Metody analizy światłowodów wielomodowych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Metody analizy światłowodów wielomodowych"

Transkrypt

1 Metody nlizy świtłowodów wielomodowych 1. Metod optyki geometycznej wyzncznie tou pomieni optycznego w świtłowodzie. Metod WKB wyzncznie w sposób pzybliżony modów świtłowodowych i wyznczenie obszów ich popgcji w pzekoju popzecznym świtłowodu 3. Rozwiąznie sklnych ównń Mxwell djące w mię pełny (bez uwzględnieni polyzcji fli świetlnej) opis flowodu z wyznczeniem odzjów modów i ozkłdów ich ntężeni w pzekoju popzecznym świtłowodu

2 Teoetyczny model świtłowodu wielomodowego Złożeni: - dzeń o skończonych wymich -okeślony pofil współczynnik złmni dzeni -płszcz o nieskończonych wymich zewnętznych

3 Dl wszystkich tzech metod nlizy ównnimi wyjściowymi są ównni Mxwell zpisne w postci sklnych ównń flowodowych: E n () ε μ H n () ε μ t E oz wunki bzegowe ówność stycznych skłdowych pól E i H n gnicy dzeń płszcz. Pzyjmując hmoniczną postć zmin fli optycznej w czsie (E, H) (E, H)e iωt ównni flowe (1) pzeksztłcmy w ównni Helmholtz: t H (1) E n ( ) k E H n ( ) k H () gdzie k ε μ ω c ε 1 μ.3 m/ns ω/c -stł popgcji fli w póżni, -pędkość fli świetlnej w póżni.

4 Toy pomieni w flowodzie cylindycznym Równnie tou pomieni w optycznym flowodzie cylindycznym otzymmy pzedstwijąc flę optyczną w postci fli hmonicznej z fzą zleżną od współzędnych w świtłowodzie E(, ϕ, z)e is(, ϕ, z) (3) gdzie, ϕ, z współzędne wlcowe świtłowodu. Współzędne wlcowe świtłowodu

5 Podstwijąc (3) do ównni () i wykonując opecję óżniczkowni, po pzeksztłcenich otzymmy ównnie fzy zwne ównniem eikonłu w postci ( S ) n k (4) stąd ównnie pomieni, któy w uchu flowym jest postopdły do płszczyzny stłej fzy S(, ϕ, z) d ds n d ds n (5)

6 Pzyjmując w uposzczeniu, że kąt odchyleni pomieni od osi świtłowodu jest mły, zmienimy óżniczkownie względem ds n óżniczkownie względem dz. Zkłdjąc, że współczynnik złmni zleży tylko od pomieni świtłowodu n(, ϕ, z) n() otzymmy ównnie pomieni dl skłdowych, ϕ, z d dz dϕ dz 1 n dn d d dz dϕ dz dz n nk cos θ β const ds β- stł popgcji pomieni, (6)

7 Z ozwiązni dwóch piewszych ównń otzymmy dw odzje pomieni jko pzypdki szczególne ogólnego ozwiązni: p1. pomienie południkowe; pzechodzące pzez oś świtłowodu 1 4 gdzie Ω -wtość stł. ( z) sin Ω( z z ) + ϕ( z) ϕ const + π (7)

8 . pomienie skośne (spilne); obcjące się wokół osi świtłowodu n ksztłt linii śubowej Świtłowód skokowy Świtłowód gdientowy gdzie Ω -wtość stł. (z) const ϕ(z) ϕ + (z z ) Ω (8)

9 Wnioski z metod optyki geometycznej: Świtłowód włóknisty może powdzić enegię świetlną wzdłuż chkteystycznych odzjów pomieni: pomieni południkowych, któe w świtłowodzie skokowym dochodzą do gnicy dzeń-płszcz zmienijąc kieunek n zsdzie pełnego odbici, w świtłowodzie gdientowym zś ulegją stopniowemu zkzywieniu tou do zminy kieunku włącznie (w obu pzypdkch pomienie te pzecinją oś świtłowodu) pomieni skośnych, któe w świtłowodzie skokowym odbijją się skośnie od gnicy dzeń-płszcz nie pzecinjąc osi flowodu, co twozy łmną linię spilną, w świtłowodzie gdientowym zś lini spiln upodbni się do ciągłej linii śubowej. W tej gupie pomieni śodek świtłowodu nie pzenosi enegii. Stł popgcji β dnego pomieni jest niezmienn w cłym pzekoju świtłowodu (wynik to z tzeciego ównni (6))

10 Modow stuktu fli świetlnej powdzonej flowodem Posłużymy się tutj metodą WKB ideowo zbliżoną do teoii pomieni. Równnie flowe (1) ozpisujemy n skłdowe E, E ϕ, E z, ozwiązni ównń zkłdmy w postci iloczynu funkcji zmiennych, ϕ, i z, pzy czym zkłdmy ozwiązni: - dl zmiennej ϕ w postci cos mϕ, - zmiennej z w postci e -iβz Funkcję zmiennej w postci F() znjdujemy z ozwiązni ównń (6)- (8) Mmy ztem wyżenie opisujące pole elektyczne w świtłowodzie w postci i ównnie flowe n funkcję F() d F d E F() cos mϕ e -iβz (9) ( ) 1 df( ) + d + n k β m F () (1) gdzie m liczb cłkowit

11 Funkcji F() szukmy w postci F() A() e is() (11) Podstwijąc ówn. (11) do (1) dostjemy wyżenie n mplitudę A() i wyżenie n fzę S() c () 1/4 m n k β A (1) gdzie m - liczb cłkowit 1/ m S() n k β d 1 (13)

12 O wtości S() decyduje człon pod piewistkiem podlegjący cłkowniu, któy pzyjmuje tzy wtości odpowidjące tzem odzjom uchu flowego: m is () () n k (14) β F Ae > oscylujący uch flowy (popgcj fli); < F() Ae -S() zniknie ekspotencjlne pol fli; F() const ozncz punkt zwotny w kieunku uchu fli (kustykę).

13 Z tego osttniego wunku możemy łtwo obliczyć położenie punktów zwotnych, ozwiązując ównnie n k m β (15) Podstwijąc n() dl świtłowodu gdientowego o ównniu pboloidlnym, otzymmy 1, 4n 1 Δ ( ) ± ( n n n n ) 1 ef 1 ef 8n 1 Δ k m 1/ (16) Z ozwiązni funkcji S() w postci wzou (13), otzymmy tzy chkteystyczne pzypdki popgcji fli optycznej w świtłowodzie. Gficzne pzedstwienie tego ozwiązni dl świtłowodu gdientowego podno n ysunkch

14 Mody flowodowe m Pole fli świetlnej w postci E F() cos mϕ sin[s()] e i(ωt-βz) twozy flę stojącą w pzekoju popzecznym świtłowodu, oscylującą między punktmi 1 i (16). Pole fli stojącej ozchodzi się w kieunku osi z ze stłą popgcji β. Ten odzj modów odpowid pomieniom skośnym w notcji optyki geometycznej.

15 Mody flowodowe m Podstwijąc m do wyżeni (16) oz wiedząc, że n n ef n 1, otzymmy 1 min n1 n Δn ef 1 dl świtłowodu gdientowego 1 min m x dl świtłowodu skokowego dl n ef n Pole fli świetlnej w postci E F()sin[S()] e i(ωt-βz) twozy tez flę stojącą w cłym pzekoju popzecznym świtłowodu. Sytucj t odpowid pomieniom południkowym w pzybliżeniu optyki geometycznej.

