Ć W I C Z E N I E N R E-14

Wielkość: px
Rozpocząć pokaz od strony:

Download "Ć W I C Z E N I E N R E-14"

Transkrypt

1 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA ELEKTRYCZNOŚCI I MAGNETYZMU Ć W I C Z E N I E N R E-14 WYZNACZANIE SZYBKOŚCI WYJŚCIOWEJ ELEKTRONÓW

2 Ćwiczni E-14: Wyznczni szybkości wyjściowj lktronów I. Zgdnini do przstudiowni 1. Tori przwodnictw lktryczngo mtli.. Prc wyjści lktronu z mtlu. 3. Rodzj misji lktronowj. 4. Prwo Richrdson dl trmomisji. 5. Prędkość orz nrgi lktronów i jonów w polu lktrycznym. 6. Budow i dziłni lmpy lktronowj - diody. 7. Mtod wyznczni prędkości wyjściowj lktronów. II. Wprowdzni tortyczn Wdług klsycznj torii przwodnictwo lktryczn mtli tłumczy się występownim w nich dużj liczby nośników łdunku lktryczngo - lktronów swobodnych. Z względu n ich brdzo dużą liczbę w jdnostc objętości orz ni-wilki rozmiry używn jst pojęci tzw. gzu lktronowgo. Podobni jk cząstczki w gzi rzczywistym, tk i lktrony w gzi lktronowym poruszją się z pwnymi prędkościmi zlżnymi od tmprtury. Podczs ruchu lktrony swobodn zdrzją się z jonmi sici krystlicznj mtlu. Mtl jko cłość jst lktryczni obojętny, poniwż łdunk swobodnych lktronów jst kompnsowny dodtnim łdunkim jonów tworzących sić krystliczną. Obcność jonów dodtnich powoduj, z lktrony nlżąc do gzu lktronowgo ni mogą swobodni opuścić mtlu. Enrgi, jką t lktrony posidją wskutk ruchu ciplngo, jst niwystrczjąc, by mogły się wydostć n zwnątrz mtlu. Aby wyrwć lktron z pol sił oddziływni dodtnich jonów, trzb wykonć pwną prcę, zw. prcą wyjści lktronu z mtlu. Prc wyjści jst wilkością chrktrystyczną, któr zlży od rodzju substncji orz stnu jj powirzchni. Jj wrtość jst rzędu kilku lktronowoltów. Tk więc misj lktronów z powirzchni przwodnik możliw jst jdyni wówczs, gdy ich nrgi jst wyższ od prcy wyjści lktronu z mtlu. W tmprturz pokojowj jdyni znikom część lktronów posid wystrczjącą nrgię do wykonni tj prcy i wydostni się n zwnątrz. Istniją różn sposoby przkzywni lktronom żądnj nrgii. Elktrony mogą ją uzyskć w wyniku dziłni czynników zwnętrznych, tkich jk: siln pol lktryczn (misj polow lub zimn), ogrzwni przwodnik (trmomisj), nświtlni jgo powirzchni (fotomisj) orz bombrdowni powirzchni przz inn cząstki (misj wtórn). W zjwisku trmomisji nrgi potrzbn lktronom do opuszczni mtlu jst dostrczn w postci cipł. W mirę podwyższni tmprtury rośni liczb szybkich lktronów i dzięki tmu wzrst liczb lktronów opuszczjących mtl. Liczbę lktronów mitownych z mtlu pod wpływm cipł w jdnostc czsu, przypdjących n jdnostkową powirzchnię, nzywmy gęstością prądu trmomisji. Gęstość tgo prądu okrśl równni Richrdson

3 Ćwiczni E-14: Wyznczni szybkości wyjściowj lktronów j s T xp A k T (1) gdzi: A - prc wyjści, k - stł Boltzmnn, T - tmprtur mtlu, - stł chrktryzując mtl. Równni to wskzuj n ndzwyczj szybki wzrost gęstości prądu trmomisji z wzrostm tmprtury. Enrgi cipln dostrczon do przwodnik zostj zużyt n wykonni prcy wyjści, pozostłą jj część w postci nrgii kintycznj posid lktron opuszczjący mtl E A E k () gdzi: A - prc wyjści lktronu z mtlu, E k = mv / - nrgi kintyczn lktronu. Tk więc lktrony, opuszczjąc powirzchnię ogrzwngo przwodnik, posidją pwną prędkość, którą nzywć będzimy prędkością wyjściową. Prędkości wyjściow lktronów ni są dokłdni równ, lcz wykzują pwin rozrzut zgodny z mxwllowskim rozkłdm prędkości. Mtod pomiru Clm ćwiczni jst wyznczni prędkości wyjściowj lktronów wymitownych z powirzchni mtlu. Mtod zstosown w tym ćwiczniu polg n hmowniu lktronów w zwnętrznym polu lktrycznym odpowidnio skirownym. Możn to zrlizowć z pomocą lmpy lktronowj - diody. Źródłm lktronów w lmpi jst żrzon lktryczni ktod. Jżli nodę połączymy z dodtnim bigunm źródł, ktodę z ujmnym, to lktrony będą przyciągn przz nodę i w obwodzi popłyni prąd lktryczny. W clu zhmowni wymitownych z ktody lktronów nlży połączyć nodę z ujmnym bigunm źródł, ntomist ktodę z dodtnim. Tki połączni powoduj wytworzni między ktodą i nodą pol lktryczngo, hmującgo ruch lktronów w kirunku nody. Elktrony prz- bywjąc różnicę potncjłów U muszą wtdy wykonć prcę W = U. Prcę tę wykonują kosztm swj nrgii kintycznj E k = mv /. Spośród lktronów wymitownych przz ktodę z różnymi prędkościmi początkowymi, do nody dotrą tylko t, których początkow nrgi kintyczn jst większ lub równ prcy konicznj n pokonni pol hmującgo. Możmy więc zpisć mv U (3) gdzi: - łdunk lktronu, U - npięci pol hmującgo. Z wzrostm ujmngo potncjłu nody liczb lktronów o nrgii wystrczjącj do przzwyciężni pol hmującgo jst corz mnijsz i prąd nodowy w obwodzi mlj. Przy pwnj wrtości npięci 3

