Pomiary parametrów światłowodów WYKŁAD 11 SMK. 1. Wpływ sposobu pobudzania włókna światłowodu na rozkład prowadzonej w nim mocy

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Pomiary parametrów światłowodów WYKŁAD 11 SMK. 1. Wpływ sposobu pobudzania włókna światłowodu na rozkład prowadzonej w nim mocy"

Transkrypt

1 Pomiy pmetów świtłowodów WYKŁAD SMK. Wpływ sposobu pobudzni włókn świtłowodu n ozkłd powdzonej w nim mocy Ilość modów wzbudznych w świtłowodch zleży od pmetów świtłowodu i wykozystywnej długości fli. W pktyce, pzy spzęgniu świtłowodu z LED lub LD nie wszystkie mody są wzbudzne, co jest wynikiem niedopsowni pmetów źódł i świtłowodu; pondto zeczywiste świtłowody chkteyzują się niejednoodnościmi fluktucje współczynnik złmni i pmetów geometycznych (zgięci i mikozgięci). Wszystkie te czynniki powdzą do zjwisk spzęgni (pzepływ enegii między modmi) modów. Pobudzenie jednego modu n wejściu dje w ten sposób zmienny ozkłd mocy n długości świtłowodu. Dosttecznie dleko od źódł pobudzjącego wszystkie mody świtłowodowe powdzą enegię. Rozkłd mocy pomiędzy tymi modmi jest ustlony ozkłd stbilny (pktycznie po pzejściu pzez świtło odcink świtłowodu o długości około km). Dl kótkich odcinków świtłowodu ozkłd mocy między modmi zleży od sposobu pobudzni świtłowodu i odzju źódł. Rys.. Rozkłd mocy w świtłowodzie o skokowym współczynniku złmni Dl óżnych sposobów pobudzni świtłowodu Pobudzjąc świtłowód ze źódł dyfuzyjnego pobudzmy wszystkie mody n poównywlnym poziomie mocy. Pefeowne są, więc mody wyższych zędów (popgują się pod większymi ktmi w stosunku do osi świtłowodu). Pobudzjąc świtłowód wiązką skolimowną, pobudzmy mody pzyosiowe. Stbilny ozkłd modów to efekt spzężeni pomiędzy modmi powdzonymi. Aby n kótkim odcinku uzyskć ozkłd zbliżony do stbilnego stosuje się scmbley (fgment świtłowodu poddny mokozgięciom o okesie ok. mm (5 zwojów n wlcu o śednicy.7 mm zlecenie CCITT).

2 Wyniki pomiów pmetów świtłowodów (tłumienność świtłowodów i złącz świtłowodowych) i linii świtłowodowej zleżą od ozkłdu mocy w świtłowodzie. Stbilny ozkłd modów wymgny jest w czujnikch świtłowodowych. Ukłd pomiowy stbilności ozkłdu modów w świtłowodch pzedstwi ysunek. Rys.. G geneto, NH nnowoltomiez homodynowy, MM mieszcz modów, F b bdny świtłowód, F o świtłowód odbioczy Źódłem świtł jest LED zsiln z geneto (źódło dyfuzyjne, gdy świtło z diody o młej ozbieżności pd n mtówkę, źódło skolimowne t sm diod bez mtówki). Detekcj sygnłu pzy pomocy fotodiody spolyzownej w kieunku zpoowym (sygnł podwny n nnowoltomiez NH). Ukłd mechniczny umożliwi elizcję spzężeni bdnego włókn F b ze źódłmi świtł i pomi ozkłdu mocy n wyjściu świtłowodu. Wykozystuje się odcinek świtłowodu gubodzeniowego, połączony z detektoem, dugi koniec świtłowodu zmocowny jest n stoliku goniometycznym w pewnej odległości od osi obotu. Świtłowód ndwczy mocuje się tk, że jego koniec znjduje się nd osią stolik goniometycznego. Rejestuje się zleżność sygnłu optycznego od kąt, pod jkim sygnł jest emitowny. Mieszcze modów (scmbley) umożliwiją otzymnie stbilnego ozkłdu mocy w kżdym z odcinków tou.. Bdnie chkteystyk spzęgni włókien świtłowodowych Kżde złącze świtłowodowe ozncz pktycznie połączenie dwóch óżnych świtłowodów. Wynik pomiu stt złącz świtłowodów wielodomowych zleży od ozkłdu powdzonej mocy w świtłowodzie (powtzlność pomiów).. Stty odbiciowe W złączch ozłączlnych między czołmi łączonych świtłowodów powstje szczelin, pzez co świtło npotyk dw skoki współczynnik złmni odbici Fesnel.

3 nl nw = *0*log[ ] nl + nw n l dzeń świtłowodu, n w ośodek wypełnijący pzewę między czołmi świtłowodów Gdy n w = (powietze), n l =.46 (szkło kwcowe) =0.3 db. Stty te edukuje się wpowdzjąc ciecz immesyjną pomiędzy czoł. Rys. 3. Odbici Fesnel Rys. 4. Wpływ współczynnik złmni cieczy immesyjnej b. Stty niedopsowni geometii i pmetów świtłowodów Łączone świtłowody óżnią się: pomienimi dzeni, wtościmi petuy numeycznej NA i ozkłdmi współczynników złmni - stty związne z niedopsowniem petu: NA = 0 * log NA gdy NA >NA, świtło pzechodzi z NA do NA - stty wynikjące z niedopsowni śednic dzeni ( i ) spzęgnych świtłowodów = 0 * log 3

4 4 gdy >, świtło pzechodzi z do - stty wynikjące z óżnicy pofili współczynników złmni świtłowodów < = dl dl n n ) ( ) ( n n n = Rys. 5. Rodzje pofili współczynników złmni + + = ) ( ) ( 0 * log - stty wynikjące z niedokłdności ustwieni łączonych włókien Rys. 6. Pzesunięcie dilne osi świtłowodów Nieosiowość ustwieni świtłowodów: - pzesunięcie dilne = dl świtłowodu wielodomowego ze skokowym ozkłdem współczynnik złmni: = x x x csin 4 0 * log / π π x liniowe pzesunięcie osi, pomień dzeni, = dl świtłowodu jednodomowego (ozkłd pol funkcj Guss):