16 Mody dicyjne (umykjące) W obszze flowodu w pobliżu gnicy dzeń-płszcz może zjść sytucj, dl dużych wtości m, że zchodzi nieówność Wówczs S() < i w tym obszze wystąpi zniknie fli, jk to pokzno n ys. Dl większych wtości > 3 znów otzymmy popgcję fli, le już nie w postci fli stojącej w dzeniu, lecz w postci fli wypomieniownej z dzeni do obszu płszcz świtłowodu. T część enegii jest stcon z punktu widzeni flowodu i dltego mody wypowdzjące tę enegię nzywmy modmi dicyjnymi lub umykjącymi.

17 Pełne ozwiąznie ównń Mxwell Pełne nlityczne ozwiąznie ównń Mxwell możn otzymć dl świtłowodu skokowego lub o pofilu pbolicznym. Ogniczymy się tutj do modów flowodowych w świtłowodzie o pofilu skokowym. Rozwiąznie njczęściej konstuuje się w nstępujący sposób: -z ozwiązni ównni flowodowego dl współzędnej wyzncz się podłużne skłdowe pol E z i H z ; - nstępnie z ogólnie znnych zleżności wyzncz się skłdowe popzeczne E, Eϕ, H i H ϕ.

18 Rozwiązni n skłdowe podłużne poszukujemy w postci (17) A skłdowe E z () i H z () wyznczmy z ównni (18) Wpowdzmy bezwymiowe zmienne zleżne: -stł pol oscylcji popzecznych w dzeniu (19) -stł znikni pol w płszczu oz pmet - liczb flowodow lub częstotliwość względn świtłowodu () ) k (n u 1 β ) n k - ( w β ( ) 1 n n k w u V + ( ) () ( ) βz ωt i im z z z z e e H E H E ϕ () ( ) () H E m k n 1 z z β + +

19 Rozwiązni poszukujemy w postci funkcji Bessel: () u AJ E m z () u BJ H m z < () w CK E m z 1 z 1 z 1 z 1 z E E E E H H H H ϕ ϕ ϕ ϕ w dzeniu świtłowodu oz () w DK H m z > Wunki bzegowe n gnicy dzeń-płszcz dl płszcz (1) () (3)

20 Rozwiązując (18) i podstwijąc do (3) otzymmy ównnie wtości włsnych w postci k β n m u V 4 w w J' J m m ( u) ( u) K' + u K m m ( w) ( w) n n 1 w J' J m m ( u) ( u) K' + u K m m ( w) ( w) (4) Jeżeli tez złożymy m, to kżde z wyżeń w nwisch utwozy dw oddzielne ozwiązni. Wyznczjąc dl kżdego z tych ozwiązń skłdowe pol, stwiedzmy, że są to fle typu (mody): TE op,dl któych E z TM op,dl któych H z Ogólnie ozwiąznie ównni 4 dl m wyznczy tzw. mody hybydowe HE mp lub EH mp w któych istnieją obie skłdowe podłużne pol

21 Równnie chkteystyczne (4) możn z pewnym pzybliżeniem upościć i znleźć wtości liczby flowodowej V, pzy któej zczynją się kolejne mody np.: dl m otzymmy z (4) J (u) dl m 1 otzymmy z (4) J 1 (u), Wykes funkcji Bessel J (u) i J 1 (u) (wg T.Okoshi) Kolejne ze funkcji Bessel wyznczją liczbę p, wtość funkcji u w miejscch zeowych wyzncz wtość liczby flowodowej VV c, pzy któej występuje odcięcie popgcji kolejnego modu.

22 Dl wtości V od ze do,45 ozchodzi się tylko jeden mod HE 11. Jest to tzw. mod podstwowy popgowny w świtłowodch jednomodowych. V π λ n1 n,45 (5) Rozkłd modów n płszczyźnie fzowej z zznczeniem wunków popgcji jednomodowej (wg J.Senio)

23 Rozkłd ntężeni pol modów Moc niesioną świtłowodem obliczmy, bioąc wtość zeczywistą wekto Poynting E xh P z ReS Re (6) Rozkłd ntężeni świtł dl kilku piewszych modów świtłowodu wielomodowego (wg A.Snyde, W.Young)

24 Po podstwieniu wtości z E i H, otzymmy P z () A B β u ωμ β w ωμ J K m± 1 m± 1 u w moc w dzeniu ( < ) moc w płszczu ( ) (7) Stąd wynik, że moc optyczn w świtłowodzie jest niesion pocjmi pzez poszczególne mody z pędkością dnego modu V g dβ m /dω. Możn ównież wyznczyć stosunek mocy niesionej pzez dzeń świtłowodu do mocy cłkowitej e W π π Wc P P z z () () d d dϕ dϕ (8)

25 Liczb modów Liczbę modów N niesionych dnym świtłowodem wyzncz wtość liczby flowej V: V N -dl świtłowodu skokowego (9) 4 N V -dl świtłowodu pbolicznego (3) α V α N ( n1k ) Δ - ogólnie dl świtłowodów klsy α (31) α + α + N pzykłd dl świtłowodu o pmetch: 5 μm, Δ 1 -, n 1 1,46 liczb modów N wynosi N (λ,83 μm) N (λ 1,3 μm) α gdientowy α skokowy

26 W podsumowniu nlizy teoetycznej zestwimy poznne pomienie i mody, wskzując n ich tożsmość Pomienie Mody flowodowe Kustyki (punkty zwotu) Poosiowe podstwowe HE 11 Południkowe popzeczne TE op 1, TM op Skośne spilne hybydowe HE mp 1, EH mp

27 Podsumownie Mody hybydowe są modmi njwyższego zędu i one stnowią źódło modów dicyjnych Moc niesion pzez mody południkowe i mod poosiowy wypełni cły pzekój dzeni świtłowodu, ntomist moc niesion pzez mody hybydowe (spilne) pzepływ jkby ścinkmi utwozonej w dzeniu uki o gubości - 1 włściwej dl dnego modu

28 Pole modu HE 11 polyzcji y ( ) ( ) > < dl w K w K dl u J u J A H n Z E y x ( ) ( ) > < dl w K w K dl u J u J A H n Z E x y (1) () gdzie J, K funkcje Bessel zeowego zędu. Pole modu HE 11 polyzcji x Pzybliżon nliz świtłowodu jednomodowego

29 Pełn moc niesion flowodem pzez mod podstwowy π Nomlizując wtość mocy do 1, wyznczmy stłą A w ównnich pol () 1/ 1/ u K ( w) Z w J ( u) Z A V K1( w) π n V J1( u) π n (4) Równnie chkteystyczne (4) pzyjmie postć J1 ( w) K1( w) w J u K w Stłe ozkłdu pol u i w spełniją ówność P t E ( ) x H (3) (5) u + w V (6) Z ozwiązni ównń (5) i (6) otzymmy wyżenie n dwie stłe popgcji β x i β y odpowidjące ozchodzeniu się modów polyzcji P x i P y. * y d ( ) dϕ

30 Apoksymcj ozkłdu ntężeni modu podstwowego Znjąc wtości u i w możemy obliczyć ozkłd ntężeni pol modu HE 11 kozystjąc z ównń (1) i () lub stosując pzybliżone ozwinięcie funkcji Bessel Dl J (x) pzy x leżących w gnicch < x < 1,8 mmy nstępujące poksymcje funkcji Bessel: J (x) 1,5x +,5x 3 (błąd %) J (x) 1,1x (błąd 4%) (7) Dl J 1 (x) pzy x,5 J 1 (x),17x (3,7 x) (błąd 4%)

31 Apoksymcj funkcją Guss Rozkłd ntężeni pol obliczony wg funkcji Guss okeślonej nstępująco: 1/ Z Ex w π n o 1/ exp dl < n w Hx w Zπ (dzeń) oz 1/ 1/ w π w K exp dl > w (w płszczu) ε gdzie Z, w śednic wiązki optycznej (lub śednic μo plmki świeceni modu). (8) (9)

32 Apoksymcj funkcją Guss Poównnie ozkłdów ntężeni pol modu podstwowego obliczonych wg dokłdnych wzoów (1) i () lini ciągł, wg funkcji Guss lini pzeywn. Z poównni pzebiegu funkcji n ysunku zuwżymy zbieżność ozkłdu ntężeni pol dl V,4 otzymną z ozwiązni (1) i pzybliżeni funkcją Guss.