4 Ćwiczni E-14: Wyznczni szybkości wyjściowj lktronów U = U (npięci odcięci) żdn z lktronów ni dochodzi do nody, więc prąd mlj do zr I = 0. Wówczs spłniony jst wrunk mv U A stąd mksymln prędkość lktronów wyrzi się zlżnością v mx U m (4) Pomir njmnijszgo npięci U, dl którgo ntężni prądu nodowgo jst równ zru, pozwl z równni (4) obliczyć prędkość njszybszych lktronów. W tn sposób wyznczmy prędkości lktronów dl różnych tmprtur, tzn. dl różnych wrtości npięci żrzni ktody. Nlży zuwżyć, ż mtod zstosown w tym ćwiczniu pozwl wyznczyć prędkości tylko njszybszych lktronów opuszczjących mtl w zjwisku trmomisji. III. Zstw pomirowy Zsilcz, mikrompromirz, woltomirz, lmp lktronow - diod. I. Schmt ukłdu pomirowgo. Przbig ćwiczni 1. Połączyć obwód wdług schmtu.. Przłącznik npięci żrzni U ż ustwić w pozycji 4,0. 3. Potncjomtrm zwiększć ujmn npięci nodow do momntu ż milimpromirz wskż Odczytć npięci odcięci (dl I = 0). Dl kżdj wrtości npięci żrzni wykonć trzy pomiry. 5. Dokonć pomirów dl pozostłych npięć żrzni > 4. UWAGA! Nlży odczytć njmnijsz npięci, przy którym I = Wyniki pomirów wpisć do tbli. 4

5 I. Tbl pomirow Ćwiczni E-14: Wyznczni szybkości wyjściowj lktronów U ż [] U [] [m/s] [m/s] 100% Woltomirz U Kls mirnik Zkrs pomirowy Wrtość njmnijszj dziłki II. Oprcowni ćwiczni 1. Dl kżdj wrtości npięci odcięci U obliczyć prędkość wyjściową lktronu z wzoru U m przyjmując dl lktronu /m = 1, C/kg.. Obliczon wrtości wpisć do tbli. III. Rchunk błędu 1. Błąd bzwzględny obliczmy mtodą różniczki zupłnj: U U U U mu m gdzi U - nipwność pomirow npięci odcięci U Obliczni błędu względngo kls x zkrs 1 U dz 100 prowdzą do prostgo wyrżni 1 U U 5

6 Ćwiczni E-14: Wyznczni szybkości wyjściowj lktronów Litrtur 1. Ćwiczni lbortoryjn w politchnic, prc zbiorow pod rd. T. Rwj, PWN, Wrszw Ćwiczni lbortoryjn z fizyki, prc zbiorow pod rd. M. Nowk, Wydwnictwo Politchniki Śląskij, Gliwic Jworski B., Ditłf A., Kurs fizyki, T. II, Elktryczność i mgntyzm, PWN, Wrszw Lch J., Oprcowni wyników pomirów w lbortorium podstw fizyki, Wydwnictwo Wydziłu Inżynirii Procsowj, Mtriłowj i Fizyki Stosownj PCz, Częstochow Szczniowski S., Fizyk doświdczln, cz. III, Elktryczność i mgntyzm, PWN, Wrszw

E9. BADANIE ZJAWISKA TERMOEMISJI ELEKTRONÓW

E9. BADANIE ZJAWISKA TERMOEMISJI ELEKTRONÓW E9. BADANE ZJAWSKA TERMOEMSJ ELEKTRONÓW orcowł Bożn Jnow-Dmoch Zjwio trmicznj miji ltronów olg n uwlniniu ltronów z owirzchni ngrzngo cił tłgo lub ciłgo. Klycznym rzyłdm trmomiji jt mij ltronów z ngrzngo

Bardziej szczegółowo

Przykład 2.6. Przekrój złożony z trzech kształtowników walcowanych.

Przykład 2.6. Przekrój złożony z trzech kształtowników walcowanych. Przkłd 6 Przkrój złożon z trzh ksztłtowników wlownh Polni: Wznzć główn ntrln momnt bzwłdnośi orz kirunki główn dl poniższgo przkroju złożongo z trzh ksztłtowników wlownh 0800 0 80800 Dn dotzą ksztłtowników

Bardziej szczegółowo

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Ćwiczenie 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ 9.. Opis teoretyczny Soczewką seryczną nzywmy przezroczystą bryłę ogrniczoną dwom powierzchnimi serycznymi o promienich R i

Bardziej szczegółowo

ANALIZA PRACY SYSTEMU ENERGETYCZNO-NAPĘDOWEGO STATKU TYPU OFFSHORE Z WYKORZYSTANIEM METODY DRZEW USZKODZEŃ

ANALIZA PRACY SYSTEMU ENERGETYCZNO-NAPĘDOWEGO STATKU TYPU OFFSHORE Z WYKORZYSTANIEM METODY DRZEW USZKODZEŃ MGR INŻ. LSZK CHYBOWSKI Politchnik Szczcińsk Wydził Mchniczny Studium Doktorncki ANALIZA PRACY SYSTMU NRGTYCZNO-NAPĘDOWGO STATKU TYPU OFFSHOR Z WYKORZYSTANIM MTODY DRZW USZKODZŃ STRSZCZNI W mtril przdstwiono

Bardziej szczegółowo

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych Zstosownie multimetrów cyfrowych do pomiru podstwowych wielkości elektrycznych Cel ćwiczeni Celem ćwiczeni jest zpoznnie się z możliwościmi pomirowymi współczesnych multimetrów cyfrowych orz sposobmi wykorzystni

Bardziej szczegółowo

Grafy hamiltonowskie, problem komiwojażera algorytm optymalny

Grafy hamiltonowskie, problem komiwojażera algorytm optymalny 1 Grfy hmiltonowski, problm komiwojżr lgorytm optymlny Wykł oprcowny n postwi książki: M.M. Sysło, N.Do, J.S. Kowlik, Algorytmy optymlizcji yskrtnj z progrmmi w języku Pscl, Wywnictwo Nukow PWN, 1999 2

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE DLA GIMNAZJUM

WYMAGANIA EDUKACYJNE DLA GIMNAZJUM WYMAGANIA EDUKACYJNE DLA GIMNAZJUM Tmt Poziom podstwowy Poziom rozszrzony 1 Systm wykrywni skżń i lrmowni 2 Zsdy zchowni się po ogłoszniu lrmu 3 Zdni obrony cywilnj i ochrony 4 Sytucj kryzysow 5 Zgrożni

Bardziej szczegółowo

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH Ćwiczenie Grżyn Nowick, Wldemr Nowicki BDNIE RÓWNOWG WSOWO-ZSDOWYC W ROZTWORC ELETROLITÓW MFOTERYCZNYC Zgdnieni: ktywność i współczynnik ktywności skłdnik roztworu. ktywność jonów i ktywność elektrolitu.