5 - pzesunięcie poosiowe = świtłowody wielodomowe: d ozsunięcie czół świtłowodów = świtłowody jednodomowe: - pochylenie osi x x = 0 * log exp = 4.34 ω 0 ω ω 0 szeokość pol modu = 0 * log NA + d tg csin n + 4z d = 0 * log, z =, d ( + z ) + z ) knω0 0 Rys. 7. Pochylenie osi świtłowodów = świtłowody wielodomowe / θ = 0 *log[ nwθπnl ( ) = świtłowody jednodomowe θ = λ λ πnω0θ πnω0θ 0 * log exp = 4.34 Rys. 8. Ukłd pomiowy chkteystyk spzężeni włókien świtłowodowych 3. Bdnie spzęgczy świtłowodowych 5

6 Spzęgcze stosuje się w celu ozgłęzieni sygnłu optycznego z jednego świtłowodu lub łączeni sygnłów optycznych w jednym toze świtłowodowym (elementy psywne). Rodzje: *, *, *N, N*M. Spzęgnie czołowe (tnsfomcj mocy pzez czoł świtłowodów) i boczne (oddziływnie między modmi spzęgnych świtłowodów elizowne pzez ich pol znikjące). - spzęgcze bocznie klejone (poces szlifowni i poleowni ż powiezchni boczn osiągnie poziom osi świtłowodu; popzez boczne klejenie wytwz się spzęgcze X, pzecięcie ozgłęzicz X i czołowe doklejenie świtłowodu dje ozgłęzicz Y), Rys. 9. Twozenie spzęgcz X - spzęgcze spwne (podgzewnie odsłoniętych obszów świtłowodów, jednoczesne skęcnie i ozciągnie) - spzęgcze plnne (metod wyminy jonowej w szkłch temiczn ktywcj jonów domieszki wpowdznych do podłoż z ciekłego źódł - elektodyfuzj, technologi zol-żel) - spzęgcze wykozystujące elementy mikooptyczne Pmety spzęgczy świtłowodowych: Rys. 0. Schemt spzęgcz typu X - stty cłkowite, wtąceniowe, w (ogólne stty w spzęgczu): P3 + P4 w = 0 * log P - współczynnik spzężeni, k s (podził mocy optycznej pomiędzy wyjści 4 i 3): k s P = 4 00% P 3 - stty pzejści (tnsmisyjne), p (upzywilejowne pzejście między świtłowodmi i 3): P3 p = 0*log P - stty spzężeni, s (stopień spzężeni pomiędzy wejściem i wyjściem 4). : 6

7 = P4 s 0 * log P - współczynnik izolcji (ekstynkcji, kieunkowości spzężeni), R i (óżnic mocy n wejściu i wyjściu ): * P R i = 0 * log P - współczynnik odbici, R c (moc sygnłu optycznego, któ w efekcie odbici w spzęgczu wc do wejści ): * P R c = 0 * log P Idelny spzęgcz: moc optyczn wpowdzon wejściem nie pzenik do wejści oz nie jest odbijn do wejści. Współczynniki spzężeni dl typowych spzęgczy: 0% do 90%. Współczynniki izolcji: R i =-(50-60) db, by sygnł odbity do wejści był poniżej pogu czułości detekto. Rys.. Ukłd pomiowy do bdni spzęgczy S-spzęgcz, F n świtłowód ndwczy, F o świtłowód odbioczy, ZS złącz świtłowodowe ozłączlne, MM mieszcz modów, Ci nczynie z ciecz immesyjną, G geneto, NH nnowoltomiez homodynowy Źódło świtł pobudz sygnł zmienny z geneto G, detekcj pzy pomocy fotodiody spolyzownej zpoowo (czułe n 850 i 300 nm), z któej sygnł odbieny jest pzez nnowoltomiez homodynowy NH. Spzęgcze jednodomowe pobudzne są lseem LD dl λ=300 nm, spzęgcze wielodomowe pobudzne są diodmi LED. Ci stosuje się w celu wyeliminowni odbić Fesnel od końców świtłowodów. 4. Wpływ zgięć i mikozgięć n włściwości tnsmisyjne świtłowodów 7

8 Rozkłd mplitudy pol podstwowego modu zgiętego świtłowodu pzedstwi ysunek: Dl pewnych x>x moc związn z modem musiłby popgowć się z pędkością >c mod wypomieniowuje, więc enegię. Współczynnik tłumienności w zgiętym świtłowodzie: = GL z G c T G Rys.. Zkzywiony świtłowód plnny ( β k0nc ) ( x) dx, GT = F ( x) dx, zc = nc, x = R, k0 λ k n L = F x 0 c = π / λ F(x) funkcj opisując ozkłd pol ozptywnego modu, b stł popgcji w świtłowodzie, efektywn szeokość ozkłdu pol modu, R pomień kzywizny zgięci Rys. 3. Rozkłdy pól modów TE 0 i TE w płskim i zkzywionym świtłowodzie plnnym Litetu: Lbotoium optoelektoniki świtłowodowej, Aleksnde Opilski, Gliwice 00 8

Zadania do rozdziału 7.

Zadania do rozdziału 7. Zdni do ozdziłu 7. Zd.7.. wiezchołkch kwdtu o okch umieszczono ednkowe łdunku. Jki łdunek o znku pzeciwnym tze umieścić w śodku kwdtu y sił wypdkow dziłąc n kżdy łdunek ył ówn zeu? ozwiąznie: ozptzmy siły

Bardziej szczegółowo

ZADANIA DO SAMODZIELNEGO ROZWIĄZANIA

ZADANIA DO SAMODZIELNEGO ROZWIĄZANIA ZNI SMZIELNE RZWIĄZNI łski ukłd sił zbieżnych Zdnie 1 Jednoodn poziom belk połączon jest pzegubowo n końcu z nieuchomą ściną oz zwieszon n końcu n cięgnie twozącym z poziomem kąt. Znleźć ekcję podpoy n

Bardziej szczegółowo

Katedra Fizyki SGGW 158. Ćwiczenie 158. Rząd maksimum, n = 1 Rząd maksimum, n = 2

Katedra Fizyki SGGW 158. Ćwiczenie 158. Rząd maksimum, n = 1 Rząd maksimum, n = 2 Kted Fizyki SGGW Nzwisko... Dt... N liście... Imię... Wydził... Dzień tyg.... Godzi... Ćwiczeie die zjwisk dyfkcji pojedyczej i podwójej szczeliie Długość fli świtł lse, [m] Odległość szczeli od eku, l