33 Apoksymcj funkcją Guss Funkcj Guss opisuje dokłdnie ozkłd mocy modu podstwowego dl pbolicznego ozkłdu współczynnik złmni, jko że dl pofilu pbolicznego dzeni świtłowodu istnieje ozwiąznie dokłdne. W ozptywnym pzypdku funkcj Guss jest pzybliżoną funkcją opisu pol, pzy czym jko kyteium poksymcji pzyjęto tutj współczynnik spwności spzężeni ρ. Pełną moc modu (5) zpisujemy w notcji (1) i (8), nomujemy do jedności i definiujemy współczynnik spwności spzężeni ρ 1 π 4 πw exp w ddϕ (1)

34 Stosunek mocy optycznej powdzonej w dzeniu świtłowodu do mocy powdzonej w płszczu możn wyzić z pomocą nstępujących wzoów: wyżenie dokłdne P( ) u K ( ) w 1 1 ( ) Pc V K1 w (11) wyżenie w poksymcji Guss ( ) P 1 exp (1) P c w gdzie P( ) moc w dzeniu świtłowodu, P c moc w płszczu. Dl długości fli λ λ c około 9% mocy ozchodzi się w dzeniu świtłowodu. Wykes stosunku mocy optycznej w dzeniu (P) i w płszczu (P c ) świtłowodu w zleżności od długości fli λ (wg L.Jeunhomme ).

35 Polyzcyjne włściwości świtłowodów Zbuzeni symetii flowodu w postci ) eliptyczności dzeni flowodu e 1 x y 1/ (1) b) nizotopii npężeń w obszze dzeni, któe z kolei pzez efekt elstooptyczny indukują nizotopię ozkłdu współczynnik złmni, c) nizotopii ozkłdu współczynnik złmni (zbuzenie kompozycji domieszek).

36 W obu pzypdkch (b i c) współczynnik złmni nie jest sklem n(), lecz tensoem n( x,y), eliptyczność pofilu flowodu m postć wzou () e n 1 n x y 1/ () Stłe popgcji β x i β y możemy wyzić w postci efektywnych współczynników złmni β β x y π n ef x ; nef y gdzie k k k n λ Flowód o powyższych włsnościch nzyw się dwójłomnym, dwójłomność zś definiujemy jko δn ef n efy -n efx lub δβ β y - β x

37 Dwójłomność wewnętzn i indukown Dwójłomność flowodu możemy zpojektowć i wpowdzić w pocesie wyciągni flowodu mówimy wówczs o dwójłomności wewnętznej flowodu lub o flowodzie pzenoszącym polyzcję. Wyóżnimy: dwójłomność ksztłtu (nizotopi dzeni), dwójłomność npężeń (nizotopi npężeń), dwójłomność pofilu (symeti ozkłdu współczynnik złmni). Po wykonniu flowodu możemy ównież wpowdzić (zindukowć) nizotopię optyczną dzeni pzez oddziływnie sił zewnętznych n flowód, np.: zginnie, skęcnie, ścisknie, oddziływnie pol elektycznego, mgnetycznego, tempetuy. Mówimy wówczs o dwójłomności indukownej. Pzy czym dwójłomność indukowć możemy zówno w odniesieniu do flowodów symetycznych, jk i z dwójłomnością wewnętzną.

38 Metody indukowni dwójłomności

39 Świtłowody utzymujące stn polyzcji

Zadania do rozdziału 7.

Zadania do rozdziału 7. Zdni do ozdziłu 7. Zd.7.. wiezchołkch kwdtu o okch umieszczono ednkowe łdunku. Jki łdunek o znku pzeciwnym tze umieścić w śodku kwdtu y sił wypdkow dziłąc n kżdy łdunek ył ówn zeu? ozwiąznie: ozptzmy siły

Bardziej szczegółowo

Pomiary parametrów światłowodów WYKŁAD 11 SMK. 1. Wpływ sposobu pobudzania włókna światłowodu na rozkład prowadzonej w nim mocy

Pomiary parametrów światłowodów WYKŁAD 11 SMK. 1. Wpływ sposobu pobudzania włókna światłowodu na rozkład prowadzonej w nim mocy Pomiy pmetów świtłowodów WYKŁAD SMK. Wpływ sposobu pobudzni włókn świtłowodu n ozkłd powdzonej w nim mocy Ilość modów wzbudznych w świtłowodch zleży od pmetów świtłowodu i wykozystywnej długości fli. W

Bardziej szczegółowo

Sieć odwrotna. Fale i funkcje okresowe

Sieć odwrotna. Fale i funkcje okresowe Sieć odwotn Fle i funkcje okesowe o Wiele obiektów w pzyodzie d; o Różne fle ozchodzą się w pzestzeni (zówno w póżni jk i w mteii); o Aby mtemtycznie opisć tkie okesowe zminy stosuje się funkcje sinus

Bardziej szczegółowo

magnetycznym. Rozwiązanie: Na elektron poruszający się z prędkością υ w polu B działa siła Lorentza F L, wektorów B i υ.

magnetycznym. Rozwiązanie: Na elektron poruszający się z prędkością υ w polu B działa siła Lorentza F L, wektorów B i υ. Zdni do ozdziłu 8. Zd.8.. Elekton (o msie 3 9 m 9, 0 kg i łdunku elektycznym e.6 0 C ) wpd z pędkością υ 0 7 m / s w obsz jednoodnego pol mgnetycznego o indukcji B 0 T postopdle do linii sił tego pol.

Bardziej szczegółowo

Prędkość i przyspieszenie punktu bryły w ruchu kulistym

Prędkość i przyspieszenie punktu bryły w ruchu kulistym Pędkość i pzyspieszenie punktu były w uchu kulistym Położenie dowolnego punktu były okeślmy z pomocą wekto (o stłej długości) któego współzędne możemy podć w nieuchomym ukłdzie osi x y z ) z b) ζ ζ η z

Bardziej szczegółowo

TORY PLANET (Rozważania na temat kształtów torów ruchu planety wokół stacjonarnej gwiazdy)

TORY PLANET (Rozważania na temat kształtów torów ruchu planety wokół stacjonarnej gwiazdy) Rysz Chybicki TORY PLANET (Rozwżni n tet ksztłtów toów uchu lnety wokół stcjonnej gwizy) (Posługiwnie się zez osoby tzecie ty tykułe lub jego istotnyi fgenti bez wiezy uto jest wzbonione) MIELEC Plnecie

Bardziej szczegółowo

Temat ćwiczenia. Pomiary kół zębatych

Temat ćwiczenia. Pomiary kół zębatych POLITECHNIKA ŚLĄSKA W YDZIAŁ TRANSPORTU Temt ćwiczeni Pomiy kół zębtych I. Cel ćwiczeni Zpoznnie studentów z metodmi pomiu uzębień wlcowych kół zębtych o zębch postych oz pktyczny pomi koł. II. Widomości

Bardziej szczegółowo

mgh. Praca ta jest zmagazynowana w postaci energii potencjalnej,

mgh. Praca ta jest zmagazynowana w postaci energii potencjalnej, Wykłd z fizyki. Piot Posmykiewicz 49 6-4 Enegi potencjln Cłkowit pc wykonn nd punktem mteilnym jest ówn zminie jego enegii kinetycznej. Często jednk, jesteśmy zinteesowni znlezieniem pcy jką sił wykonł

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski Wkłd 3: Kinemtk d inż. Zbigniew Szklski szkl@gh.edu.pl http://le.uci.gh.edu.pl/z.szklski/ Wstęp Opis uchu KINEMATYKA Dlczego tki uch? Pzczn uchu DYNAMIKA MECHANIKA 08.03.018 Wdził Infomtki, Elektoniki

Bardziej szczegółowo

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH Ćwiczenie Grżyn Nowick, Wldemr Nowicki BDNIE RÓWNOWG WSOWO-ZSDOWYC W ROZTWORC ELETROLITÓW MFOTERYCZNYC Zgdnieni: ktywność i współczynnik ktywności skłdnik roztworu. ktywność jonów i ktywność elektrolitu.

