Mechanika kwantowa. Mechanika kwantowa. dx dy dz. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Równanie Schrödingera. zasada zachowania energii
|
|
- Bartłomiej Kowalczyk
- 7 lat temu
- Przeglądów:
Transkrypt
1 Mecnik kwntow Jk opisć tom wodou? Jk opisć inne cąstecki? Mecnik kwntow Równnie Scödinge Ĥ E ψ H ˆψ = Eψ opeto óżnickow Hmilton enegi funkcj flow d d d + + m d d d opeto enegii kinetcn enegi kinetcn elektonu Hˆ = Tˆ + Vˆ sd cowni enegii opeto enegii potencjlnej Z e 4πε pciągnie Coulombowskie jądo-elekton m ms cąstki stł Plnck Z łdunek jąd E łdunek elektonu ε stł dielektcn póżni pomień
2 Równnie Scödinge! postć ψ ψ ψ Ze πm + + dl tomu wodou Z= ( poton) ψ = Eψ enegi kinetcn elektonu pciągnie Coulombowskie jądo-elekton! owiąni! enegi E! funkcj flow Ψ Równnie Scödinge!owiąni!enegi Z E = n π me 4 E n= n= n=4 n =,,... główn licb kwntow n= 4
3 Równnie Scödinge! owiąni! moment pędu M = l( l + ) π enegi nie jest jedną kwntowną wielkością ficną! skłdow momentu pędu wdłuż kieunku M = m π l =,,,...n- pobocn/obitln licb kwntow m = -l,...,,, +l mgnetcn licb kwntow 5 Równnie Scödinge! owiąni pestenne kwntownie momentu pędu elektonu M w tomie wodou (l=) Oblicm M dl l=: M = = 6 π π Skłdowe M wnosą:,,,, π π π π 6
4 Równnie Scödinge! owiąni! spin Ruc obotow elektonu nosi nwę spinu. Elekton m dw stn spinowe, oncne stłkmi i. Możem sobie wobić, że elekton obc się pewną pędkością w kieunku wskówek eg peciwnm (stn, + / ) lub identcn pędkością w kieunku peciwnm (stn, - /). Poniewż wiując łdunek elektcn wtw pole mgnetcne, elekton njdujące się w tc dwóc stnc spinowc możn oóżnić n podstwie ic cowni się w polu mgnetcnm. 7 Licb kwntowe! owiąni okeśl wó wielkość ficną 4 enegię Z π me E = n moment pędu M = l( l + ) π skłdową momentu pędu skłdową spinu M = m π σ = m s π pjmuje wtości główn: n=,,, pobocn: l=,,, n- mgnetcn: m=-l, (-l+), (l-), l mgnetcn spinow: m s =-½ lub ½ okeśl funkcje flowe Ψ omi obitlu kstłt obitlu kieunek obitlu nk obitlu 8
5 Licb kwntowe! owiąni Ψ,, s Ψ,, s Ψ,,- Ψ,, p Ψ,, Ψ,, s l = 4 s p d f g Ψ,,- Ψ,, p ψ,, Ψ,,- Ψ,,- Ψ,, d Ψ,, Ψ,, 9 Równnie Scödinge! funkcj flow! intepetcj Funkcj flow w intepetcji Bon. Pwdopodobieństwo nleieni elektonu w dnm punkcie jest popocjonlne do kwdtu funkcji flowej (Ψ ): pwdopodobieństwo to jest wżone pe stopień cenieni psk u dołu. Gęstość pwdopodobieństw w węźle wnosi. Węeł jest punktem, w któm funkcj flow pecodi pe.
6 Równnie Scödinge! funkcj flow! intepetcj " Zgodnie postultem Bon, pwdopodobieństwo nleieni elektonu w dnm punkcie pesteni jest popocjonlne do kwdtu funkcji flowej w tm punkcie. " Tm gdie funkcj flow m dużą mpitudę, istnieje duże pwdopodobieństwo nleieni opisnego pe nią elektonu. Tm gdie funkcj flow jest mł, nleienie elektonu jest mło pwdopodobne. Tm gdie funkcj flow jest ówn, nleienie elektonu jest niemożliwe. " W mecnice kwntowej możn pewidwć tlko pwdopodobieństwo nleieni cąstecki w dnm miejscu. Równnie Scödinge! funkcj flow! intepetcj Funkcj flow elektonu w tomie m tk istotne ncenie, iż ndno jej specjlną nwę obitl tomow. Obitl możn poglądowo pedstwić jko cmuę otcjąc jądo tomu; gęstość cmu epeentuje pwdopodobieństwo nleieni elektonu w kżdm punkcie.