Bardziej szczegółowo

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 11 Badanie materiałów ferromagnetycznych

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 11 Badanie materiałów ferromagnetycznych Laboratorium Półprzwodniki Dilktryki Magntyki Ćwiczni nr Badani matriałów frromagntycznych I. Zagadninia do przygotowania:. Podstawow wilkości charaktryzując matriały magntyczn. Związki pomiędzy B, H i

Bardziej szczegółowo

Ćwiczenia laboratoryjne z przedmiotu : Napędy Hydrauliczne i Pneumatyczne

Ćwiczenia laboratoryjne z przedmiotu : Napędy Hydrauliczne i Pneumatyczne Lbortorium nr 11 Temt: Elementy elektropneumtycznych ukłdów sterowni 1. Cel ćwiczeni: Opnownie umiejętności identyfikcji elementów elektropneumtycznych n podstwie osprzętu FESTO Didctic. W dużej ilości

Bardziej szczegółowo

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań KONKURS MATEMATYCZNY dl uczniów gimnzjów w roku szkolnym 0/ II etp zwodów (rejonowy) 0 listopd 0 r. Propozycj punktowni rozwiązń zdń Uwg: Z kżde poprwne rozwiąznie inne niż przewidzine w propozycji punktowni

Bardziej szczegółowo

2. Tensometria mechaniczna

2. Tensometria mechaniczna . Tensometri mechniczn Wstęp Tensometr jk wskzywłby jego nzw to urządzenie służące do pomiru nprężeń. Jk jednk widomo, nprężeni nie są wielkościmi mierzlnymi i stnowią jedynie brdzo wygodne pojęcie mechniki

Bardziej szczegółowo

Farmakokinetyka furaginy jako przykład procesu pierwszego rzędu w modelu jednokompartmentowym zawierającym sztuczną nerkę jako układ eliminujący lek

Farmakokinetyka furaginy jako przykład procesu pierwszego rzędu w modelu jednokompartmentowym zawierającym sztuczną nerkę jako układ eliminujący lek 1 Matriał tortyczny do ćwicznia dostępny jst w oddzilnym dokumnci, jak równiż w książc: Hrmann T., Farmakokintyka. Toria i praktyka. Wydawnictwa Lkarski PZWL, Warszawa 2002, s. 13-74 Ćwiczni 6: Farmakokintyka

Bardziej szczegółowo

Wykład 6 Dyfrakcja Fresnela i Fraunhofera

Wykład 6 Dyfrakcja Fresnela i Fraunhofera Wykłd 6 Dyfrkcj Fresnel i Frunhofer Zjwisko dyfrkcji (ugięci) świtł odkrył Grimldi (XVII w). Poleg ono n uginniu się promieni świetlnych przechodzących w pobliżu przeszkody (np. brzeg szczeliny). Wyjśnienie

Bardziej szczegółowo

Układ elektrohydrauliczny do badania siłowników teleskopowych i tłokowych

Układ elektrohydrauliczny do badania siłowników teleskopowych i tłokowych TDUSZ KRT TOMSZ PRZKŁD Ukłd elektrohydruliczny do bdni siłowników teleskopowych i tłokowych Wprowdzenie Polsk Norm PN-72/M-73202 Npędy i sterowni hydruliczne. Cylindry hydruliczne. Ogólne wymgni i bdni

Bardziej szczegółowo

Od lewej: piramida Chefrena, Wielki Sfinks, piramida Cheopsa.

Od lewej: piramida Chefrena, Wielki Sfinks, piramida Cheopsa. 1. Pirmidiotologi. W obfitej literturze przedmiotu podje się, że pirmid Ceops, lub też z ngielsk Wielk Pirmid (te Gret Pyrmid), zwier w swej konstrukcji pełną i szczegółową istorię rodzju ludzkiego od

Bardziej szczegółowo

Ćwiczenie 42 Wyznaczanie ogniskowych soczewek

Ćwiczenie 42 Wyznaczanie ogniskowych soczewek Ćwiczenie 4 Wyzncznie ogniskowych soczewek Wstęp teoretyczny: Krzyszto Rębils. utorem ćwiczeni w Prcowni izycznej Zkłdu izyki Uniwersytetu Rolniczego w Krkowie jest Józe Zpłotny. ZJWISK ZŁMNI ŚWITŁ Świtło,

Bardziej szczegółowo

SPECYFIKACJA TECHNICZNA APARAT USG

SPECYFIKACJA TECHNICZNA APARAT USG Złącznik nr 7 SPECYFIKACJA TECHNICZNA APARAT USG Ultrsonogrf Wysokij Klsy z głowicmi Phsd Arry, Convx i Liniową orz z modułm Echokrdiogrfii, Strss Echo i modułm EKG. L.p. Wymgn prmtry tchniczn Wymgni Prmtry

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II LO

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II LO I Postnowieni ogólne Przedmiotowy system ocenini z mtemtyki wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Kls II LO 1. Wrunkiem uzyskni pozytywnej oceny semestrlnej z mtemtyki jest: ) zliczenie

Bardziej szczegółowo

STYLE. TWORZENIE SPISÓW TREŚCI

STYLE. TWORZENIE SPISÓW TREŚCI STYLE. TWORZENIE SPISÓW TREŚCI Ćwiczenie 1 Tworzenie nowego stylu n bzie istniejącego 1. Formtujemy jeden kpit tekstu i zznczmy go (stnowi on wzorzec). 2. Wybiermy Nrzędzi główne, rozwijmy okno Style (lub

Bardziej szczegółowo

Rozdzielacz suwakowy sterowany elektrycznie typ WE10

Rozdzielacz suwakowy sterowany elektrycznie typ WE10 Rozdzielcz suwkowy sterowny elektrycznie typ WE WN do,5 M do dm /min KR KLOGOW - INSRUKCJ OSŁUGI WK 499 78.4 ZSOSOWNIE Rozdzielcz suwkowy sterowny elektrycznie typ WE jest przeznczony do zminy kierunku

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II TAK

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II TAK I Postnowieni ogólne Przedmiotowy system ocenini z mtemtyki wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Kls II TAK 1. Wrunkiem uzyskni pozytywnej oceny semestrlnej z mtemtyki jest: ) zliczenie

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa Mtemtyk finnsow 12.03.2012 r. Komisj Egzmincyjn dl Akturiuszy LIX Egzmin dl Akturiuszy z 12 mrc 2012 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 100 minut

Bardziej szczegółowo

Analiza danych jakościowych

Analiza danych jakościowych Analiza danych jakościowych Ccha ciągła a ccha dyskrtna! Ciągła kg Dyskrtna Cchy jakościow są to cchy, których jdnoznaczn i oczywist scharaktryzowani za pomocą liczb jst nimożliw lub bardzo utrudnion.