Bardziej szczegółowo

11. DYNAMIKA RUCHU DRGAJĄCEGO

11. DYNAMIKA RUCHU DRGAJĄCEGO 11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie

Bardziej szczegółowo

5. Mechanika bryły sztywnej

5. Mechanika bryły sztywnej W ozdzie dpowiedzi i wskzówki znjdują się odpowiedzi do wszystkich zdń, znjdziesz tm ównież wskzówki do ozwiązń tudnych zdń. Pełne ozwiązni zdń możesz uzyskć pzysyłjąc e-mi n des: kons@x.wp.p 5. Mechnik

Bardziej szczegółowo

Równania różniczkowe cząstkowe - metoda Fouriera. Przykładowe rozwiązania i wskazówki

Równania różniczkowe cząstkowe - metoda Fouriera. Przykładowe rozwiązania i wskazówki INSTYTUT MATEMATYKI POLITECHNIKA KRAKOWSKA Dr Mrgret Wicik e-mi: mwicik@pk.edu.p Równni różniczkowe cząstkowe - metod Fourier. Przykłdowe rozwiązni i wskzówki zd.1. Wyznczyć funkcję opisującą drgni podłużne

Bardziej szczegółowo

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna 1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,

Bardziej szczegółowo

Zadania otwarte. 2. Matematyka. Poziom rozszerzony Próbna Matura z OPERONEM i Gazetą Wyborczą n n. 2n n. lim 10.

Zadania otwarte.  2. Matematyka. Poziom rozszerzony Próbna Matura z OPERONEM i Gazetą Wyborczą n n. 2n n. lim 10. Vdemecum Mtemtyk KRYTERIA OCENIANIA OPOWIEZI Póbn Mtu z OPERONEM mtemtyk ZAKRES ROZSZERZONY VAEMECUM MATURA 06 kod wewnątz Mtemtyk Poziom ozszezony Zcznij zygotowni do mtuy już dziś Listod 05 skle.oeon.l/mtu

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka. Poziom rozszerzony. Listopad Wskazówki do rozwiązania zadania

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka. Poziom rozszerzony. Listopad Wskazówki do rozwiązania zadania Vdemecum Mtemtyk KRYTERIA OCENIANIA OPOWIEZI Póbn Mtu z OPERONEM mtemtyk ZAKRES ROZSZERZONY VAEMECUM MATURA 06 kod wewnątz Mtemtyk Poziom ozszezony Zcznij zygotowni do mtuy już dziś Listod 0 Zdni zmknięte

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ 2015/2016 MATEMATYKA POZIOM ROZSZERZONY. Copyright by Nowa Era Sp. z o.o.

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ 2015/2016 MATEMATYKA POZIOM ROZSZERZONY. Copyright by Nowa Era Sp. z o.o. PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ 0/06 MATEMATYKA POZIOM ROZSZERZONY Zsdy ocenini ozwiązń zdń Copyight by Now E Sp. z o.o. Póbny egzmin mtulny z Nową Eą Uwg: Akceptowne są wszystkie odpowiedzi meytoycznie

Bardziej szczegółowo

Wykład 6 Dyfrakcja Fresnela i Fraunhofera

Wykład 6 Dyfrakcja Fresnela i Fraunhofera Wykłd 6 Dyfrkcj Fresnel i Frunhofer Zjwisko dyfrkcji (ugięci) świtł odkrył Grimldi (XVII w). Poleg ono n uginniu się promieni świetlnych przechodzących w pobliżu przeszkody (np. brzeg szczeliny). Wyjśnienie

Bardziej szczegółowo

VI. Rachunek całkowy. 1. Całka nieoznaczona

VI. Rachunek całkowy. 1. Całka nieoznaczona VI. Rchunek cłkowy. Cłk nieoznczon Niech F : I R i f : I R będą funkcjmi określonymi n pewnym przedzile I R. Definicj. Funkcję F nzywmy funkcją pierwotną funkcji f n przedzile I, gdy F (x) = f(x) dl x

Bardziej szczegółowo

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać: WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość

Bardziej szczegółowo

Rozwiązywanie zadań z dynamicznego ruchu płaskiego część I 9

Rozwiązywanie zadań z dynamicznego ruchu płaskiego część I 9 ozwiązywnie zdń z dyniczneo ruchu płskieo część I 9 Wprowdzenie ozwiązywnie zdń w oprciu o dyniczne równni ruchu (D pole n uwolnieniu z więzów kżdeo z cił w sposób znny ze sttyki. Wrunki równowi są zbliżone

Bardziej szczegółowo

Struktura energetyczna ciał stałych-cd. Fizyka II dla Elektroniki, lato

Struktura energetyczna ciał stałych-cd. Fizyka II dla Elektroniki, lato Struktur energetyczn cił stłych-cd Fizyk II dl Elektroniki, lto 011 1 Fizyk II dl Elektroniki, lto 011 Przybliżenie periodycznego potencjłu sieci krystlicznej model Kronig- Penney potencjł rzeczywisty

Bardziej szczegółowo

METODY HODOWLANE - zagadnienia

METODY HODOWLANE - zagadnienia METODY HODOWLANE METODY HODOWLANE - zgdnieni. Mtemtyczne podstwy metod odowlnyc. Wtość cecy ilościowej i definicje pmetów genetycznyc. Metody szcowni pmetów genetycznyc 4. Wtość odowln cecy ilościowej

Bardziej szczegółowo

Czarnodziurowy Wszechświat a dwu-potencjalność pola grawitacyjnego

Czarnodziurowy Wszechświat a dwu-potencjalność pola grawitacyjnego Zbiniew Osik Cznodziuowy Wszehświt dwu-potenjlność pol wityjneo.07.08 Cznodziuowy Wszehświt dwu-potenjlność pol wityjneo Zbiniew Osik E-mil: zbiniew.osik@mil.om http://oid.o/0000-000-5007-06x http://vix.o/utho/zbiniew_osik

Bardziej szczegółowo

m q κ (11.1) q ω (11.2) ω =,

m q κ (11.1) q ω (11.2) ω =, OPIS RUCHU, DRGANIA WŁASNE TŁUMIONE Oga Kopacz, Adam Łodygowski, Kzysztof Tymbe, Michał Płotkowiak, Wojciech Pawłowski Konsutacje naukowe: pof. d hab. Jezy Rakowski Poznań 00/00.. Opis uchu OPIS RUCHU

Bardziej szczegółowo

podsumowanie (E) E l Eds 0 V jds

podsumowanie (E) E l Eds 0 V jds e-8.6.7 fale podsumowanie () Γ dl 1 ds ρ d S ε V D ds ρ d S ( ϕ ) 1 ρ ε D ρ D ρ V D ( D εε ) εε S jds V ρ d t j ρ t j σ podsumowanie (H) Bdl Γ μ S jds B μ j S Bds B ( B A) Hdl Γ S jds H j ( B μμ H ) ε

Bardziej szczegółowo

Ruch obrotowy. Wykład 6. Wrocław University of Technology

Ruch obrotowy. Wykład 6. Wrocław University of Technology Wykład 6 Wocław Univesity of Technology Oboty - definicje Ciało sztywne to ciało któe obaca się w taki sposób, że wszystkie jego części są związane ze sobą dzięki czemu kształt ciała nie ulega zmianie.