7 Równnie Scödinge cęść diln cęść kątow () ( ) ( ) γ θ ϕ φ ψ = R m l n,, γ ϕ! owiąni! funkcj flow 4 Równnie Scödinge ( ) ( ) ( ) γ θ ϕ φ ψ = R m l n,,! owiąni! funkcj flow p p ± p s s Ψ n,l,m smbol m l n e e ( ) cosγ 4 6 e ( ) sinγ sinϕ 4 6 e ( ) ϕ sinγ cos 4 6 e 4 e m e π =
8 Równnie Scödinge! owiąni! funkcj flow ψ! gęstość pwdopodobieństw [ R( ) φ( ϕ) θ ( )] = γ n, l, m P=Ψ dv s odległość od jąd, 5 Równnie Scödinge! owiąni! funkcj flow! gęstość pwdopodobieństw 6
9 Równnie Scödinge! owiąni! funkcj flow! gęstość pwdopodobieństw!okłd diln ψ = R φ ϕ θ γ n, l, m 4π R() d ( ) [ ( ) ( )] sumujem/ cłkujem Ψ po γ i ϕ s okłd diln gęstości odległość od jąd, 7 Równnie Scödinge! owiąni! funkcj flow! gęstość pwdopodobieństw!okłd diln 8
10 Równnie Scödinge! owiąni! funkcj flow! skłdow diln obitle 4π R() s -= 4π R() 4s 4-=4 4p 4-= d -= 9 Wiulicj obitli Ψ,, 7_5 Nodes Node,, s Ψ,, s Ψ,, s () s s s P=9% (b) s s s
11 7_6B Wiulicj obitli Ψ,,- Ψ,, p Ψ,, p p p Wiulicj obitli p 7_7
12 7_8B Wiulicj obitli Ψ,,- Ψ,,- Ψ,, d Ψ,, Ψ,, d d d (b) d - d 7_9 Wiulicj obitli f - 5 f - 5 f - 5 Ψ 4,,- Ψ 4,,- Ψ 4,,- 4f Ψ 4,, Ψ 4,, Ψ 4,, Ψ 4,, f f ( - ) f ( - ) f ( - ) 4
13 5 Widmo doświdclne 6 = = = j i me i me j me E E E i j π π π = R R = cm n n H H ν ν λ λ ν c c c E = = = = = 4 j i c me π ν Intepetcj widm Wpowdenie wou Blme: Zmin enegii elektonu w csie pejści e stnu j do stnu i (j>i)
14 Intepetcj widm Pkłd Identfikcj linii w widmie wodou Oblic długość fli fotonu emitownego pe tom wodou w wniku pejści elektonu obitlu o n = do obitlu o n =. Zidentfikuj n sunku (widmo wodou) linię spektlną odpowidjącą temu pejściu. Oblic óżnicę międ dwom poiommi enegetcnmi, kostjąc ównni E = -(R H )/n, nstępnie oblic długość fli odpowidjącą tej óżnic enegii. Różnic enegii międ poiomem o licbie kwntowej n i enegii R H /n i dugim poiomem o licbie kwntowej n i enegii R H /n jest ówn: E = (/n -/n )R H n = i n = ; R H stł Rdbeg = H; pelicć cęstość n długość fli 7 Pkłd Identfikcj linii w widmie wodou óżnic enegii międ dwom stnmi: E = (/ / ) (.9 5 H) cęstość emitownego świtł wnosi: ν = E/ = (/ / ) (.9 5 H) długość fli pomieniowni jest ówn: λ= c/ν = (, 8 m/s)/(/ / ) (.9 5 H) λ = m 8
15 Pkłd Identfikcj linii w widmie wodou 9
Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkow Hamiltona energia funkcja falowa h d d d + + m d d dz
Bardziej szczegółowoMechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy
Bardziej szczegółowoKwantowy opis atomu jednoelektronowego - wyjście poza model Bohra, analiza w oparciu o dyskusje rozwiązań równania Schrödingera niezależnego od
Kwntow opis tou jednoelektonowego - wjście po odel Bo, nli w opciu o dskusje owiąń ównni Scödinge nieleżnego od csu- ównni włsnego dl opeto Hilton ) Moent pędu w ecnice kwntowej. Równni włsne dl opetoów
Bardziej szczegółowodr inż. Zbigniew Szklarski
