michł Świerżewski WENTYLACJA PRZESTRZENI POTENCJALNIE ZAGROŻONYCH WYBUCHEM MIESZANIN GAZOWYCH 1. Widomości ogólne Zgodnie z postnowienimi rozporządzeni Ministr Sprw Wewnętrznych

Bardziej szczegółowo