Bardziej szczegółowo

POWŁOKI ELEKTROISKROWE WC-CO MODYFIKOWANE WIĄZKĄ LASEROWĄ. 88 Powłoki elektroiskrowe WC-Co modyfikowane wiązką laserową. Wstęp

POWŁOKI ELEKTROISKROWE WC-CO MODYFIKOWANE WIĄZKĄ LASEROWĄ. 88 Powłoki elektroiskrowe WC-Co modyfikowane wiązką laserową. Wstęp Rdek N.,* Szlpko J.** *Ktedr Inżynierii Eksplotcji Politechnik Świętokrzysk, Kielce, Polsk **Khmelnitckij Uniwersytet Nrodowy, Khmelnitckij, Ukrin Wstęp 88 POWŁOKI ELEKTROISKROWE WC-CO MODYFIKOWANE WIĄZKĄ

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Ktlog wymgń progrmowych n poszczególne stopnie szkolne Mtemtyk. Poznć, zrozumieć Ksztłcenie w zkresie podstwowym. Kls 2 Poniżej podjemy umiejętności, jkie powinien zdobyć uczeń z kżdego dziłu, by uzyskć

Bardziej szczegółowo

Prosta metoda sprawdzania fundamentów ze względu na przebicie

Prosta metoda sprawdzania fundamentów ze względu na przebicie Konstrkcje Elementy Mteriły Prost metod sprwdzni fndmentów ze względ n przebicie Prof dr b inż Micł Knff, Szkoł Główn Gospodrstw Wiejskiego w Wrszwie, dr inż Piotr Knyzik, Politecnik Wrszwsk 1 Wprowdzenie

Bardziej szczegółowo

Stereochemia. Izomeria konformacyjna obrót wokół wiązania pojedynczego etan projekcja Newmana

Stereochemia. Izomeria konformacyjna obrót wokół wiązania pojedynczego etan projekcja Newmana Uniwrsytt Jgilloński, Collgium Mdicum, Ktdr Chmii rgnicznj Strochmi Izomri konformcyjn obrót wokół wiązni pojdynczgo tn projkcj Nwmn konformcj: nprzminlgł nprzciwlgł kąt torsyjny w ukłdzi cztrch tomów

Bardziej szczegółowo

- Jeśli dany papier charakteryzuje się wskaźnikiem beta równym 1, to premia za ryzyko tego papieru wartościowego równa się wartości premii rynkowej.

- Jeśli dany papier charakteryzuje się wskaźnikiem beta równym 1, to premia za ryzyko tego papieru wartościowego równa się wartości premii rynkowej. Śrdni waŝony koszt kapitału (WACC) Spółki mogą korzystać z wilu dostępnych na rynku źródł finansowania: akcj zwykł, kapitał uprzywiljowany, krdyty bankow, obligacj, obligacj zaminn itd. W warunkach polskich

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc

Bardziej szczegółowo

Opis i analiza metod pomiaru prędkości kątowej. Prądnice tachometryczne.

Opis i analiza metod pomiaru prędkości kątowej. Prądnice tachometryczne. Opis i nliz metod pomiru prędkości kątowej. Prądnice tcometryczne. Prądnice tcometryczne są to młe prądnice elektryczne, któryc npięcie wyjściowe zwier informcję o prędkości obrotowej, w niektóryc przypdkc

Bardziej szczegółowo

PROJEKT BUDOWLANY. Obiekt: Budynek istniejący C Na terenie kompleksu szpitalnego Przy ul. Staszica 16 73-110 Stargard Szczeciński

PROJEKT BUDOWLANY. Obiekt: Budynek istniejący C Na terenie kompleksu szpitalnego Przy ul. Staszica 16 73-110 Stargard Szczeciński PROJEKT BUDOWLANY Relizcj etpu przebudowy i modernizcji 3 piętr Oddziłu Rehbilitcyjnego polegjącego n budowie szybu windowego, montżu windy szpitlnej orz niezbędnej rozbudowie obiektu budynku C znjdującego

Bardziej szczegółowo

http://www.clausius-tower-society.koszalin.pl/index.html

http://www.clausius-tower-society.koszalin.pl/index.html yłd rc zminy objętości czynni roboczego rc techniczn w ułdzie otwrtym n przyłdzie turbiny RównowŜność prcy i ciepł w obiegu zmniętym I zsd termodynmii dl zminy stnu msy ontrolnej Szczególne przypdi I zsdy

Bardziej szczegółowo

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + + Dl jkih wrtośi A, B zhodzi równość: + +5+6 = A

Bardziej szczegółowo

ZADANIE I OPIS PRZEDMIOTU ZAMÓWENIA SPECYFIKACJA TECHNICZNA (OPIS) OFEROWANEGO SPRZĘTU

ZADANIE I OPIS PRZEDMIOTU ZAMÓWENIA SPECYFIKACJA TECHNICZNA (OPIS) OFEROWANEGO SPRZĘTU ZADANIE I OPIS PRZEDMIOTU ZAMÓWENIA SPECYFIKACJA TECHNICZNA (OPIS) OFEROWANEGO SPRZĘTU Nzw i rs Wykonwy:. I. Systm o ony i trningu koorynji nrwowo-mięśniowj i momntów sił mięśniowyh rozwijnyh w stwh końzyn

Bardziej szczegółowo

Ćwiczenie 3. Dobór mikrosilnika prądu stałego do układu pozycjonującego

Ćwiczenie 3. Dobór mikrosilnika prądu stałego do układu pozycjonującego - projektownie Ćwiczenie 3 Dobór ikrosilnik prądu stłego do ukłdu pozycjonującego Instrukcj Człowiek - njlepsz inwestycj Projekt współfinnsowny przez Unię Europejską w rch Europejskiego Funduszu Społecznego

Bardziej szczegółowo

2. PODSTAWY STATYKI NA PŁASZCZYŹNIE

2. PODSTAWY STATYKI NA PŁASZCZYŹNIE M. DSTY STTYKI N ŁSZZYŹNIE. DSTY STTYKI N ŁSZZYŹNIE.. Zsdy dynmiki Newton Siłą nzywmy wektorową wielkość, któr jest mirą mechnicznego oddziływni n ciło ze strony innych cił. dlszej części ędziemy rozptrywć

Bardziej szczegółowo

KOMPLEKSOWE POMIARY FREZÓW OBWIEDNIOWYCH

KOMPLEKSOWE POMIARY FREZÓW OBWIEDNIOWYCH KOMPLEKSOWE POMIARY FREZÓW OBWIEDNIOWYCH Michł PAWŁOWSKI 1 1. WSTĘP Corz większy rozwój przemysłu energetycznego, w tym siłowni witrowych stwi corz większe wymgni woec producentów przekłdni zętych jeśli

Bardziej szczegółowo

MarekPorycki. Walka SAMBO. rosyjskisystemwalkiwręcz. opracowanienapodstawie. Борьба САМБО AnatolijaCharłampiewa

MarekPorycki. Walka SAMBO. rosyjskisystemwalkiwręcz. opracowanienapodstawie. Борьба САМБО AnatolijaCharłampiewa MrekPorycki Wlk SAMBO rosyjskisystemwlkiwręcz oprcownienpodstwie Борьба САМБО AntolijChrłmpiew Antolij Chrłmpiew urodził się 29 pździernik 1906 roku w Smoleńsku. Wielki rosyjski sportowiec smo, trener

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1 Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem

Bardziej szczegółowo

Sprawozdanie finansowe za20l0 rok

Sprawozdanie finansowe za20l0 rok Krjowy Ruch kologiczno- Spolczny ul. Kuroptwy 9 05-500 Mysidlo NP123-10-32-147 RGON015563734 Sprwozdni finnsow z20l0 rok Urz4d Skrbowy w Pisczni Ul. Czjwicz 2/4 05-500 Pisczno Mysidlo, dn. 30.03.201 1r.