Wkłd 3: Kinemtk d inż. Zbigniew Szklski szkl@gh.edu.pl http://le.uci.gh.edu.pl/z.szklski/ Wstęp Opis uchu KINEMATYKA Dlczego tki uch? Pzczn uchu DYNAMIKA MECHANIKA 08.03.018 Wdził Infomtki, Elektoniki
Bardziej szczegółowoAtom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu:
ATOM WODORU Atom wodoru Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: U = 4πε Opis kwantowy: wykorzystując zasadę odpowiedniości
Bardziej szczegółowoCząsteczki. Opis termodynamiczny Opis kwantowy. Dlaczego atomy łącz. 2.Jak atomy łącz. 3.Co to jest wiązanie chemiczne? typy wiąza.
Cząsteczki 1.Dlczego tomy łącz czą się w cząsteczki?.jk tomy łącz czą się w cząsteczki? 3.Co to jest wiąznie chemiczne? Co to jest rząd d wiązni? Dlczego tomy łącz czą się? Opis termodynmiczny Opis kwntowy
Bardziej szczegółowoREZONATORY MIKROFALOWE
RZONATORY MIKROFALOW Reonto mikofow jest to pewien obs mknięt. Pe obs mknięt oumie się obs pe bei któeo nie m pepłwu eneii, tn. wunki beowe wmusją w kżdm punkcie beu niknie skłdowej stcnej po eektcneo
Bardziej szczegółowoPRAWA ZACHOWANIA Prawa zachowania najbardziej fundamentalne prawa:
PRW ZCHOWNI Pawa achowania nabadie fundamentalne pawa: o ewnętne : pawo achowania pędu, pawo achowania momentu pędu, pawo achowania enegii; o wewnętne : pawa achowania np. całkowite licb nukleonów w eakci
Bardziej szczegółowoAto wodoropodobny Eektron poruszjący się w kuobowski pou jądr o łdunku +Ze posid energię potencjną: z -e, V ( r) Ze 4πε r + Ze φ θ r y x
Ato wodoropodobny z współrzędne w ukłdzie krtezjński r sinθ cosφ x r cosθ φ θ r r sinθ (x,y,z) r sinθ sinφ Biegunowy ukłd współrzędnych y funkcj fow współrzędne w ukłdzie biegunowy ( ) r,θ,φ x r sinθ cosφ
Bardziej szczegółowoSieć odwrotna. Fale i funkcje okresowe
Sieć odwotn Fle i funkcje okesowe o Wiele obiektów w pzyodzie d; o Różne fle ozchodzą się w pzestzeni (zówno w póżni jk i w mteii); o Aby mtemtycznie opisć tkie okesowe zminy stosuje się funkcje sinus
Bardziej szczegółowoPodstawy mechaniki kwantowej
Podstawy mechaniki kwantowej Jak opisać świat w małej skali? Czy świat jest realny? 1 Promieniowanie elektromagnetyczne gamma X ultrafiolet podczerwień mikrofale radiowe widzialne Wavelength in meters
Bardziej szczegółowoPola siłowe i ich charakterystyka
W-6 (Jaosewic) 10 slajdów Pola siłowe i ich chaaktestka Pola siłowe: pojęcie i odaje pól siłowch, wielkości chaakteujące pola siłowe Pola achowawce Pole gawitacjne: uch w polu gawitacjnm 3/10 L.R. Jaosewic
Bardziej szczegółowoPodstawy mechaniki kwantowej
Podstawy mechaniki kwantowej Jak opisać świat w małej skali? Czy świat jest realny? Promieniowanie elektromagnetyczne gamma X ultrafiolet podczerwień mikrofale radiowe widzialne Wavelength in meters 0-0
Bardziej szczegółowoElektryczność i magnetyzm
Elektcność i mgnetm II ok, III semest Cs twni: wkłd 60 god., ćwiceni 60 god. Zlicenie pedmiotu licenie ćwiceń min.30 pkt: egmin testow 25 pkt egmin ustn 25 pkt Powdąc: d Jcek Semnik Litetu 1. R.P. Fenmn,