Bardziej szczegółowo

POMIAR OGNISKOWEJ SOCZEWEK METODĄ BESSELA

POMIAR OGNISKOWEJ SOCZEWEK METODĄ BESSELA Ćwiczenie 50 POMIAR OGNISKOWEJ SOCZEWEK METODĄ BESSELA 50.. Widomości ogólne Soczewką nzywmy ciło pzeźoczyste oczyste ogniczone dwiem powiezchnimi seycznymi. Post pzechodząc pzez śodki kzywizny ob powiezchni

Bardziej szczegółowo

Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym

Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym 1.Wpowadzenie Wyznaczanie pofilu pędkości płynu w uociągu o pzekoju kołowym Dla ustalonego, jednokieunkowego i uwastwionego pzepływu pzez uę o pzekoju kołowym ównanie Naviea-Stokesa upaszcza się do postaci

Bardziej szczegółowo

5. Mechanika bryły sztywnej

5. Mechanika bryły sztywnej W ozdzie dpowiedzi i wskzówki znjdują się odpowiedzi do wszystkich zdń, znjdziesz tm ównież wskzówki do ozwiązń tudnych zdń. Pełne ozwiązni zdń możesz uzyskć pzysyłjąc e-mi n des: kons@x.wp.p 5. Mechnik

Bardziej szczegółowo

mgh. Praca ta jest zmagazynowana w postaci energii potencjalnej,

mgh. Praca ta jest zmagazynowana w postaci energii potencjalnej, Wykłd z fizyki. Piot Posmykiewicz 49 6-4 Enegi potencjln Cłkowit pc wykonn nd punktem mteilnym jest ówn zminie jego enegii kinetycznej. Często jednk, jesteśmy zinteesowni znlezieniem pcy jką sił wykonł

Bardziej szczegółowo

1. Technika sprzęgaczy i ich zastosowanie

1. Technika sprzęgaczy i ich zastosowanie . Technika sprzęgaczy i ich zastosowanie Sprzęgacze światłowodowe są podstawowymi elementami rozgałęźnych sieci optycznych (lokalnych, komputerowych, telewizyjnych) dowolnej konfiguracji. Spełniają rolę

Bardziej szczegółowo

Stanisław RADKOWSKI. Politechnika Warszawska, Instytut Podstaw Budowy Maszyn,

Stanisław RADKOWSKI. Politechnika Warszawska, Instytut Podstaw Budowy Maszyn, WYKORZYSTANIE STACJONARNYCH STACJI MONITORINGU W WYKRYWANIU USZKODZEŃ POJAZDÓW Snisłw RADKOWSKI Poliechnik Wszwsk, Insyu Podsw Budowy Mszyn, ul. Nbu 84, 0-54 Wszw 0 660 86, e-mil: s@sim.pw.edu.pl Scj monioingu

Bardziej szczegółowo

Wykład 6 Dyfrakcja Fresnela i Fraunhofera

Wykład 6 Dyfrakcja Fresnela i Fraunhofera Wykłd 6 Dyfrkcj Fresnel i Frunhofer Zjwisko dyfrkcji (ugięci) świtł odkrył Grimldi (XVII w). Poleg ono n uginniu się promieni świetlnych przechodzących w pobliżu przeszkody (np. brzeg szczeliny). Wyjśnienie

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa Mtemtyk finnsow 15.0.010 r. Komisj Egzmincyjn dl Akturiuszy LII Egzmin dl Akturiuszy z 15 mrc 010 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoy egzminownej:... Czs egzminu: 100 minut 1

Bardziej szczegółowo

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH Ćwiczenie Grżyn Nowick, Wldemr Nowicki BDNIE RÓWNOWG WSOWO-ZSDOWYC W ROZTWORC ELETROLITÓW MFOTERYCZNYC Zgdnieni: ktywność i współczynnik ktywności skłdnik roztworu. ktywność jonów i ktywność elektrolitu.

Bardziej szczegółowo

2. Tensometria mechaniczna

2. Tensometria mechaniczna . Tensometri mechniczn Wstęp Tensometr jk wskzywłby jego nzw to urządzenie służące do pomiru nprężeń. Jk jednk widomo, nprężeni nie są wielkościmi mierzlnymi i stnowią jedynie brdzo wygodne pojęcie mechniki

Bardziej szczegółowo

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Ćwiczenie 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ 9.. Opis teoretyczny Soczewką seryczną nzywmy przezroczystą bryłę ogrniczoną dwom powierzchnimi serycznymi o promienich R i

Bardziej szczegółowo

Optotelekomunikacja. dr inż. Piotr Stępczak 1

Optotelekomunikacja. dr inż. Piotr Stępczak 1 Optotelekomunikacja dr inż. Piotr Stępczak 1 dr inż. Piotr Stępczak Falowa natura światła () ( ) () ( ) z t j jm z z z t j jm z z e e r H H e e r E E β ω β ω Θ ± Θ ± 1 0 0 1 0 1 1 zatem 0 n n n n gr λ

Bardziej szczegółowo

KOREKCJA BŁĘDÓW W REFLEKTOMETRYCZNYCH POMIARACH DŁUGOŚCI ODCINKÓW SPAWANYCH TELEKOMUNIKACYJNYCH ŚWIATŁOWODÓW JEDNOMODOWYCH

KOREKCJA BŁĘDÓW W REFLEKTOMETRYCZNYCH POMIARACH DŁUGOŚCI ODCINKÓW SPAWANYCH TELEKOMUNIKACYJNYCH ŚWIATŁOWODÓW JEDNOMODOWYCH KOREKCJA BŁĘDÓW W REFLEKTOMETRYCZNYCH POMIARACH DŁUGOŚCI ODCINKÓW SPAWANYCH TELEKOMUNIKACYJNYCH ŚWIATŁOWODÓW JEDNOMODOWYCH dr inż. Marek Ratuszek, mgr inż. Zbigniew Zakrzewski, mgr inż. Jacek Majewski,

Bardziej szczegółowo

Laboratorium techniki światłowodowej. Ćwiczenie 3. Światłowodowy, odbiciowy sensor przesunięcia

Laboratorium techniki światłowodowej. Ćwiczenie 3. Światłowodowy, odbiciowy sensor przesunięcia Laboratorium techniki światłowodowej Ćwiczenie 3. Światłowodowy, odbiciowy sensor przesunięcia Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wprowadzenie

Bardziej szczegółowo

Ruch obrotowy. Wykład 6. Wrocław University of Technology

Ruch obrotowy. Wykład 6. Wrocław University of Technology Wykład 6 Wocław Univesity of Technology Oboty - definicje Ciało sztywne to ciało któe obaca się w taki sposób, że wszystkie jego części są związane ze sobą dzięki czemu kształt ciała nie ulega zmianie.