Bardziej szczegółowo

Zastosowanie matematyki w ekonomii

Zastosowanie matematyki w ekonomii Jrosł Kokoszk Zstosoni mtmtki konomii Copright b Colorul Mdi Kopioni, ksroni, umiszczni ormi lktronicznj Intrnci bz konsultcji z łścicilm pr zbronion! Spis trści kliknij n intrsując Cię tmt. Podsto idomości.....

Bardziej szczegółowo

Przygotowanie kart RUP

Przygotowanie kart RUP Przygotownie krt RUP Bnk Gospodrstw Krjowego, Al. Jerozolimskie 7, 00-955 Wrszw Stron nr 1 z 18 Spis Treści 1. WPROWADZENIE... 3 2. PRZYGOTOWANIE KART RUP... 3 2.1 KARTA RUP_L_0151 Depozyt do sygntury

Bardziej szczegółowo

Uniwersytet imienia Adama Mickiewicza w Poznaniu Wydział Matematyki i Informatyki

Uniwersytet imienia Adama Mickiewicza w Poznaniu Wydział Matematyki i Informatyki Uniwrsy imini Adm Mickiwicz w Poznniu Wydził Mmyki i Inormyki Prc dokorsk Algorymy dopsowni wyrzów modmi sysycznymi z wykorzysnim wilowąkowości i symryzci obliczń mgr Arkdiusz Szł Kirownik prcy: Pro. dr

Bardziej szczegółowo

Scenariusz lekcji matematyki w klasie II LO

Scenariusz lekcji matematyki w klasie II LO Autor: Jerzy Wilk Sceriusz lekcji mtemtyki w klsie II LO oprcowy w oprciu o podręczik i zbiór zdń z mtemtyki utorów M. Bryński, N. Dróbk, K. Szymński Ksztłceie w zkresie rozszerzoym Czs trwi: jed godzi

Bardziej szczegółowo

2. Funktory TTL cz.2

2. Funktory TTL cz.2 2. Funktory TTL z.2 1.2 Funktory z otwrtym kolektorem (O.. open olletor) ysunek poniżej przedstwi odnośny frgment płyty zołowej modelu. Shemt wewnętrzny pojedynzej rmki NAND z otwrtym kolektorem (O..)

Bardziej szczegółowo

KARTA KURSU. Kod Punktacja ECTS* 2

KARTA KURSU. Kod Punktacja ECTS* 2 KARTA KURSU Nz Nz j. ng. Odno biologiczn mdycyn sttyczn Wllnss nd sttic mdicin Kod Punktcj ECTS* 2 Koordyntor Mgr Agt Romńsk - Kistl Zspół dydktyczny Mgr Agt Romńsk-Kistl Opis kursu (cl ksztłcni) Clm ksztłcni

Bardziej szczegółowo

Badania symulacyjne efektywności kompensacji mocy biernej odbiorów nieliniowych w oparciu o teorię składowych fizycznych prądu TSFP

Badania symulacyjne efektywności kompensacji mocy biernej odbiorów nieliniowych w oparciu o teorię składowych fizycznych prądu TSFP mgr ż. JULIN WOIK dr ż. MRIN KLU Istytt Tchk Iowcyjych EMG prof. dr h. ż. OGDN MIEDZIŃKI Poltchk Wrocłwsk d symlcyj fktywośc kompscj mocy rj odorów lowych w oprc o torę skłdowych fzyczych prąd TFP W rtykl

Bardziej szczegółowo

POMIARY GPS/IMU, A WYZNACZANIE ELEMENTÓW ORIENTACJI ZEWNĘTRZNEJ

POMIARY GPS/IMU, A WYZNACZANIE ELEMENTÓW ORIENTACJI ZEWNĘTRZNEJ 162 nt Jędryczk POMIAY GPS/IMU, A WYZNACZANIE ELEMENTÓW OIENTACJI ZEWNĘTZNEJ Strszczni. Od kiku t prowdzon są dni nd wykorzystni nowych tchnik pomirowych tkich jk GPS czy IMU do wyznczni mntów orintcji

Bardziej szczegółowo

Zaokrąglanie i zapisywanie wyników obliczeń przybliżonych

Zaokrąglanie i zapisywanie wyników obliczeń przybliżonych Edwrd Musił Oddził Gdński SEP Zokrąglnie i zpisywnie wyników obliczeń przybliżonych Inżynier wykonuje nieml wyłącznie obliczeni przybliżone i powinien mieć nieustnnie n względzie dokłdność, jką chce uzyskć

Bardziej szczegółowo

DZIAŁ 2. Figury geometryczne

DZIAŁ 2. Figury geometryczne 1 kl. 6, Scenriusz lekcji Pole powierzchni bryły DZAŁ 2. Figury geometryczne Temt w podręczniku: Pole powierzchni bryły Temt jest przeznczony do relizcji podczs 2 godzin lekcyjnych. Zostł zplnowny jko

Bardziej szczegółowo

MXZ INVERTER SERIA. Jedna jednostka zewnętrzna może obsługiwać do 8 pomieszczeń. Ograniczenie poboru prądu. Efektywność energetyczna: klasa A

MXZ INVERTER SERIA. Jedna jednostka zewnętrzna może obsługiwać do 8 pomieszczeń. Ograniczenie poboru prądu. Efektywność energetyczna: klasa A INVERTER SERIA MXZ Typoszereg MXZ gwrntuje cicy, wysokowydjny i elstyczny system, spełnijący wszystkie wymgni w zkresie klimtyzcji powietrz. 6 MXZ-2C30VA MXZ-2C40VA MXZ-2C52VA MXZ-3C54VA MXZ-3C68VA MXZ-4C71VA

Bardziej szczegółowo

Aparatura sterująca i sygnalizacyjna Czujniki indukcyjne zbliżeniowe LSI

Aparatura sterująca i sygnalizacyjna Czujniki indukcyjne zbliżeniowe LSI Aprtur sterując i sygnlizcyjn Czujniki indukcyjne zbliżeniowe LSI Czujnik indukcyjny zbliżeniowy prcuje n zsdzie tłumionego oscyltor LC: jeżeli w obszr dziłni dostnie się metl, to z ukłdu zostje pobrn

Bardziej szczegółowo

ZADANIA Układy nieliniowe. s 2

ZADANIA Układy nieliniowe. s 2 Przykłd Okrślić punky równowgi podngo ukłdu ZDNI Ukłdy niliniow u f(,5 y Ry. Część niliniow j okrślon z poocą funkcji: f ( Zkłdy, ż wyuzni j zrow: u. Punky równowgi odpowidją yucji, gdy pochodn części