Bardziej szczegółowo

Mechanika techniczna

Mechanika techniczna Mechnik techniczn pzykłdowe pytni i zdni sttyk. Zcytowć i ziustowć zsdę ównoegłooku (zsd sttyki).. Kiedy dwie siły pzyłożone do cił sztywnego ównowżą się?. okzć, że w sttyce siły pzyłożone do cił sztywnego

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 6, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 6, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 6, 0.03.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 5 - przypomnienie ciągłość

Bardziej szczegółowo

Mechanika kwantowa. Mechanika kwantowa. dx dy dz. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Równanie Schrödingera. zasada zachowania energii

Mechanika kwantowa. Mechanika kwantowa. dx dy dz. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Równanie Schrödingera. zasada zachowania energii Mecnik kwntow Jk opisć tom wodou? Jk opisć inne cąstecki? Mecnik kwntow Równnie Scödinge Ĥ E ψ H ˆψ = Eψ opeto óżnickow Hmilton enegi funkcj flow d d d + + m d d d opeto enegii kinetcn enegi kinetcn elektonu

Bardziej szczegółowo

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony Modele odpowiedzi do akusza Póbnej Matuy z OPERONEM Matematyka Poziom ozszezony Listopad 00 W kluczu są pezentowane pzykładowe pawidłowe odpowiedzi. Należy ównież uznać odpowiedzi ucznia, jeśli są inaczej

Bardziej szczegółowo

Równania i nierówności kwadratowe z jedną niewiadomą

Równania i nierówności kwadratowe z jedną niewiadomą 50 REPETYTORIUM 31 Równni i nierówności kwdrtowe z jedną niewidomą Równnie wielominowe to równość dwóch wyrżeń lgebricznych Kżd liczb, któr po podstwieniu w miejscu niewidomej w równniu o jednej niewidomej

Bardziej szczegółowo

L(x, 0, y, 0) = x 2 + y 2 (3)

L(x, 0, y, 0) = x 2 + y 2 (3) 0. Małe dgania Kótka notatka o małych dganiach wyjasniające możliwe niejasności. 0. Poszukiwanie punktów ównowagi Punkty ównowagi wyznaczone są waunkami x i = 0, ẋi = 0 ( Pochodna ta jest ówna pochodnej

Bardziej szczegółowo

MECHANIKA OGÓLNA (II)

MECHANIKA OGÓLNA (II) MECHNIK GÓLN (II) Semest: II (Mechanika I), III (Mechanika II), ok akademicki 2017/2018 Liczba godzin: sem. II*) - wykład 30 godz., ćwiczenia 30 godz. sem. III*) - wykład 30 godz., ćwiczenia 30 godz. (dla

Bardziej szczegółowo

Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa

Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa Wykłd 2. Pojęcie cłki niewłściwej do rchunku prwdopodobieństw dr Mriusz Grządziel 4 mrc 24 Pole trpezu krzywoliniowego Przypomnienie: figurę ogrniczoną przez: wykres funkcji y = f(x), gdzie f jest funkcją

Bardziej szczegółowo

POLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął

POLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął POLE MAGNETYCZNE W PÓŻNI W oku 8 Oested zaobsewował oddziaływanie pzewodnika, w któym płynął pąd, na igłę magnetyczną Dopowadziło to do wniosku, że pądy elektyczne są pzyczyną powstania pola magnetycznego

Bardziej szczegółowo

WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA PROSTEGO

WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA PROSTEGO Ćwiczenie 19 WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA PROSTEGO 19.1. Widomości oóne N kżde ciło umieszczone w pobiżu Ziemi dził, zodnie z niutonowskim pwem witcji, sił powszechneo ciążeni,

Bardziej szczegółowo

4. RACHUNEK WEKTOROWY

4. RACHUNEK WEKTOROWY 4. RACHUNEK WEKTOROWY 4.1. Wektor zczepiony i wektor swoodny Uporządkowną prę punktów (A B) wyznczjącą skierowny odcinek o początku w punkcie A i końcu w punkcie B nzywmy wektorem zczepionym w punkcie

Bardziej szczegółowo

II.6. Wahadło proste.

II.6. Wahadło proste. II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia

Bardziej szczegółowo

Mechanika techniczna. przykładowe pytania i zadania

Mechanika techniczna. przykładowe pytania i zadania Mechnik techniczn pzykłdowe pytni i zdni sttyk. Zcytowć i zilustowć zsdę ównoległooku (zsd sttyki).. Kiedy dwie siły pzyłożone do cił sztywnego ównowżą się?. okzć, że w sttyce siły pzyłożone do cił sztywnego

Bardziej szczegółowo

Znajdowanie analogii w geometrii płaskiej i przestrzennej

Znajdowanie analogii w geometrii płaskiej i przestrzennej Gimnzjum n 17 im. Atu Gottge w Kkowie ul. Litewsk 34, 30-014 Kków, Tel. (12) 633-59-12 Justyn Więcek, Atu Leśnik Znjdownie nlogii w geometii płskiej i pzestzennej opiekun pcy: mg Doot Szczepńsk Kków, mzec

Bardziej szczegółowo

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.

Bardziej szczegółowo

akademia365.pl kopia dla:

akademia365.pl kopia dla: Zestw wzoów mtemtycznych zostł pzygotowny dl potzeb egzminu mtulnego z mtemtyki obowiązującej od oku 00. Zwie wzoy pzydtne do ozwiązni zdń z wszystkich dziłów mtemtyki, dltego może służyć zdjącym nie tylko

Bardziej szczegółowo

2. Tensometria mechaniczna

2. Tensometria mechaniczna . Tensometri mechniczn Wstęp Tensometr jk wskzywłby jego nzw to urządzenie służące do pomiru nprężeń. Jk jednk widomo, nprężeni nie są wielkościmi mierzlnymi i stnowią jedynie brdzo wygodne pojęcie mechniki

Bardziej szczegółowo

Pierwiastek z liczby zespolonej

Pierwiastek z liczby zespolonej Pierwistek z liczby zespolonej Twierdzenie: Istnieje dokłdnie n różnych pierwistków n-tego stopni z kżdej liczby zespolonej różnej od zer, tzn. rozwiązń równni w n z i wszystkie te pierwistki dją się zpisć

Bardziej szczegółowo

Wyznacznikiem macierzy kwadratowej A stopnia n nazywamy liczbę det A określoną następująco:

Wyznacznikiem macierzy kwadratowej A stopnia n nazywamy liczbę det A określoną następująco: Def.8. Wyzncznikiem mcierzy kwdrtowej stopni n nzywmy liczbę det określoną nstępująco:.det.det dl n n det det n det n, gdzie i j ozncz mcierz, którą otrzymujemy z mcierzy przez skreślenie i- tego wiersz

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lgrnge i Hmilton w Mechnice Mriusz Przybycień Wydził Fizyki i Informtyki Stosownej Akdemi Górniczo-Hutnicz Wykłd 3 M. Przybycień (WFiIS AGH) Metody Lgrnge i Hmilton... Wykłd 3 1 / 15 Przestrzeń

Bardziej szczegółowo

Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym

Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym 1.Wpowadzenie Wyznaczanie pofilu pędkości płynu w uociągu o pzekoju kołowym Dla ustalonego, jednokieunkowego i uwastwionego pzepływu pzez uę o pzekoju kołowym ównanie Naviea-Stokesa upaszcza się do postaci

Bardziej szczegółowo

Jak wykorzystać stacje radiowe ELF do badań geofizycznych?