Bardziej szczegółowo

Aparatura sterująca i sygnalizacyjna Czujniki indukcyjne zbliżeniowe LSI

Aparatura sterująca i sygnalizacyjna Czujniki indukcyjne zbliżeniowe LSI Aprtur sterując i sygnlizcyjn Czujniki indukcyjne zbliżeniowe LSI Czujnik indukcyjny zbliżeniowy prcuje n zsdzie tłumionego oscyltor LC: jeżeli w obszr dziłni dostnie się metl, to z ukłdu zostje pobrn

Bardziej szczegółowo

Nowoczesne sieci komputerowe

Nowoczesne sieci komputerowe WYŻSZA SZKOŁA BIZNESU W DĄBROWIE GÓRNICZEJ WYDZIAŁ ZARZĄDZANIA INFORMATYKI I NAUK SPOŁECZNYCH Instrukcja do laboratorium z przedmiotu: Nowoczesne sieci komputerowe Instrukcja nr 4 Dąbrowa Górnicza, 2010

Bardziej szczegółowo

Łączenie włókien światłowodowych spawanie światłowodów. Spawy mechaniczne 0,05 0,2 db Spawanie 0,05 0,1 db

Łączenie włókien światłowodowych spawanie światłowodów. Spawy mechaniczne 0,05 0,2 db Spawanie 0,05 0,1 db Łączenie włókien światłowodowych spawanie światłowodów Złączki 0,2 1 db Spawy mechaniczne 0,05 0,2 db Spawanie 0,05 0,1 db Spawy mechaniczne 1. Elastomeric Lab Splice. Umożliwia setki połączeń 2. 3M Fibrlok.

Bardziej szczegółowo

Pomiar tłumienności światłowodów włóknistych

Pomiar tłumienności światłowodów włóknistych LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 4 Pomiar tłumienności światłowodów włóknistych Cel ćwiczenia: Zapoznanie studentów z parametrem tłumienności światłowodów oraz ze sposobem jego pomiaru Badane elementy:

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

Energia kinetyczna i praca. Energia potencjalna

Energia kinetyczna i praca. Energia potencjalna negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut

Bardziej szczegółowo

usuwa niewymierność z mianownika wyrażenia typu

usuwa niewymierność z mianownika wyrażenia typu Wymgni edukcyjne n poszczególne oceny z mtemtyki Kls pierwsz zkres podstwowy. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje

Bardziej szczegółowo

PROGRAM PRODUKCYJNY NARZĘDZI DO WIERCENIA - OBJAŚNIENIA

PROGRAM PRODUKCYJNY NARZĘDZI DO WIERCENIA - OBJAŚNIENIA PROGRM PRODUKCYJNY NRZĘDZI DO WIERCENI - OJŚNIENI Spoób ognizcji tony w tym ozdzile zognizcj według ztoowni wietł. FOTOGRFI WYROU NZW WYROU TYP WYROU TYTUŁ ROZDZIŁU PRODUCT TYPE PRODUCT SECTION GEOMETRI

Bardziej szczegółowo

ELEMENTY TOCZNE B 343

ELEMENTY TOCZNE B 343 B 342 ELEMENTY TOCZNE KULKI STALOWE DO ŁOŻYSK KULKOWYCH Śednica noalna 4.3mm............ B344 WAŁECZKI DO ŁOŻYSK WALCOWYCH Śednica noalna 3 0mm............... B346 DŁUGIE WAŁECZKI DO ŁOŻYSK WALCOWYCH Śednica

Bardziej szczegółowo

Uniwersytet Warszawski Wydział Fizyki. Światłowody

Uniwersytet Warszawski Wydział Fizyki. Światłowody Uniwersytet Warszawski Wydział Fizyki Marcin Polkowski 251328 Światłowody Pracownia Fizyczna dla Zaawansowanych ćwiczenie L6 w zakresie Optyki Streszczenie Celem wykonanego na Pracowni Fizycznej dla Zaawansowanych

Bardziej szczegółowo

Stanowisko do badania zjawiska tłumienia światła w ośrodkach materialnych

Stanowisko do badania zjawiska tłumienia światła w ośrodkach materialnych Stanowisko do badania zjawiska tłumienia światła w ośrodkach materialnych Na rys. 3.1 przedstawiono widok wykorzystywanego w ćwiczeniu stanowiska pomiarowego do badania zjawiska tłumienia światła w ośrodkach

Bardziej szczegółowo

OPTOTELEKOMUNIKACJA. dr inż. Piotr Stępczak 1

OPTOTELEKOMUNIKACJA. dr inż. Piotr Stępczak 1 OPTOTELEKOMUNIKACJA dr inż. Piotr Stępczak 1 Optyczne elementy pasywne Złącza światłowodowe Sprzęgacz / rozdzielacz światłowodowy Multiplekser / Demultiplekser falowy Optoizolator i cyrkulator Filtry światłowodowe

Bardziej szczegółowo

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie

Bardziej szczegółowo

FIZYKA 2. Janusz Andrzejewski

FIZYKA 2. Janusz Andrzejewski FIZYKA 2 wykład 4 Janusz Andzejewski Pole magnetyczne Janusz Andzejewski 2 Pole gawitacyjne γ Pole elektyczne E Definicja wektoa B = γ E = Indukcja magnetyczna pola B: F B F G m 0 F E q 0 qv B = siła Loentza

Bardziej szczegółowo

SPECYFIKACJA ZASIĘGU POŁĄCZEŃ OPTYCZNYCH

SPECYFIKACJA ZASIĘGU POŁĄCZEŃ OPTYCZNYCH Lublin 06.07.2007 r. SPECYFIKACJA ZASIĘGU POŁĄCZEŃ OPTYCZNYCH URZĄDZEŃ BITSTREAM Copyright 2007 BITSTREAM 06.07.2007 1/8 SPIS TREŚCI 1. Wstęp... 2. Moc nadajnika optycznego... 3. Długość fali optycznej...