Bardziej szczegółowoTEORIA SPRĘŻYSTOŚCI 10
W YKŁ ADY Z T EOII S ĘŻYSTOŚCI ZADANIE BOUSSINESQA I FLAMANTA olitechnika onańska Kopac, Kawck, Łodgowski, łotkowiak, Świtek, Tmpe Olga Kopac, Kstof Kawck, Adam Łodgowski, Michał łotkowiak, Agnieska Świtek,
Bardziej szczegółowoElektrostatyka. + (proton) - (elektron)
lektostatyka Za oddziaływania elektyczne ( i magnetyczne ) odpowiedzialny jest: ładunek elektyczny Ładunek jest skwantowany Ładunek elementany e.6-9 C (D. Millikan). Wszystkie ładunki są wielokotnością
Bardziej szczegółowo=I π xy. +I π xz. +I π yz. + I π yz
GEMETRIA MAS moment ewłdności i dewicji Zsd ogólne: 1) Moment ewłdności wględem osi ówn jest sumie momentów ewłdności wględem dwóc postopdłc płscn wiejącc tę oś: I =I π + I π I =I π + I π I = I π +I π
Bardziej szczegółowoelektrostatyka ver
elektostatka ve-8.6.7 ładunek ładunek elementan asada achowana ładunku sła (centalna, achowawca) e.6 9 C stała absolutna pawo Coulomba: F ~ dwa ładunk punktowe w póżn: F 4πε ε 8.8585 e F m ε stała ł elektcna
Bardziej szczegółowoRACHUNEK WEKTOROWY W FIZYCE
Wdił EAIiE Kieunek: Elektotechnik Pedmiot: Fik RACHUNEK WEKTOROWY W FIZYCE Mteił do wkłdu 2 2010/2011, im 1 Wdił EAIiE Kieunek: Elektotechnik Pedmiot: Fik Pln Pojęcie wekto Diłni ni n wektoch Wekto w ktejńskim
Bardziej szczegółowoAtom wodoru. -13.6eV. Seria Lymana. od 91 nm to 122 nm. n = 2, 3,... Seria Paschena n = 4, 5,... n = 5, 6,... Seria Bracketta.
Atom wodou -3.6eV Seia Lmana n 2, 3,... od 9 nm to 22 nm Seia Paschena n 4, 5,... Seia Backetta n 5, 6,... Ogólnie: n 2, 2, 3; n (n 2 + ), (n 2 + 2),... Atom wodou We współędnch sfecnch: metoda odielania
Bardziej szczegółowoPodstawy mechaniki kwantowej. Jak opisać świat w małej skali?
Podstawy mechaniki kwantowej Jak opisać świat w małej skali? 1 Promieniowanie elektromagnetyczne gamma X ultrafiolet podczerwień mikrofale radiowe widzialne Wavelength in meters 10-1 10-10 10-8 4 x 10-7
Bardziej szczegółowoChemia teoretyczna 2010/2011
Ch totcn / Zgdnn I. Podstw kspntln chnk kwntow. Rokłd wdow cł doskonl cngo. Zwsko fotolktcn 3. Efkt Copton 4. Wdo tou wodou II. Podstwow poęc chnk kwntow. Hpot d Bogl. Dul flowo-kopuskuln 3. Zsd nonconośc
Bardziej szczegółowoJądra atomowe jako obiekty kwantowe. Wprowadzenie Potencjał jądrowy Spin i moment magnetyczny Stany energetyczne nukleonów w jądrze Prawo rozpadu
Jąda atomowe jako obiekty kwantowe Wpowadzenie Potencjał jądowy Spin i moment magnetyczny Stany enegetyczne nukleonów w jądze Pawo ozpadu Jąda atomowe jako obiekty kwantowe Magnetyczny Rezonans Jądowy
Bardziej szczegółowoMechanika kwantowa IV
Mcik kwtow IV Opcowi: Bb Pc Piot Ptl Atom wodou W ukłdi śodk ms ówi Scödig dl tomu wodou i joów wodoopodobc m postć: V [W..] µ E gdi: Z Vˆ [W..] - opto Lplc dfiiow wom [W..7] Sfci smtc potcjł w ówiu [W..]