Bardziej szczegółowo

mgh. Praca ta jest zmagazynowana w postaci energii potencjalnej,

mgh. Praca ta jest zmagazynowana w postaci energii potencjalnej, Wykłd z fizyki. Piot Posmykiewicz 49 6-4 Enegi potencjln Cłkowit pc wykonn nd punktem mteilnym jest ówn zminie jego enegii kinetycznej. Często jednk, jesteśmy zinteesowni znlezieniem pcy jką sił wykonł

Bardziej szczegółowo

Modelowanie 3 D na podstawie fotografii amatorskich

Modelowanie 3 D na podstawie fotografii amatorskich Edwrd Nowk 1, Jonn Nowk Modelownie D n podstwie fotogrfii mtorskich 1. pecyfik fotogrmetrycznego oprcowni zdjęć mtorskich wynik z fktu, że n ogół dysponujemy smymi zdjęcimi - nierzdko są to zdjęci wykonne

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa Mtemtyk finnsow 15.0.010 r. Komisj Egzmincyjn dl Akturiuszy LII Egzmin dl Akturiuszy z 15 mrc 010 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoy egzminownej:... Czs egzminu: 100 minut 1

Bardziej szczegółowo

Zadania do rozdziału 7.

Zadania do rozdziału 7. Zdni do ozdziłu 7. Zd.7.. wiezchołkch kwdtu o okch umieszczono ednkowe łdunku. Jki łdunek o znku pzeciwnym tze umieścić w śodku kwdtu y sił wypdkow dziłąc n kżdy łdunek ył ówn zeu? ozwiąznie: ozptzmy siły

Bardziej szczegółowo

Podstawy programowania obiektowego

Podstawy programowania obiektowego 1/3 Podstwy progrmowni oiektowego emil: m.tedzki@p.edu.pl stron: http://rgorn.p.ilystok.pl/~tedzki/ Mrek Tędzki Wymgni wstępne: Wskzn yły znjomość podstw progrmowni strukturlnego (w dowolnym języku). Temty

Bardziej szczegółowo

Materiały szkoleniowe DRGANIA MECHANICZNE ZAGROŻENIA I PROFILAKTYKA. Serwis internetowy BEZPIECZNIEJ CIOP-PIB

Materiały szkoleniowe DRGANIA MECHANICZNE ZAGROŻENIA I PROFILAKTYKA. Serwis internetowy BEZPIECZNIEJ CIOP-PIB Mteriły szkoleniowe DRGANIA MECHANICZNE ZAGROŻENIA I PROFILAKTYKA Serwis internetowy BEZPIECZNIEJ CIOP-PIB 1. Wprowdzenie Drgnimi nzywne są procesy, w których chrkterystyczne dl nich wielkości fizyczne

Bardziej szczegółowo

ELEMENTY PROSTOKĄTNE Informacje techniczne 1 Kanały 2 Kolana 3 Trójniki 5 Odsadzki Czwórniki 7 Przejścia 8 ELEMENTY DACHOWE Podstawy dachowe 9

ELEMENTY PROSTOKĄTNE Informacje techniczne 1 Kanały 2 Kolana 3 Trójniki 5 Odsadzki Czwórniki 7 Przejścia 8 ELEMENTY DACHOWE Podstawy dachowe 9 ELEMENTY PROSTOKĄTNE nomcj tcniczn 1 Knły 2 Koln 3 Tójniki 5 Oszki Czwóniki 7 Pzjści 8 ELEMENTY DACHOWE Postwy cow 9 Wyzutni 11 Czpni powitz 13 Wywitzki 15 Koln czpn 15 NOX STANLESS STEEL 58-512 St Kminic

Bardziej szczegółowo

2. FUNKCJE WYMIERNE Poziom (K) lub (P)

2. FUNKCJE WYMIERNE Poziom (K) lub (P) Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy

Bardziej szczegółowo

KARTA KURSU. Holistic SPA and Wellness treatments. Kod Punktacja ECTS* 2

KARTA KURSU. Holistic SPA and Wellness treatments. Kod Punktacja ECTS* 2 KARTA KURSU Nz Nz j. ng. Holistyczn zbigi Sp & Wllnss Holistic SPA nd Wllnss trtmnts Kod Punktcj ECTS* 2 Koordyntor mgr Agniszk Rymrczyk-Kpuścik Zspół dydktyczny mgr Agniszk Rymrczyk- Kpuścik Opis kursu

Bardziej szczegółowo

Karta oceny merytorycznej wniosku o dofinansowanie projektu innowacyjnego testującego składanego w trybie konkursowym w ramach PO KL

Karta oceny merytorycznej wniosku o dofinansowanie projektu innowacyjnego testującego składanego w trybie konkursowym w ramach PO KL Złącznik nr 5 Krt oceny merytorycznej Krt oceny merytorycznej wniosku o dofinnsownie projektu innowcyjnego testującego skłdnego w trybie konkursowym w rmch PO KL NR WNIOSKU KSI: WND-POKL. INSTYTUCJA PRZYJMUJĄCA

Bardziej szczegółowo

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe

Bardziej szczegółowo

Wprowadzenie: Do czego służą wektory?

Wprowadzenie: Do czego służą wektory? Wprowdzenie: Do czego służą wektory? Mp połączeń smolotowych Isiget pokzuje skąd smoloty wyltują i dokąd doltują; pokzne jest to z pomocą strzłek strzłki te pokzują przemieszczenie: skąd dokąd jest dny

Bardziej szczegółowo

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję: YZNACZNIKI Do opisu pewnh oiektów nie wstrz użć liz. ie n przkłd, że do opisni sił nleż użć wektor. Sił to przeież nie tlko wielkość le i jej punkt przłożeni, zwrot orz kierunek dziłni. Zte jedną lizą

Bardziej szczegółowo

NOWE NIŻSZE CENY. Ceny spiral introligatorskich DOUBLE-LOOP WIRE. www.radpor.pl

NOWE NIŻSZE CENY. Ceny spiral introligatorskich DOUBLE-LOOP WIRE. www.radpor.pl Rok złożeni 1994 Nowodworsk 32, 21-100 Lubrtów tel./fks 81-855-6154, RADPOR 81-854-2860 Nowodworsk 32, 21-100 Lubrtów tel./fks 81-855-6154, 81-854-2860 www.rdpor.pl Ceny spirl introligtorskic DOUBLE-LOOP

Bardziej szczegółowo

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL 1

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL 1 Złącznik nr 3 Krt oceny merytorycznej wniosku o dofinnsownie projektu konkursowego PO KL Krt oceny merytorycznej wniosku o dofinnsownie projektu konkursowego PO KL 1 NR WNIOSKU KSI: POKL.05.02.01 00../..