Bardziej szczegółowo

R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10

R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10 Zdnie. Zkłd ubezpieczeń n życie plnuje zbudownie portfel ubezpieczeniowego przy nstępujących złożenich: ozwiąznie. Przez P k będę oznczł wrtość portfel n koniec k-tego roku. Szukm P 0 tkie by spełnił:

Bardziej szczegółowo

Ćwiczenia laboratoryjne z przedmiotu : Napędy Hydrauliczne i Pneumatyczne

Ćwiczenia laboratoryjne z przedmiotu : Napędy Hydrauliczne i Pneumatyczne Lbortorium nr 11 Temt: Elementy elektropneumtycznych ukłdów sterowni 1. Cel ćwiczeni: Opnownie umiejętności identyfikcji elementów elektropneumtycznych n podstwie osprzętu FESTO Didctic. W dużej ilości

Bardziej szczegółowo

TŁUMIENIE ŚWIATŁA W OŚRODKACH OPTYCZNYCH

TŁUMIENIE ŚWIATŁA W OŚRODKACH OPTYCZNYCH TŁUMIENIE ŚWIATŁA W OŚRODKACH OPTYCZNYCH Jednym z parametrów opisujących właściwości optyczne światłowodów jest tłumienność. W wyniku zjawiska tłumienia, energia fali elektromagnetycznej niesionej w światłowodzie

Bardziej szczegółowo

Wymagania kl. 2. Uczeń:

Wymagania kl. 2. Uczeń: Wymgni kl. 2 Zkres podstwowy Temt lekcji Zkres treści Osiągnięci uczni. SUMY ALGEBRAICZNE. Sumy lgebriczne definicj jednominu pojęcie współczynnik jednominu porządkuje jednominy pojęcie sumy lgebricznej

Bardziej szczegółowo

GEOMETRIA PŁASZCZYZNY

GEOMETRIA PŁASZCZYZNY GEOMETRIA PŁASZCZYZNY. Oblicz pole tapezu ównoamiennego, któego podstawy mają długość cm i 0 cm, a pzekątne są do siebie postopadłe.. Dany jest kwadat ABCD. Punkty E i F są śodkami boków BC i CD. Wiedząc,

Bardziej szczegółowo

XLI OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne

XLI OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne XLI OLIPIADA FIZYCZNA EAP I Zadanie doświadczalne ZADANIE D Pod działaniem sil zewnęznych ciała sale ulęgają odkszałceniom. Wyznacz zależność pomienia obszau syczniści szklanej soczewki z płyka szklana

Bardziej szczegółowo

Temat ćwiczenia. Pomiary kół zębatych

Temat ćwiczenia. Pomiary kół zębatych POLITECHNIKA ŚLĄSKA W YDZIAŁ TRANSPORTU Temt ćwiczeni Pomiy kół zębtych I. Cel ćwiczeni Zpoznnie studentów z metodmi pomiu uzębień wlcowych kół zębtych o zębch postych oz pktyczny pomi koł. II. Widomości

Bardziej szczegółowo

Temat lekcji Zakres treści Osiągnięcia ucznia

Temat lekcji Zakres treści Osiągnięcia ucznia ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:

Bardziej szczegółowo

Podstawy Konstrukcji Maszyn

Podstawy Konstrukcji Maszyn Podstay Konstukcji Maszyn Wykład 8 Pzekładnie zębate część D inŝ. Jacek zanigoski Klasyfikacja pzekładni zębatych. Ze zględu na miejsce zazębienia O zazębieniu zenętznym O zazębieniu enętznym Klasyfikacja

Bardziej szczegółowo

Typowe parametry włókna MMF-SI

Typowe parametry włókna MMF-SI Techniki światłowodowe Standardy telekomunikacyjnych włókien światłowodowych Zbigniew Zakrzewski ver.1.0 N W 1 Typowe parametry włókna MMF-SI Parametr Wartość Średnica rdzenia 50 400 µm Średnica płaszcza

Bardziej szczegółowo

11. DYNAMIKA RUCHU DRGAJĄCEGO

11. DYNAMIKA RUCHU DRGAJĄCEGO 11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie

Bardziej szczegółowo

Ćwiczenie 2. Badanie strat odbiciowych i własnych wybranych patchcordów światłowodowych. LABORATORIUM OPTOELEKTRONIKI

Ćwiczenie 2. Badanie strat odbiciowych i własnych wybranych patchcordów światłowodowych. LABORATORIUM OPTOELEKTRONIKI LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 2 Badanie strat odbiciowych i własnych wybranych patchcordów światłowodowych. Cel ćwiczenia: Zapoznanie studentów ze zjawiskami tłumienności odbiciowej i własnej.

Bardziej szczegółowo

2. FUNKCJE WYMIERNE Poziom (K) lub (P)

2. FUNKCJE WYMIERNE Poziom (K) lub (P) Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

CAŁKA OZNACZONA JAKO SUMA SZEREGU

CAŁKA OZNACZONA JAKO SUMA SZEREGU CAŁKA OZNACZONA JAKO SUMA SZEREGU Rozwżmy funkcję ciągłą x f(x) o wrtościch nieujemnych określoną n przedzile [, b]. Ustlmy [będzie to problem sttystyczny polegjący n dokłdnym sprecyzowniu informcji o

Bardziej szczegółowo

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony Modele odpowiedzi do akusza Póbnej Matuy z OPERONEM Matematyka Poziom ozszezony Listopad 00 W kluczu są pezentowane pzykładowe pawidłowe odpowiedzi. Należy ównież uznać odpowiedzi ucznia, jeśli są inaczej

Bardziej szczegółowo

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań KONKURS MATEMATYCZNY dl uczniów gimnzjów w roku szkolnym 0/ II etp zwodów (rejonowy) 0 listopd 0 r. Propozycj punktowni rozwiązń zdń Uwg: Z kżde poprwne rozwiąznie inne niż przewidzine w propozycji punktowni

Bardziej szczegółowo

Laboratorium techniki światłowodowej. Ćwiczenie 5. Badanie wpływu periodycznych zgięd na tłumiennośd światłowodu

Laboratorium techniki światłowodowej. Ćwiczenie 5. Badanie wpływu periodycznych zgięd na tłumiennośd światłowodu Laboratorium techniki światłowodowej Ćwiczenie 5. Badanie wpływu periodycznych zgięd na tłumiennośd Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wprowadzenie