Bardziej szczegółowoPrawo Coulomba i pole elektryczne
Prwo Coulomb i pole elektryczne Mciej J. Mrowiński 4 pździernik 2010 Zdnie PE1 2R R Dwie młe kulki o msie m, posidjące ten sm łdunek, umieszczono w drewninym nczyniu, którego przekrój wygląd tk jk n rysunku
Bardziej szczegółowoA r promień wektor. r = f 1 (t), φ = f 2 (t) y r φ. x, = 0
1 Ruchem cił wm chodącą w csie mię jego położei wględem iego cił, któe umowie pjmujem ieuchome. Rówi uchu puktu we współędch postokątch l pomień wekto W ppdku gd pukt pous się, cli miei upłwem csu swoje
Bardziej szczegółowoZad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji.
Zad. 1.1. Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1.a. Funkcja: ϕ = sin2x Zad. 1.1.b. Funkcja: ϕ = e x 2 2 Operator: f = d2 dx
Bardziej szczegółowoCoba, Mexico, August 2015
Coba, Meico, August 015 W-6 (Jaosewic) 10 sladów Pola siłowe i ich chaaktestka Pola siłowe: poęcie i odae pól siłowch, wielkości chaakteuące pola siłowe Pola achowawce Pole gawitacne: uch w polu gawitacnm
Bardziej szczegółowoELEKTROTECHNIKA. Podstawowe pojęcia. Pole elektryczne. Wykład 1. Prawo Coulomba. Prawo Coulomba. r Q0Q. Ładunek elektryczny. Pole elektromagnetyczne
Łnek eektcn KTROTCHNK Wkł Postwowe pojęc Łnek eektcn pojęce pewotne w eektotecnce Nośnk łnk eektcnego cąstk eementne: eekton (-), poton (+) o jon cąstk nłowne otno, np.: N +, C ++ cąstk nłowne jemne, np.:
Bardziej szczegółowoZJAWISKA ELEKTROMAGNETYCZNE
ZJAWISKA LKTROMAGNTYCZN 1 LKTROSTATYKA Ładunki znajdują się w spoczynku Ładunki elektyczne: dodatnie i ujemne Pawo Coulomba: siły pzyciągające i odpychające między ładunkami Jednostką ładunku elektycznego
Bardziej szczegółowoBUDOWA ATOMU cd. MECHANIKA KWANTOWA
BUDOWA ATOMU cd. ajmuje się opisem ruchu cąstek elementarnch, układ można opiswać posługując się współrędnmi określającmi położenie bądź pęd, współrędne określa się pewnm prbliżeniem, np. współrędną dokładnością
Bardziej szczegółowo6. Kinematyka przepływów
6. Kinemk pepłwów Podswowe deinije To jekoi elemenu płnu jes o miejse geomene kolejnh położeń pousjąego się elemenu płnu upłwem su. Równnie óżnikowe ou elemenu płnu: d d d d Lini pądu o lini spełniją wunek
Bardziej szczegółowo2.3.1. Iloczyn skalarny
2.3.1. Ilon sklrn Ilonem sklrnm (sklrowm) dwóh wektorów i nwm sklr równ ilonowi modułów ou wektorów pre kosinus kąt wrtego międ nimi. α O Rs. 2.8. Ilustrj do definiji ilonu sklrnego Jeżeli kąt międ wektormi
Bardziej szczegółowoOpis kwantowy cząsteczki jest bardziej skomplikowany niż atomu. Hamiltonian przy zaniedbaniu oddziaływań związanych ze spinem ma następującą postać:
Cząsteczki. Kwantowy opis stanów enegetycznych cząsteczki. Funkcje falowe i enegia ektonów 3. Ruchy jąde oscylacje i otacje 4. Wzbudzenia cząsteczek Opis kwantowy cząsteczki jest badziej skomplikowany
Bardziej szczegółowoTreść programu (sem. I)
7-9-7 FIZYKA konsultcje: śod 5-7 Josłw Rutkowski pok. 63/S tel. 6 83 97 8 Teść pogmu (sem. I) Element chunku wektoowego. Ruch postoliniow. Pojęcie pochodnej. Ruch w kilku wmich. Mechnik ównni uchu(cłkownie).