Jak wykorzystać stacje radiowe ELF do badań geofizycznych? Obsewtoium Astonomiczne UJ Zkłd Fizyki Wysokich Enegii Instytut Fizyki UJ Zkłd Doświdczlnej Fizyki Komputeowej Akdemi Góniczo-Hutnicz Kted Elektoniki Andzej Kułk AGH/OA UJ Zenon Nieckz -IF UJ Jezy Kubisz,

Bardziej szczegółowo

- Wydział Fizyki Zestaw nr 5. Powierzchnie 2-go stopnia

- Wydział Fizyki Zestaw nr 5. Powierzchnie 2-go stopnia 1 Algebr Liniow z Geometri - Wydził Fizyki Zestw nr 5 Powierzchnie -go stopni 1 N sferze 1 + + 3 = 4 znleźć punkt, którego odległość od punktu p = (, 6, 3) byłby njmniejsz Wyznczyć osie elipsy powstłej

Bardziej szczegółowo

1 Definicja całki oznaczonej

1 Definicja całki oznaczonej Definicj cłki oznczonej Niech dn będzie funkcj y = g(x) ciągł w przedzile [, b]. Przedził [, b] podzielimy n n podprzedziłów punktmi = x < x < x

Bardziej szczegółowo

Całkowanie. dx d) x 3 x+ 4 x. + x4 big)dx g) e x 4 3 x +a x b x. dx k) 2x ; x 0. 2x 2 ; x 1. (x 2 +3) 6 j) 6x 2. x 3 +3 dx k) xe x2 dx l) 6 1 x dx

Całkowanie. dx d) x 3 x+ 4 x. + x4 big)dx g) e x 4 3 x +a x b x. dx k) 2x ; x 0. 2x 2 ; x 1. (x 2 +3) 6 j) 6x 2. x 3 +3 dx k) xe x2 dx l) 6 1 x dx Wydził Mtemtyki Stosownej Zestw zdń nr 5 Akdemi Górniczo-Hutnicz w Krkowie WFiIS, informtyk stosown, I rok Elżbiet Admus 3 listopd 6r. Cłk nieoznczon Cłkownie. Podstwowe metody cłkowni Zdnie. Oblicz cłki:

Bardziej szczegółowo

ZADANIA DO SAMODZIELNEGO ROZWIĄZANIA

ZADANIA DO SAMODZIELNEGO ROZWIĄZANIA ZNI SMZIELNE RZWIĄZNI łski ukłd sił zbieżnych Zdnie 1 Jednoodn poziom belk połączon jest pzegubowo n końcu z nieuchomą ściną oz zwieszon n końcu n cięgnie twozącym z poziomem kąt. Znleźć ekcję podpoy n

Bardziej szczegółowo

σ (M) 2 max Moment bezwładności wyższego rzędu, potrzebny do dalszych obliczeń wyznaczymy ze wzoru

σ (M) 2 max Moment bezwładności wyższego rzędu, potrzebny do dalszych obliczeń wyznaczymy ze wzoru m m m T M Momen bezwłdności wyższeo zędu, ozebny do dlszych obliczeń wyznczymy ze wzou d Obsz jes sumą zech odobszów śodnik i ółek sąd możemy skozysć z zleżności d d d d Rys. 7.c Wówczs [ d d [ [ d d C

Bardziej szczegółowo

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii.

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii. Wykład: paca siły, pojęcie enegii potencjalnej. Zasada zachowania enegii. Uwaga: Obazki w tym steszczeniu znajdują się stonie www: http://www.whfeeman.com/tiple/content /instucto/inde.htm Pytanie: Co to

Bardziej szczegółowo

III. Rachunek całkowy funkcji jednej zmiennej.

III. Rachunek całkowy funkcji jednej zmiennej. III. Rchunek cłkowy funkcji jednej zmiennej. 1. Cłki nieoznczone. Niech f : I R, I R - przedził n prostej. Definicj 1.1. (funkcji pierwotnej) Funkcję F nzywmy funkcją pierwotną funkcji f n przedzile I,

Bardziej szczegółowo

Analiza Matematyczna (część II)

Analiza Matematyczna (część II) Anliz Mtemtyczn (część II) Krzysztof Trts Witold Bołt n podstwie wykłdów dr. Piotr Brtłomiejczyk 25 kwietni 24 roku 1 Rchunek cłkowy jednej zmiennej. 1.1 Cłk nieoznczon. Definicj 1.1.1 (funkcj pierwotn)

Bardziej szczegółowo

Grzegorz Kornaś. Powtórka z fizyki

Grzegorz Kornaś. Powtórka z fizyki Gzegoz Konaś Powtóka z fizyki - dla uczniów gimnazjów, któzy chcą wiedzieć to co tzeba, a nawet więcej, - dla uczniów liceów, któzy chcą powtózyć to co tzeba, aby zozumieć więcej, - dla wszystkich, któzy

Bardziej szczegółowo

Macierz. Wyznacznik macierzy. Układ równań liniowych

Macierz. Wyznacznik macierzy. Układ równań liniowych Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: żółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk Zgdnieni. Pojęci. Dziłni n mcierzch.

Bardziej szczegółowo

Rozwiązania maj 2017r. Zadania zamknięte

Rozwiązania maj 2017r. Zadania zamknięte Rozwiązni mj 2017r. Zdni zmknięte Zd 1. 5 16 5 2 5 2 Zd 2. 5 2 27 2 23 2 2 2 2 Zd 3. 2log 3 2log 5log 3 log 5 log 9 log 25log Zd. 120% 8910 1,2 8910 2,2 8910 $%, 050 Zd 5. Njłtwiej jest zuwżyć że dl 1

Bardziej szczegółowo

Siła. Zasady dynamiki

Siła. Zasady dynamiki Siła. Zasady dynaiki Siła jest wielkością wektoową. Posiada okeśloną watość, kieunek i zwot. Jednostką siły jest niuton (N). 1N=1 k s 2 Pzedstawienie aficzne A Siła pzyłożona jest do ciała w punkcie A,

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Konkusy w województwie podkpkim w oku szkolnym 0/0 KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Kluz odpowiedzi do ETAPU WOJEWÓDZKIEGO Akusz zwie tylko zdni otwte, któe nleży oenić według zmieszzonego poniżej

Bardziej szczegółowo

Maciej Grzesiak. Iloczyn skalarny. 1. Iloczyn skalarny wektorów na płaszczyźnie i w przestrzeni. a b = a b cos ϕ. j) (b x. i + b y

Maciej Grzesiak. Iloczyn skalarny. 1. Iloczyn skalarny wektorów na płaszczyźnie i w przestrzeni. a b = a b cos ϕ. j) (b x. i + b y Mciej Grzesik Iloczyn sklrny. Iloczyn sklrny wektorów n płszczyźnie i w przestrzeni Iloczyn sklrny wektorów i b określmy jko b = b cos ϕ. Bezpośrednio z definicji iloczynu sklrnego mmy, że i i = j j =