Bardziej szczegółowo

METODY HODOWLANE - zagadnienia

METODY HODOWLANE - zagadnienia METODY HODOWLANE METODY HODOWLANE - zgdnieni. Mtemtyczne podstwy metod odowlnyc. Wtość cecy ilościowej i definicje pmetów genetycznyc. Metody szcowni pmetów genetycznyc 4. Wtość odowln cecy ilościowej

Bardziej szczegółowo

Sieć odwrotna. Fale i funkcje okresowe

Sieć odwrotna. Fale i funkcje okresowe Sieć odwotn Fle i funkcje okesowe o Wiele obiektów w pzyodzie d; o Różne fle ozchodzą się w pzestzeni (zówno w póżni jk i w mteii); o Aby mtemtycznie opisć tkie okesowe zminy stosuje się funkcje sinus

Bardziej szczegółowo

Notatki z Analizy Matematycznej 4. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 4. Jacek M. Jędrzejewski Nottki z Anlizy Mtemtycznej 4 Jcek M. Jędrzejewski ROZDZIAŁ 7 Cłk Riemnn 1. Cłk nieoznczon Definicj 7.1. Niech f : (, b) R będzie dowolną funkcją. Jeżeli dl pewnej funkcji F : (, b) R spełnion jest równość

Bardziej szczegółowo

( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu.

( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu. Elementy rchunku prwdopodoeństw f 0 f() - gęstość rozkłdu prwdopodoeństw X f d P< < = f( d ) F = f( tdt ) - dystryunt rozkłdu E( X) = tf( t) dt - wrtość średn D ( X) = E( X ) E( X) - wrncj = f () F ()

Bardziej szczegółowo

Propagacja światła we włóknie obserwacja pól modowych.

Propagacja światła we włóknie obserwacja pól modowych. Propagacja światła we włóknie obserwacja pól modowych. Przy pomocy optyki geometrycznej łatwo można przedstawić efekty propagacji światła tylko w ośrodku nieograniczonym. Nie ukazuje ona jednak interesujących

Bardziej szczegółowo

Zadania. I. Podzielność liczb całkowitych

Zadania. I. Podzielność liczb całkowitych Zdni I. Podzielność liczb cłkowitych. Pewn liczb sześciocyfrow kończy się cyfrą 5. Jeśli tę cyfrę przestwimy n miejsce pierwsze ze strony lewej to otrzymmy nową liczbę cztery rzy większą od poprzedniej.

Bardziej szczegółowo

9. 1. KOŁO. Odcinki w okręgu i kole

9. 1. KOŁO. Odcinki w okręgu i kole 9.. KOŁO Odcinki w okęgu i kole Cięciwa okęgu (koła) odcinek łączący dwa dowolne punkty okęgu d Śednica okęgu (koła) odcinek łączący dwa dowolne punkty okęgu pzechodzący pzez śodek okęgu (koła) Pomień

Bardziej szczegółowo

Pomiary w instalacjach światłowodowych.

Pomiary w instalacjach światłowodowych. Pomiary w instalacjach światłowodowych. Pomiary metodą transmisyjną Pomiary tłumienności metodą transmisyjną Cel pomiaru: Określenie całkowitego tłumienia linii światłowodowej Przyrządy pomiarowe: źródło

Bardziej szczegółowo

smoleńska jako nierozwiązywalny konflikt?

smoleńska jako nierozwiązywalny konflikt? D y s k u s j smoleńsk jko nierozwiązywlny konflikt? Wiktor Sorl Michł Bilewicz Mikołj Winiewski Wrszw, 2014 1 Kto nprwdę stł z zmchmi n WTC lub z zbójstwem kżnej Diny? Dlczego epidemi AIDS rozpowszechnił

Bardziej szczegółowo

KARTA WZORÓW MATEMATYCZNYCH. (a + b) c = a c + b c. p% liczby a = p a 100 Liczba x, której p% jest równe a 100 a p

KARTA WZORÓW MATEMATYCZNYCH. (a + b) c = a c + b c. p% liczby a = p a 100 Liczba x, której p% jest równe a 100 a p KRT WZORÓW MTEMTYZNY WŁSNOŚI DZIŁŃ Pwo pzemiennośi dodwni + = + Pwo łąznośi dodwni + + = ( + ) + = + ( + ) Pwo zemiennośi mnoŝeni = Pwo łąznośi mnoŝeni = ( ) = ( ) Pwo ozdzielnośi mnoŝeni względem dodwni

Bardziej szczegółowo

Prawo Coulomba i pole elektryczne

Prawo Coulomba i pole elektryczne Prwo Coulomb i pole elektryczne Mciej J. Mrowiński 4 pździernik 2010 Zdnie PE1 2R R Dwie młe kulki o msie m, posidjące ten sm łdunek, umieszczono w drewninym nczyniu, którego przekrój wygląd tk jk n rysunku

Bardziej szczegółowo

Na skutek takiego przemieszcznia ładunku, energia potencjalna układu pole-ładunek zmienia się o:

Na skutek takiego przemieszcznia ładunku, energia potencjalna układu pole-ładunek zmienia się o: E 0 Na ładunek 0 znajdujący się w polu elektycznym o natężeniu E działa siła elektostatyczna: F E 0 Paca na pzemieszczenie ładunku 0 o ds wykonana pzez pole elektyczne: dw Fds 0E ds Na skutek takiego pzemieszcznia

Bardziej szczegółowo

Złącza mocy Diamond sposobem na kraterowanie

Złącza mocy Diamond sposobem na kraterowanie Złącza mocy Diamond sposobem na kraterowanie mgr inż. Tomasz Rogowski Przy światłowodowych transmisjach o dużej przepływności istotna jest czystość interfejsów optycznych na całej trasie łącza optycznego.