Bardziej szczegółowoStruktura energetyczna ciał stałych-cd. Fizyka II dla Elektroniki, lato
Struktur energetyczn cił stłych-cd Fizyk II dl Elektroniki, lto 011 1 Fizyk II dl Elektroniki, lto 011 Przybliżenie periodycznego potencjłu sieci krystlicznej model Kronig- Penney potencjł rzeczywisty
Bardziej szczegółowoPODSTAWY MECHANIKI KWANTOWEJ
PODSTAWY MECHANIKI KWANTOWEJ Za dzień narodzenia mechaniki kwantowej jest uważany 14 grudnia roku 1900. Tego dnia, na posiedzeniu Niemieckiego Towarzystwa Fizycznego w Instytucie Fizyki Uniwersytetu Berlińskiego
Bardziej szczegółowoI 06 B. Arbeitsanweisung. Berechnung von Linsenradien. Instrukcja. Wyliczanie promienia soczewek
I 6 B Abeitsnweisung Beecnung von Linsenien Instukcj Wlicnie pomieni socewek Äneungsbestätigung von Abeitsnweisung / Potwieenie min instukcji Äneung / Zmin 1 3 5 6 Seitenumme / Nume ston tum / t Untescift
Bardziej szczegółowoPrzykład 2.5. Figura z dwiema osiami symetrii
Przkłd 5 Figur z dwiem osimi smetrii Polecenie: Wznczć główne centrlne moment bezwłdności orz kierunki główne dl poniższej figur korzstjąc z metod nlitcznej i grficznej (konstrukcj koł Mohr) 5 5 5 5 Dl
Bardziej szczegółowomagnetyzm ver
e-8.6.7 agnetyz pądy poste pądy elektyczne oddziałują ze soą. doświadczenie Apèe a (18): Ι Ι 1 F ~ siła na jednostkę długości pzewodów pądy poste w póżni jednostki w elektyczności A ape - natężenie pądu
Bardziej szczegółowoJEDNOSTKI ATOMOWE =1, m e =1, e=1, ; 1 E 2 h = 4, J. Energia atomu wodoru lub jonu wodoropodobnego w jednostkach atomowych:
do wyk ladu z 1.10.13 Atom wodoru i jon wodoropodobny Ze - ladunek jadra, e - ladunek elektronu, µ - masa zredukowana µ = mem j m e+m j ( µ m e ) M j - masa jadra, m e - masa elektronu, ε 0 - przenikalność
Bardziej szczegółowoRównanie Schrödingera dla elektronu w atomie wodoru
Równanie Schödingea dla elektonu w atomie wodou m 1 d dp l( l + ) P = P sinθ Równanie funkcji kąta biegunowego P(θ) 1 sin θ sinθ dθ ma ozwiązania w postaci stowazyszonych funkcji Legende a P lm ( θ ) =
Bardziej szczegółowoZapis wskaźnikowy i umowa sumacyjna
Zpis wskźnikow i mow smcjn Pokzć, że e ikm e ikm Pokzć, że e e δ ikm jkm Dn jest mcierzow reprezentcj tensor 7 7 7 ), ), c) 7 7 Podć dziewięć skłdowch d zdefiniownch związkiem: Wrnki nierozdzielności możn
Bardziej szczegółowoPęd, d zasada zac zasad a zac owan owan a p a p du Zgod Zg n od ie n ie z d r d u r g u im g pr p a r wem e N ew e tona ton :
Mechanika ogólna Wykład n 13 Zasady zachowania w dynamice. Dynamika były sztywnej. Dynamika układu punktów mateialnych. 1 Zasady zachowania w dynamice Zasada: zachowania pędu; zachowania momentu pędu (kętu);