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ODPOWIEDZI DO ARKUSZA ROZSZERZONEGO Zadanie ( pkt) A Zadanie ( pkt) C Zadanie ( pkt) A, bo sinα + cosα sinα + cosα cos sinα sin cosα + π π + π sin α π A więc musi

Bardziej szczegółowo

Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne

Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne Rozdział 5 Pole magnetyczne 5.1 Oddziaływanie pola magnetycznego na ładunki i pzewodniki z pądem 5.1.1 Podstawowe zjawiska magnetyczne W obecnym ozdziale ozpatzymy niektóe zagadnienia magnetostatyki. Magnetostatyką

Bardziej szczegółowo

Pierwiastek z liczby zespolonej

Pierwiastek z liczby zespolonej Pierwistek z liczby zespolonej Twierdzenie: Istnieje dokłdnie n różnych pierwistków n-tego stopni z kżdej liczby zespolonej różnej od zer, tzn. rozwiązń równni w n z i wszystkie te pierwistki dją się zpisć

Bardziej szczegółowo

a a a b M. Przybycień Matematyczne Metody Fizyki I

a a a b M. Przybycień Matematyczne Metody Fizyki I Relcje równowr wnowżności i klsy Definicj: Relcją określoną n zbiorze A nzywmy dowolny test porównwczy pomiędzy uporządkownymi prmi elementów elementów zbioru A. Jeśli pr (, b) œ A ä A spełni ten test,

Bardziej szczegółowo

magnetyzm ver

magnetyzm ver e-8.6.7 agnetyz pądy poste pądy elektyczne oddziałują ze soą. doświadczenie Apèe a (18): Ι Ι 1 F ~ siła na jednostkę długości pzewodów pądy poste w póżni jednostki w elektyczności A ape - natężenie pądu

Bardziej szczegółowo

PRZEGLĄD FUNKCJI ELEMENTARNYCH. (powtórzenie) y=f(x)=ax+b,

PRZEGLĄD FUNKCJI ELEMENTARNYCH. (powtórzenie) y=f(x)=ax+b, WYKŁAD 0 PRZEGLĄD FUNKCJI ELEMENTARNYCH (powtórzenie) 1. Funkcje liniowe Funkcją liniową nzywmy funkcję postci y=f()=+b, gdzie, b są dnymi liczbmi zwnymi odpowiednio: - współczynnik kierunkowy, b - wyrz

Bardziej szczegółowo

CAŁKA OZNACZONA JAKO SUMA SZEREGU

CAŁKA OZNACZONA JAKO SUMA SZEREGU CAŁKA OZNACZONA JAKO SUMA SZEREGU Rozwżmy funkcję ciągłą x f(x) o wrtościch nieujemnych określoną n przedzile [, b]. Ustlmy [będzie to problem sttystyczny polegjący n dokłdnym sprecyzowniu informcji o

Bardziej szczegółowo

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać: WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość

Bardziej szczegółowo

Odpowiadają na pytanie: dlaczego ruch zachodzi?

Odpowiadają na pytanie: dlaczego ruch zachodzi? ZASADY DYNAMIKI Odpowidją n pytnie: dlczego uch zchodzi? Są dziełem lileusz ( zsd bezwłdności) i Newton lileusz (1564-164) Newton (1643-177) I ZASADA DYNAMIKI (ZASADA BEZWŁADNOŚCI) Jeśli n ciło nie dził

Bardziej szczegółowo

PRZEMIANA ENERGII ELEKTRYCZNEJ W CIELE STAŁYM

PRZEMIANA ENERGII ELEKTRYCZNEJ W CIELE STAŁYM PRZEMIANA ENERGII ELEKTRYCZNE W CIELE STAŁYM Anaizowane są skutki pzepływu pądu pzemiennego o natężeniu I pzez pzewodnik okągły o pomieniu. Pzyęto wstępne założenia upaszcząace: - kształt pądu est sinusoidany,

Bardziej szczegółowo

RACHUNEK CAŁKOWY. Funkcja F jest funkcją pierwotną funkcji f na przedziale I R, jeżeli. F (x) = f (x), dla każdego x I.

RACHUNEK CAŁKOWY. Funkcja F jest funkcją pierwotną funkcji f na przedziale I R, jeżeli. F (x) = f (x), dla każdego x I. RACHUNEK CAŁKOWY Funkcj F jest funkcją pierwotną funkcji f n przedzile I R, jeżeli F (x) = f (x), dl kżdego x I. Przykłd. Niech f (x) = 2x dl x (, ). Wtedy funkcje F (x) = x 2 + 5, F (x) = x 2 + 5, F (x)

Bardziej szczegółowo

Zapis wskaźnikowy i umowa sumacyjna

Zapis wskaźnikowy i umowa sumacyjna Zpis wskźnikow i mow smcjn Pokzć, że e ikm e ikm Pokzć, że e e δ ikm jkm Dn jest mcierzow reprezentcj tensor 7 7 7 ), ), c) 7 7 Podć dziewięć skłdowch d zdefiniownch związkiem: Wrnki nierozdzielności możn

Bardziej szczegółowo

Wyrównanie sieci niwelacyjnej

Wyrównanie sieci niwelacyjnej 1. Wstęp Co to jest sieć niwelcyjn Po co ją się wyrównje Co chcemy osiągnąć 2. Metod pośrednicząc Wyrównnie sieci niwelcyjnej Metod pośrednicząc i metod grpow Mmy sieć skłdjącą się z szereg pnktów. Niektóre

Bardziej szczegółowo

ANALIZA DRGAŃ WŁASNYCH PŁYT PIERŚCIENIOWYCH O SKOKOWO ZMIENNEJ GRUBOŚCI

ANALIZA DRGAŃ WŁASNYCH PŁYT PIERŚCIENIOWYCH O SKOKOWO ZMIENNEJ GRUBOŚCI OELOANIE INŻYNIERKIE INN 896-77X s. -8 liwice 6 ANALIZA RAŃ ŁANYCH PŁYT PIERŚCIENIOYCH O KOKOO ZIENNEJ RUBOŚCI TANIŁA KUKLA ARIUZ ZECZYK Instytut temtyki i Infomtyki Politechnik Częstochowsk teszczenie.

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w popzednim odcinku 1 8 gudnia KOLOKWIUM W pzyszłym tygodniu więcej infomacji o pytaniach i tym jak pzepowadzimy te kolokwium 2 Moment bezwładności Moment bezwładności masy punktowej m pouszającej się

Bardziej szczegółowo

Zadanie 5. Kratownica statycznie wyznaczalna.

Zadanie 5. Kratownica statycznie wyznaczalna. dnie 5. Krtownic sttycznie wyznczln. Wyznczyć wrtości sił w prętch krtownicy sttycznie wyznczlnej przedstwionej n Rys.1: ). metodą nlitycznego równowżeni węzłów, ). metodą gricznego równowżeni węzłów;

Bardziej szczegółowo

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych PODSTAWY BAZ DANYCH Wykłd 3 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy z dnych" 1 Rozkłdlno dlność schemtów w relcyjnych Przykłd. Relcj EGZ(U), U := { I, N, P, O }, gdzie I 10 10 11 N f f

Bardziej szczegółowo

PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA

PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA PĄD LKTYCZNY SŁA MAGNTYCZNA Na ładunek, opócz siły elektostatycznej, działa ównież siła magnetyczna popocjonalna do pędkości ładunku v. Pzekonamy się, że siła działająca na magnes to siła działająca na

Bardziej szczegółowo

Prawo Coulomba i pole elektryczne

Prawo Coulomba i pole elektryczne Prwo Coulomb i pole elektryczne Mciej J. Mrowiński 4 pździernik 2010 Zdnie PE1 2R R Dwie młe kulki o msie m, posidjące ten sm łdunek, umieszczono w drewninym nczyniu, którego przekrój wygląd tk jk n rysunku

Bardziej szczegółowo

= przy założeniu iż wartość momentu pędu ciała jest różna od zera: 0. const. , co pozwala na określenie go w sposób jednoznaczny.