Bardziej szczegółowo

KRYTERIA OCENIANIA TECHNOLOGIA NAPRAW ZESPOŁÓW I PODZESPOŁÓW MECHANICZNYCH POJAZDÓW SAMOCHODOWYCH KLASA I TPS

KRYTERIA OCENIANIA TECHNOLOGIA NAPRAW ZESPOŁÓW I PODZESPOŁÓW MECHANICZNYCH POJAZDÓW SAMOCHODOWYCH KLASA I TPS KRYTRIA OCNIANIA TCHNOLOGIA NAPRAW ZSPOŁÓW I PODZSPOŁÓW MCHANICZNYCH POJAZDÓW SAMOCHODOWYCH KLASA I TPS Temt Klsyfikcj i identyfikcj pojzdów smochodowych Zgdnieni - Rodzje ukłdów, - Zdni i ogóln budow

Bardziej szczegółowo

Problemy spawania telekomunikacyjnych jednomodowych włókien światłowodowych stosowanych w Polsce i pochodzących od różnych producentów

Problemy spawania telekomunikacyjnych jednomodowych włókien światłowodowych stosowanych w Polsce i pochodzących od różnych producentów C8.12 Marek Ratuszek, Zbigniew Zakrzewski, Jacek Majewski, Józef Zalewski Instytut Telekomunikacji ATR w Bydgoszczy, Bydgoszcz Problemy spawania telekomunikacyjnych jednomodowych włókien światłowodowych

Bardziej szczegółowo

Technika falo- i światłowodowa

Technika falo- i światłowodowa Technika falo- i światłowodowa Falowody elementy planarne (płytki, paski) Światłowody elementy cylindryczne (włókna światłowodowe) płytkowy paskowy włókno optyczne Rdzeń o wyższym współczynniku załamania

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc

Bardziej szczegółowo

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna 1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,

Bardziej szczegółowo

Włókna z cieczowym rdzeniem oraz włókna plastykowe. Liquid-Core and Polymer Optical Fibers

Włókna z cieczowym rdzeniem oraz włókna plastykowe. Liquid-Core and Polymer Optical Fibers Włókna z cieczowym rdzeniem oraz włókna plastykowe Liquid-Core and Polymer Optical Fibers Prowadzenie światła w falowodach cieczowych Zastosowanie falowodów cieczowych Włókna polimerowe Efekt propagacji

Bardziej szczegółowo

Ćwiczenie 3. Badanie wpływu makrozagięć światłowodów na ich tłumienie.

Ćwiczenie 3. Badanie wpływu makrozagięć światłowodów na ich tłumienie. LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 3 Badanie wpływu makrozagięć światłowodów na ich tłumienie. Cel ćwiczenia: Zapoznanie studentów z wpływem mikro- i makrozgięć światłowodów włóknistych na ich tłumienność.

Bardziej szczegółowo

Seminarium Transmisji Danych

Seminarium Transmisji Danych Opole, dn. 21 maja 2005 Politechnika Opolska Wydział Elektrotechniki i Automatyki Kierunek: Informatyka Seminarium Transmisji Danych Temat: Światłowody Autor: Dawid Najgiebauer Informatyka, sem. III, grupa

Bardziej szczegółowo

REZONATORY DIELEKTRYCZNE

REZONATORY DIELEKTRYCZNE REZONATORY DIELEKTRYCZNE Rezonato dielektyczny twozy małostatny, niemetalizowany dielektyk o dużej pzenikalności elektycznej ( > 0) i dobej stabilności tempeatuowej, zwykle w kształcie cylindycznych dysków

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby

Bardziej szczegółowo

VI. Elementy techniki, lasery

VI. Elementy techniki, lasery Światłowody VI. Elementy techniki, lasery BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet a) Sprzęgacze czołowe 1. Sprzęgacze światłowodowe (czołowe, boczne, stałe, rozłączalne) Złącza,

Bardziej szczegółowo

Mikrosilniki synchroniczne

Mikrosilniki synchroniczne Mikoilniki ynchoniczne Specyfika eoii: R >0 z uwagi na ounkowo dużą waość ezyancji ojana nie wolno jej pomijać w analizie zjawik mikomazyny ynchonicznej. Zwykle wykozyywane ą óżne odzaje momeny ynchonicznego:

Bardziej szczegółowo

Źródło światła λ = 850 nm λ = 1300 nm. Miernik. mocy optycznej. Badany odcinek światłowodu MM lub SM

Źródło światła λ = 850 nm λ = 1300 nm. Miernik. mocy optycznej. Badany odcinek światłowodu MM lub SM Sieci i instalacje z tworzyw sztucznych 2005 Wojciech BŁAŻEJEWSKI*, Paweł GĄSIOR*, Anna SANKOWSKA** *Instytut Materiałoznawstwa i Mechaniki Technicznej, Politechnika Wrocławska **Wydział Elektroniki, Fotoniki

Bardziej szczegółowo

Sumy algebraiczne i funkcje wymierne

Sumy algebraiczne i funkcje wymierne Sumy lgebriczne i funkcje wymierne Moduł - dził -temt Zkres treści Sumy lgebriczne 1 definicj jednominu, sumy lgebricznej, wyrzów podobnych pojęcie współczynnik jednominu Dodwnie i odejmownie sum lgebricznych

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU.

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU. 0.X.00 ĆWICZENIE NR 76 A (zestaw ) WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU. I. Zestaw przyrządów:. Spektrometr (goniometr), Lampy spektralne 3. Pryzmaty II. Cel ćwiczenia: Zapoznanie

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Ktlog wymgń progrmowych n poszczególne stopnie szkolne Mtemtyk. Poznć, zrozumieć Ksztłcenie w zkresie podstwowym. Kls 2 Poniżej podjemy umiejętności, jkie powinien zdobyć uczeń z kżdego dziłu, by uzyskć

Bardziej szczegółowo

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych Zstosownie multimetrów cyfrowych do pomiru podstwowych wielkości elektrycznych Cel ćwiczeni Celem ćwiczeni jest zpoznnie się z możliwościmi pomirowymi współczesnych multimetrów cyfrowych orz sposobmi wykorzystni

Bardziej szczegółowo

Ś Ę Ś Ą Ł Ę Ę Ę Ą ć Ę Ę ź ź Ń Ń Ę Ń Ń ź ź Ą ć Ą ć Ę Ą Ń Ń Ą Ę Ę ć Ą Ę ź Ą ć ć Ęć ć Ń ć ć ć ć ć Ś ć Ą ć ć ć Ń Ę Ś Ę Ę Ę ć Ę ć ć Ł ć Ń Ń Ęć Ę ź ć Ą Ę ź ć Ę Ę ź Ę Ą Ę Ą ć ź ź Ę ź Ę Ń ć ź ć ź Ę Ń Ę Ł Ę Ę ć

Bardziej szczegółowo

Pomiary ciśnień i sprawdzanie manometrów

Pomiary ciśnień i sprawdzanie manometrów Poiry ciśnień i srwdznie noetrów Instrukcj do ćwiczeni nr 2 Miernictwo energetyczne - lbortoriu Orcowł: dr inŝ. ElŜbiet Wróblewsk Zkłd Miernictw i Ochrony Atosfery Wrocłw, grudzień 2008 r. I. WSTĘP Ciśnienie

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka matematyczna.