Bardziej szczegółowoPręt nr 4 - Element żelbetowy wg PN-EN :2004
Budynek wielorodzinny - Rama żelbetowa strona nr z 7 Pręt nr 4 - Element żelbetowy wg PN-EN 992--:2004 Informacje o elemencie Nazwa/Opis: element nr 4 (belka) - Brak opisu elementu. Węzły: 2 (x=4.000m,
Bardziej szczegółowopodsumowanie (E) E l Eds 0 V jds
e-8.6.7 fale podsumowanie () Γ dl 1 ds ρ d S ε V D ds ρ d S ( ϕ ) 1 ρ ε D ρ D ρ V D ( D εε ) εε S jds V ρ d t j ρ t j σ podsumowanie (H) Bdl Γ μ S jds B μ j S Bds B ( B A) Hdl Γ S jds H j ( B μμ H ) ε
Bardziej szczegółowoPodstawy fizyki subatomowej
Podstawy fizyki subatomowej Wykład 6 Zenon Janas 11 kwietnia 018. Współzędne sfeyczne położenie punktu: (, θ, ϕ) Z sin θ ( 0, ) θ ( 0, π ) ϕ ( 0, π ) cosθθ X ϕ θ Y (, θ, ϕ) ( x, y, z) x sinθcosϕ y sinθsinϕ
Bardziej szczegółowoDynamika relatywistyczna 9-1
Dnik elwisn 9-9. Dnik elwisn Zsd howni ęd ówi, że w kłdie odosonion wieją n ąsek ih łkowi ęd olion w hwili i ęd w dowolnej hwili óźniejsej są jednkowe: ( ( Dl skłdowej on o w sególnośi, że n n i - edkosi
Bardziej szczegółowoII.3 Rozszczepienie subtelne. Poprawka relatywistyczna Sommerfelda
. akad. 004/005 II.3 Rozszczepienie subtelne. Popawka elatywistyczna Sommefelda Jan Kólikowski Fizyka IVBC . akad. 004/005 II.3. Mechanizmy fizyczne odpowiedzialne za ozszczepienie subtelne Istnieją dwie
Bardziej szczegółowoIII.3 Transformacja Lorentza prędkości i przyspieszenia. Efekt Dopplera
r. kd. 5/ 6 III.3 Trnsformj Lorentz prędkośi i przyspieszeni. Efekt Doppler Trnsformj prędkośi Trnsformj przyspieszeni Efekt Doppler Jn Królikowski Fizyk IBC r. kd. 5/ 6 Trnsformj prędkośi Bdmy ruh punktu
Bardziej szczegółowo20 ELEKTROSTATYKA. PRAWO COULOMBA.
Włodzimiez Wolczyński Pawo Coulomba 20 ELEKTROSTATYKA. PRAWO COULOMBA. POLE CENTRALNE I JEDNORODNE Q q = k- stała, dla póżni = 9 10 = 1 4 = 8,9 10 -stała dielektyczna póżni ε względna stała dielektyczna
Bardziej szczegółowodr inż. Zbigniew Szklarski
Wkłd 3: Kinemtk dr inż. Zbigniew Szklrski szkl@gh.edu.pl http://ler.uci.gh.edu.pl/z.szklrski/ Wstęp Opis ruchu KINEMATYKA Dlczego tki ruch? Przczn ruchu DYNAMIKA MECHANIKA Podstwowe pojęci dl ruchu prostoliniowego
Bardziej szczegółowoPręt nr 1 - Element żelbetowy wg. EN :2004
Pręt nr 1 - Element żelbetowy wg. EN 1992-1-1:2004 Informacje o elemencie Nazwa/Opis: element nr 5 (belka) - Brak opisu elementu. Węzły: 13 (x6.000m, y24.000m); 12 (x18.000m, y24.000m) Profil: Pr 350x800
Bardziej szczegółowo10.0. Schody górne, wspornikowe.