Bardziej szczegółowo

KATEDRA ENERGOELEKTRONIKI I ELEKTROENERGETYKI LABORATORIUM ELEKTROENERGETYKI. Rys. 7.7.1. Pomiar impedancji pętli zwarcia dla obwodu L2

KATEDRA ENERGOELEKTRONIKI I ELEKTROENERGETYKI LABORATORIUM ELEKTROENERGETYKI. Rys. 7.7.1. Pomiar impedancji pętli zwarcia dla obwodu L2 6.7. ntrukcj zczegółow Grup:... 4.. 6.7. Cel ćwiczeni Celem ćwiczeni jet zpoznnie ię z metodmi pomirowymi i przepimi dotyczącymi ochrony przeciwporżeniowej w zczególności ochrony przed dotykiem pośrednim.

Bardziej szczegółowo

BADANIE ZALEŻNOŚCI PRZENIKALNOŚCI MAGNETYCZNEJ

BADANIE ZALEŻNOŚCI PRZENIKALNOŚCI MAGNETYCZNEJ ADANIE ZAEŻNOŚCI PRZENIKANOŚCI MAGNETYCZNEJ FERRIMAGNETYKÓW OD TEMPERATURY 1. Teori Włściwości mgnetyczne sstncji chrkteryzje współczynnik przeniklności mgnetycznej. Dl próżni ten współczynnik jest równy

Bardziej szczegółowo

ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GRANULOMETRYCZNEJ SUROWCÓW I PRODUKTÓW

ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GRANULOMETRYCZNEJ SUROWCÓW I PRODUKTÓW 1 ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GANULOMETYCZNEJ SUOWCÓW I PODUKTÓW 1. Cel zkres ćwczen Celem ćwczen jest opnowne przez studentów metody oceny mterłu sypkego pod względem loścowej zwrtośc frkcj

Bardziej szczegółowo

ZASTOSOWANIE METODY GRAFÓW WIĄZAŃ DO MODELOWANIA PRACY ZESPOŁU PRĄDOTWÓRCZEGO W SIŁOWNI OKRĘTOWEJ

ZASTOSOWANIE METODY GRAFÓW WIĄZAŃ DO MODELOWANIA PRACY ZESPOŁU PRĄDOTWÓRCZEGO W SIŁOWNI OKRĘTOWEJ Chybowski L. Grzbiniak R. Matuszak Z. Maritim Acadmy zczcin Poland ZATOOWANIE METODY GRAFÓW WIĄZAŃ DO MODELOWANIA PRACY ZEPOŁU PRĄDOTWÓRCZEGO W IŁOWNI OKRĘTOWEJ ummary: Papr prsnts issus of application

Bardziej szczegółowo

Pomiary ciśnień i sprawdzanie manometrów

Pomiary ciśnień i sprawdzanie manometrów Poiry ciśnień i srwdznie noetrów Instrukcj do ćwiczeni nr 2 Miernictwo energetyczne - lbortoriu Orcowł: dr inŝ. ElŜbiet Wróblewsk Zkłd Miernictw i Ochrony Atosfery Wrocłw, grudzień 2008 r. I. WSTĘP Ciśnienie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby

Bardziej szczegółowo

Pakiet aplikacyjny. Specjalista ds. rozliczeń i administracji [Pomorze] ADM/2011/01

Pakiet aplikacyjny. Specjalista ds. rozliczeń i administracji [Pomorze] ADM/2011/01 Pkiet plikcyjny Stnowisko: Nr referencyjny: Specjlist ds. rozliczeń i dministrcji [Pomorze] ADM/2011/01 Niniejszy pkiet zwier informcje, które musisz posidć zgłszjąc swoją kndydturę. Zwier on: List do

Bardziej szczegółowo

LUDNOŚĆ. (stan na dzień 31 marca, na godz. 24:00) Data urodzenia. żonaty/zamężna. wdowiec/wdowa. rozwodnik/rozwódka

LUDNOŚĆ. (stan na dzień 31 marca, na godz. 24:00) Data urodzenia. żonaty/zamężna. wdowiec/wdowa. rozwodnik/rozwódka R E P U B L I K A C H O R W A C J I GŁÓWNY URZĄD STATYSTYCZNY LUDNOŚĆ (stn n dzień 31 mrc, n godz. 24:00) Formulrz P-1 Wszystkie dne zwrte w niniejszym formulrzu stnowią tjemnicę służbową i zostną wykorzystne

Bardziej szczegółowo

ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO

ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO Łukasz MACH Strszczni: W artykul przdstawiono procs budowy modlu rgrsji logistycznj, którgo clm jst wspomagani

Bardziej szczegółowo

MODELOWANIE CHARAKTERYSTYK RDZENI FERROMAGNETYCZNYCH

MODELOWANIE CHARAKTERYSTYK RDZENI FERROMAGNETYCZNYCH Krzysztof Górecki Akdemi orsk w Gdyni Klin Detk Pomorsk Wyższ Szkoł Nuk Stosownych w Gdyni ODELOWANIE CHARAKTERYSTYK RDZENI FERROAGNETYCZNYCH Artykuł dotyczy modelowni chrkterystyk rdzeni ferromgnetycznych.

Bardziej szczegółowo

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Proponujemy, by omwijąc dne zgdnienie progrmowe lub rozwiązując zdnie, nuczyciel określł do jkiego zkresu

Bardziej szczegółowo

Droga Pani/Drogi Panie! Wakacje minęły szybko i znowu możemy się spotkać. oraz za zabawami z koleżankami i kolegami.

Droga Pani/Drogi Panie! Wakacje minęły szybko i znowu możemy się spotkać. oraz za zabawami z koleżankami i kolegami. KARTY PRACY 1 CZĘŚĆ KARTA PRACY NR 1 IMIĘ:... DATA: STRONA 1 1. Jkie są twoje oczekiwni i postnowieni związne z kolejnym rokiem szkolnym? Npisz list do nuczyciel, uzupełnijąc luki w tekście. miejscowość

Bardziej szczegółowo

WYZNACZANIE STAŁEJ RÓWNOWAGI KWASOWO ZASADOWEJ W ROZTWORACH WODNYCH

WYZNACZANIE STAŁEJ RÓWNOWAGI KWASOWO ZASADOWEJ W ROZTWORACH WODNYCH Politehni Śląs WYDZIŁ CHEMICZNY KTEDR FIZYKOCHEMII I TECHNOLOGII POLIMERÓW WYZNCZNIE STŁEJ RÓWNOWGI KWSOWO ZSDOWEJ W ROZTWORCH WODNYCH Opieun: Miejse ćwizeni: Ktrzyn Kruiewiz Ktedr Fizyohemii i Tehnoii

Bardziej szczegółowo

Temat lekcji Zakres treści Osiągnięcia ucznia

Temat lekcji Zakres treści Osiągnięcia ucznia ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:

Bardziej szczegółowo

Struktura kapitału, a wartość rynkowa przedsiębiorstwa na rynku kapitałowym

Struktura kapitału, a wartość rynkowa przedsiębiorstwa na rynku kapitałowym Kurs e-lerningowy Giełd Ppierów Wrtościowych i rynek kpitłowy V edycj Struktur kpitłu, wrtość rynkow przedsiębiorstw n rynku kpitłowym 2010 SPIS TREŚCI I. Wstęp 3 II. Podstwowy miernik rentowności kpitłu

Bardziej szczegółowo

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Akdemi órniczo-hutnicz im. Stnisłw Stszic w Krkowie Wydził Elektrotechniki, Automtyki, Informtyki i Inżynierii Biomedycznej Ktedr Elektrotechniki i Elektroenergetyki Rozprw Doktorsk Numeryczne lgorytmy

Bardziej szczegółowo

Materiały diagnostyczne z matematyki poziom podstawowy

Materiały diagnostyczne z matematyki poziom podstawowy Mteriły dignostyczne z mtemtyki poziom podstwowy czerwiec 0 Klucz odpowiedzi do zdń zmkniętych orz schemt ocenini Mteriły dignostyczne przygotowł Agt Siwik we współprcy z nuczycielmi mtemtyki szkół pondgimnzjlnych:

Bardziej szczegółowo

usuwa niewymierność z mianownika wyrażenia typu

usuwa niewymierność z mianownika wyrażenia typu Wymgni edukcyjne n poszczególne oceny z mtemtyki Kls pierwsz zkres podstwowy. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje

Bardziej szczegółowo

KRYTERIA OCENIANIA TECHNOLOGIA NAPRAW ZESPOŁÓW I PODZESPOŁÓW MECHANICZNYCH POJAZDÓW SAMOCHODOWYCH KLASA I TPS

KRYTERIA OCENIANIA TECHNOLOGIA NAPRAW ZESPOŁÓW I PODZESPOŁÓW MECHANICZNYCH POJAZDÓW SAMOCHODOWYCH KLASA I TPS KRYTRIA OCNIANIA TCHNOLOGIA NAPRAW ZSPOŁÓW I PODZSPOŁÓW MCHANICZNYCH POJAZDÓW SAMOCHODOWYCH KLASA I TPS Temt Klsyfikcj i identyfikcj pojzdów smochodowych Zgdnieni - Rodzje ukłdów, - Zdni i ogóln budow

Bardziej szczegółowo

Wymagania kl. 2. Uczeń:

Wymagania kl. 2. Uczeń: Wymgni kl. 2 Zkres podstwowy Temt lekcji Zkres treści Osiągnięci uczni. SUMY ALGEBRAICZNE. Sumy lgebriczne definicj jednominu pojęcie współczynnik jednominu porządkuje jednominy pojęcie sumy lgebricznej

Bardziej szczegółowo

R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10

R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10 Zdnie. Zkłd ubezpieczeń n życie plnuje zbudownie portfel ubezpieczeniowego przy nstępujących złożenich: ozwiąznie. Przez P k będę oznczł wrtość portfel n koniec k-tego roku. Szukm P 0 tkie by spełnił:

Bardziej szczegółowo

Nauki ścisłe priorytetem społeczeństwa opartego na wiedzy Zbiór scenariuszy Mój przedmiot matematyka

Nauki ścisłe priorytetem społeczeństwa opartego na wiedzy Zbiór scenariuszy Mój przedmiot matematyka Stron Wstęp Zbiór Mój przedmiot mtemtyk jest zestwem scenriuszy przeznczonych dl uczniów szczególnie zinteresownych mtemtyką. Scenriusze mogą być wykorzystywne przez nuczycieli zrówno n typowych zjęcich

Bardziej szczegółowo

TEST SUPER. KOLUMNY GŁOŚNIKOWE (2500-3500 zł) SYSTEM ODSŁUCHOWY

TEST SUPER. KOLUMNY GŁOŚNIKOWE (2500-3500 zł) SYSTEM ODSŁUCHOWY A N C A O M AWK ST. lsy oziom k j ni soki p y d r z y k ś tyl w ni: c w ó g yt odło wły n jst p p ć ę to y pi rzn zsdn ędzy? m p ni ż tuj z Ts stki ini, cj pi y ię m Wsz ci brz wć w ś Kulp jko o wyd ilip

Bardziej szczegółowo

Sterownik swobodnie programowalny. Dokumentacja techniczna. Dokumentacja techniczna

Sterownik swobodnie programowalny. Dokumentacja techniczna. Dokumentacja techniczna Sterownik swobodnie progrmowlny Dokumentcj techniczn Dokumentcj techniczn Spis treści 1. Informcję ogólne... 2 2. Podstwowe prmetry... 2 3. Wejści / wyjści... 2 4. Schemt blokowy... 5 5. Łącz komunikcyjne...

Bardziej szczegółowo

MODEL EKONOMETRYCZNY KLASYFIKACJA MODELI EKONOMETRYCZNYCH

MODEL EKONOMETRYCZNY KLASYFIKACJA MODELI EKONOMETRYCZNYCH Ekoomri mrił ( foli ) do wkłdu D.Miszczńsk, M.Miszczński MODEL EKONOMERYCZNY Modl js o schmcz uproszczi, pomijjąc iiso spk w clu wjśii wwęrzgo dziłi, form lub kosrukcji brdzij skomplikowgo mchizmu. (Lwrc

Bardziej szczegółowo

2 WSTĘP... 4. 2.1 OPIS PROJEKTU... 4 2.1.1 Podstawowe informacje... 4 2.1.2 Cele projektu... 4 3 CEL I ZAKRES BADANIA... 7

2 WSTĘP... 4. 2.1 OPIS PROJEKTU... 4 2.1.1 Podstawowe informacje... 4 2.1.2 Cele projektu... 4 3 CEL I ZAKRES BADANIA... 7 Rport koń coy projktu pt. Zkłdo Fuńdusz Szkolńio dl brńz y mlczrskij rlizońgo rmch: Prioryttu II Rozo j Zsobo Ludzki i Potńcjłu Adptcyjńgo Przdsiębiorst orz poprą stńu zdroi oso b prcujących, Dziłńi 2.1.

Bardziej szczegółowo

10.3. Przekładnie pasowe

10.3. Przekładnie pasowe 0.0. Przekłdnie 0.3. Przekłdnie psowe Przekłdni psow przekłdni kołow ciern z elementmi pośrednimi w postci elstycznych cięgieł, njczęściej o konstrukcji wielodrożnej. Przekłdnie psowe Ps klinowy Ps płski

Bardziej szczegółowo

Ocena poziomu hałasu wewnątrz tramwajów na podstawie badań

Ocena poziomu hałasu wewnątrz tramwajów na podstawie badań prof. dr hb. inż. Frnciszek Tomszewski mgr inż. Młgorzt Orczyk Politechnik Poznńsk Ocen poziomu hłsu wewnątrz trmwjów n podstwie bdń W rtykule przedstwiono wyniki pomirów hłsu wewnątrz wybrnych trmwjów

Bardziej szczegółowo