Rachunek prawdopodobieństwa i statystyka matematyczna. Rchunek rwdoodobieństw i sttystyk mtemtyczn. Zd 8. {(, : i } Zleżność tą możn rzedstwić w ostci nstęującej interretcji grficznej: Arkdiusz Kwosk Rfł Kukliński Informtyk sem.4 gr. Srwdźmy, czy odne zmienne

Bardziej szczegółowo

10 RUCH JEDNOSTAJNY PO OKRĘGU

10 RUCH JEDNOSTAJNY PO OKRĘGU Włodzimiez Wolczyński Miaa łukowa kąta 10 RUCH JEDNOSTAJNY PO OKRĘGU 360 o =2π ad = = 2 s 180 o =π ad 90 o =π/2 ad = jednostka adian [1 = 1 = 1] Π ad 180 o 1 ad - x o = 180 57, 3 57 18, Ruch jednostajny

Bardziej szczegółowo

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać: WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7)

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7) EGZAMIN MATURALNY OD ROKU SZKOLNEGO 01/015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A, A, A, A6, A7) GRUDZIEŃ 01 Klucz odpowiedzi do zdń zmkniętych Nr zdni 1 5 Odpowiedź

Bardziej szczegółowo

Reflektometr optyczny OTDR

Reflektometr optyczny OTDR Reflektometr optyczny OTDR i inne przyrządy pomiarowe w technice światłowodowej W prezentacji wykorzystano fragmenty prac dyplomowych Jacka Stopy, Rafała Dylewicza, Roberta Koniecznego Prezentacja zawiera

Bardziej szczegółowo

2007-10-27. NA = sin Θ = (n rdzenia2 - n płaszcza2 ) 1/2. L[dB] = 10 log 10 (NA 1 /NA 2 )

2007-10-27. NA = sin Θ = (n rdzenia2 - n płaszcza2 ) 1/2. L[dB] = 10 log 10 (NA 1 /NA 2 ) dr inż. Krzysztof Hodyr Technika Światłowodowa Część 2 Tłumienie i straty w światłowodach Pojęcie dyspersji światłowodów Technika zwielokrotnienia WDM Źródła strat tłumieniowych sprzężenia światłowodu

Bardziej szczegółowo

Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I

Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I Mtemtyk finnsow.03.2014 r. Komisj Egzmincyjn dl Akturiuszy LXVI Egzmin dl Akturiuszy z mrc 2014 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 0 minut 1 Mtemtyk

Bardziej szczegółowo

10.3. Przekładnie pasowe

10.3. Przekładnie pasowe 0.0. Przekłdnie 0.3. Przekłdnie psowe Przekłdni psow przekłdni kołow ciern z elementmi pośrednimi w postci elstycznych cięgieł, njczęściej o konstrukcji wielodrożnej. Przekłdnie psowe Ps klinowy Ps płski

Bardziej szczegółowo

PRACA MOC ENERGIA. Z uwagi na to, że praca jest iloczynem skalarnym jej wartość zależy również od kąta pomiędzy siłą F a przemieszczeniem r

PRACA MOC ENERGIA. Z uwagi na to, że praca jest iloczynem skalarnym jej wartość zależy również od kąta pomiędzy siłą F a przemieszczeniem r PRACA MOC ENERGIA Paca Pojęcie pacy używane jest zaówno w fizyce (w sposób ścisły) jak i w życiu codziennym (w sposób potoczny), jednak obie te definicje nie pokywają się Paca w sensie potocznym to każda

Bardziej szczegółowo

W przypadku przekroczenia maksymalnego prądu styku (0,4A), może dojść do trwałego uszkodzenia stycznika. Efekt ten może wystąpić podczas przełączania

W przypadku przekroczenia maksymalnego prądu styku (0,4A), może dojść do trwałego uszkodzenia stycznika. Efekt ten może wystąpić podczas przełączania Optyczne konwertery video + kontakty BOX* BOX+DIN35-LOCK* RACK Modulacja FM AGC tłumienności optycznej Uniwersalne na MM i SM 3 niezależne wyjścia Ochrony przepięciowe Prądowa ochrona zasilania * uchwyt

Bardziej szczegółowo

Prędkość i przyspieszenie punktu bryły w ruchu kulistym

Prędkość i przyspieszenie punktu bryły w ruchu kulistym Pędkość i pzyspieszenie punktu były w uchu kulistym Położenie dowolnego punktu były okeślmy z pomocą wekto (o stłej długości) któego współzędne możemy podć w nieuchomym ukłdzie osi x y z ) z b) ζ ζ η z

Bardziej szczegółowo

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

Zależność natężenia oświetlenia od odległości

Zależność natężenia oświetlenia od odległości Zależność natężenia oświetlenia CELE Badanie zależności natężenia oświetlenia powiezchni wytwazanego pzez żaówkę od niej. Uzyskane dane są analizowane w kategoiach paw fotometii (tzw. pawa odwotnych kwadatów

Bardziej szczegółowo

SPAWANIE RÓŻNYCH TYPÓW TELEKOMUNIKACYJNYCH ŚWIATŁOWODÓW JEDNOMODOWYCH STOSOWANYCH W SIECIACH TELEKOMUNIKACYJNYCH

SPAWANIE RÓŻNYCH TYPÓW TELEKOMUNIKACYJNYCH ŚWIATŁOWODÓW JEDNOMODOWYCH STOSOWANYCH W SIECIACH TELEKOMUNIKACYJNYCH SPAWANIE RÓŻNYCH TYPÓW TELEKOMUNIKACYJNYCH ŚWIATŁOWODÓW JEDNOMODOWYCH STOSOWANYCH W SIECIACH TELEKOMUNIKACYJNYCH dr inż. Marek Ratuszek, mgr inż. Zbigniew Zakrzewski, mgr inż. Jacek Majewski, mgr inż.

Bardziej szczegółowo