= przy założeniu iż wartość momentu pędu ciała jest różna od zera: 0. const. , co pozwala na określenie go w sposób jednoznaczny. Z 6 sei I ozszezone Chce znleźć to ch cił n któe ził sił centln: F, pz złożeni iż wtość oent pę cił jest óżn o ze: Do ozwiązni ożn wkozstć np wzó l ównowżn je wzó const ± spowzjąc pole po wpowzeni postwini

Bardziej szczegółowo

ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ.

ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. STRESZCZENIE Na bazie fizyki klasycznej znaleziono nośnik ładunku gawitacyjnego, uzyskano jedność wszystkich odzajów pól ( elektycznych,

Bardziej szczegółowo

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Ćwiczenie 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ 9.. Opis teoretyczny Soczewką seryczną nzywmy przezroczystą bryłę ogrniczoną dwom powierzchnimi serycznymi o promienich R i

Bardziej szczegółowo

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

Podstawy fizyki subatomowej

Podstawy fizyki subatomowej Podstawy fizyki subatomowej Wykład 6 Zenon Janas 11 kwietnia 018. Współzędne sfeyczne położenie punktu: (, θ, ϕ) Z sin θ ( 0, ) θ ( 0, π ) ϕ ( 0, π ) cosθθ X ϕ θ Y (, θ, ϕ) ( x, y, z) x sinθcosϕ y sinθsinϕ

Bardziej szczegółowo

Komputerowa symulacja doświadczenia Rutherforda (rozpraszanie cząstki klasycznej na potencjale centralnym

Komputerowa symulacja doświadczenia Rutherforda (rozpraszanie cząstki klasycznej na potencjale centralnym Pojekt n C.8. Koputeowa syulacja doświadczenia Ruthefoda (ozpaszanie cząstki klasycznej na potencjale centalny (na podstawie S.. Koonin "Intoduction to Coputational Physics") Wpowadzenie Cząstka o asie

Bardziej szczegółowo

Notatki z Analizy Matematycznej 4. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 4. Jacek M. Jędrzejewski Nottki z Anlizy Mtemtycznej 4 Jcek M. Jędrzejewski ROZDZIAŁ 7 Cłk Riemnn 1. Cłk nieoznczon Definicj 7.1. Niech f : (, b) R będzie dowolną funkcją. Jeżeli dl pewnej funkcji F : (, b) R spełnion jest równość

Bardziej szczegółowo

G:\AA_Wyklad 2000\FIN\DOC\Nieciagly.doc. Drgania i fale II rok Fizyki BC

G:\AA_Wyklad 2000\FIN\DOC\Nieciagly.doc. Drgania i fale II rok Fizyki BC Fle w ośrodu o struturze periodycznej: N ogół roziry nieciągłości ośrod

Bardziej szczegółowo

BADANIE ZALEŻNOŚCI PRZENIKALNOŚCI MAGNETYCZNEJ

BADANIE ZALEŻNOŚCI PRZENIKALNOŚCI MAGNETYCZNEJ ADANIE ZAEŻNOŚCI PRZENIKANOŚCI MAGNETYCZNEJ FERRIMAGNETYKÓW OD TEMPERATURY 1. Teori Włściwości mgnetyczne sstncji chrkteryzje współczynnik przeniklności mgnetycznej. Dl próżni ten współczynnik jest równy

Bardziej szczegółowo

G i m n a z j a l i s t ó w

G i m n a z j a l i s t ó w Ko³o Mtemtyzne G i m n z j l i s t ó w Stowzyszenie n zez Edukji Mtemtyznej Zestw 6 szkie ozwiązń zdń Znjdź wszystkie tójki (x, y, z) liz zezywistyh, któe są ozwiąznimi ównni 5(x +y +z ) = 4(xy +yz +zx)

Bardziej szczegółowo

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych Zstosownie multimetrów cyfrowych do pomiru podstwowych wielkości elektrycznych Cel ćwiczeni Celem ćwiczeni jest zpoznnie się z możliwościmi pomirowymi współczesnych multimetrów cyfrowych orz sposobmi wykorzystni

Bardziej szczegółowo

MATURA 2014 z WSiP. Zasady oceniania zadań

MATURA 2014 z WSiP. Zasady oceniania zadań MATURA z WSiP Mtemtyk Poziom podstwowy Zsdy ocenini zdń Copyright by Wydwnictw Szkolne i Pedgogiczne sp. z o.o., Wrszw Krtotek testu Numer zdni 6 7 8 9 6 7 8 9 Uczeń: Sprwdzn umiejętność (z numerem stndrdu)

Bardziej szczegółowo

Macierz. Wyznacznik macierzy. Układ równań liniowych

Macierz. Wyznacznik macierzy. Układ równań liniowych Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: Ŝółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk n kierunku Biologi w SGGW Zgdnieni.

Bardziej szczegółowo

Zadania. I. Podzielność liczb całkowitych

Zadania. I. Podzielność liczb całkowitych Zdni I. Podzielność liczb cłkowitych. Pewn liczb sześciocyfrow kończy się cyfrą 5. Jeśli tę cyfrę przestwimy n miejsce pierwsze ze strony lewej to otrzymmy nową liczbę cztery rzy większą od poprzedniej.

Bardziej szczegółowo

PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD ,0. 3x 6 6 3x 6 6,

PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD ,0. 3x 6 6 3x 6 6, Zdnie PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD 04 Zbiorem wszystkich rozwiązń nierówności x 6 6 jest: A, 4 0, B 4,0 C,0 4, D 0,4 Odpowiedź: C Rozwiąznie Sposób I Nierówność A 6 jest równowżn lterntywie

Bardziej szczegółowo

IKONY CZĘŚĆ I 1. WIELOKĄTY I OKRĘGI

IKONY CZĘŚĆ I 1. WIELOKĄTY I OKRĘGI CZĘŚĆ I 1. WIELOKĄTY I OKRĘGI 1.1. Okąg opisny n wielokącie (s. 10) Zdni utwljące (s. ) 1.. Okąg wpisny w wielokąt (s. 4) Zdni utwljące (s. 35) 1.3. Wielokąty foemne (s. 37) Zdni utwljące (s. 43) Zdni

Bardziej szczegółowo

AERODYNAMIKA I WYKŁAD 1 PRZEPŁYWY POTENCJALNE CZĘŚĆ 1

AERODYNAMIKA I WYKŁAD 1 PRZEPŁYWY POTENCJALNE CZĘŚĆ 1 AERODYNAMIKA I WYKŁAD 1 PRZEPŁYWY POTENCJALNE CZĘŚĆ 1 Polog ównnie Cocco Równnie uchu (Eule) w fomie Lmb-Gomeki (pzepływ stcjonny, potencjlne pole sił zewnętznych) Piewsz Zsd Temodynmiki ωυ p p 1 1 f 1

Bardziej szczegółowo

23 PRĄD STAŁY. CZĘŚĆ 2

23 PRĄD STAŁY. CZĘŚĆ 2 Włodzimiez Wolczyński 23 PĄD STAŁY. CZĘŚĆ 2 zadanie 1 Tzy jednakowe oponiki, każdy o opoze =30 Ω i opó =60 Ω połączono ze źódłem pądu o napięciu 15 V, jak na ysunku obok. O ile zwiększy się natężenie pądu

Bardziej szczegółowo