10.0. Schody górne, wspornikowe. OBCIĄŻENIA: Grupa: A "obc. stałe - pł. spocznik" Stałe γf= 1,0/0,90 Q k = 0,70 kn/m *1,5m=1,05 kn/m. Q o1 = 0,84 kn/m *1,5m=1,6 kn/m, γ f1 = 1,0, Q o = 0,63 kn/m *1,5m=0,95
Bardziej szczegółowoANALITYKA W KONTROLI JAKOŚCI
ANALITYKA W KONTROLI JAKOŚCI ANALIZA ŚLADÓW METODA ICP-OES Optyczna spektroskopia emisyjna ze wzbudzeniem w indukcyjnie sprzężonej plazmie WYKŁAD 4 Rodzaje widm i mechanizm ich powstania PODSTAWY SPEKTROSKOPII
Bardziej szczegółowoMomenty bezwładności figur płaskich - definicje i wzory
Moment ezwłnośi figu płski - efinije i wzo Dn jest figu płsk o polu oz postokątn ukł współzęn Momentem ezwłnośi figu wzglęem osi jest Momentem ezwłnośi figu wzglęem osi jest Momentem ewijnm figu wzglęem
Bardziej szczegółowoλ(pm) p 1 rozpraszanie bez zmiany λ ze wzrostem λ p e 0,07 0,08 λ (nm) tł o
W 1916r. Einstein rozszerzył swoją koncepcję kwantów światła, przypisując im pęd. Fotonowi o energii ħω odpowiada pęd p ħω/c /λ Efekt Comptona 193r. - rozpraszanie promieni X 1keV- kilka MeV na elektronac
Bardziej szczegółowoAtom wodoropodobny. Biegunowy układ współrzędnych. współrzędne w układzie. kartezjańskim. współrzędne w układzie. (x,y,z) biegunowym.
Atom wodoropodobny z współrzędne w układzie kartezjańskim r sinθ cosφ x r cosθ φ θ r r sinθ (x,y,z) r sinθ sinφ Biegunowy układ współrzędnych y funkcja faowa współrzędne w układzie biegunowym ( ) r,θ,φ
Bardziej szczegółowoWstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 4 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14
Bardziej szczegółowoθ = 0 lub = = g l dw dt Przykłady drgań: Wahadło matematyczne (małe wychylenia): Inaczej: m l(1-cosθ) Drgania i fale II rok Fizyki BC
Przykłady drgań: Wahadło ateatyczne (ałe wychyenia): θ ( sinθ) M g && θ gsinθ && θ gθ (1-cosθ) && g θ + θ g g naczej: υ T V W & 1 g T θ υ 1 ( cosθ ) + V & θ dw dt &&& θθ + g & θ sinθ θ ub && g θ + sinθ
Bardziej szczegółowo3. Kinematyka ruchu jednostajnego, zmiennego, jednostajnie zmiennego, rzuty.
3 Kinemk uchu jednosjnego zmiennego jednosjnie zmiennego zu Wbó i opcownie zdń 3-3: Bb Kościelsk zdń 33-35: szd J Bczński 3 Zleżność dogi pzebej pzez punk meiln od czsu możn opisć ównniem: () A B C 3 gdzie
Bardziej szczegółowoUkład okresowy. Przewidywania teorii kwantowej
Przewidywania teorii kwantowej Chemia kwantowa - podsumowanie Cząstka w pudle Atom wodoru Równanie Schroedingera H ˆ = ˆ T e Hˆ = Tˆ e + Vˆ e j Chemia kwantowa - podsumowanie rozwiązanie Cząstka w pudle
Bardziej szczegółowomechanika analityczna 2 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej
mechnik nlityczn niereltywistyczn L.D.Lndu, E.M.Lifszyc Krótki kurs fizyki teoretycznej ver-8.06.07 środek msy w różnych ukłdch inercjlnych v = v ' u m v = P= P ' u m v ' m m u trnsformcj pędu istnieje
Bardziej szczegółowoEPR. W -1/2 =-1/2 gµ B B
Hamiltonian spinow Elektronow reonans paramanetcn jest wiąan absorpcją pola wsokiej cęstotliwości, która towars mianie orientacji spin w ewnętrnm polu manetcnm. Niesparowane spinowe moment manetcne µ s
Bardziej szczegółowoEfekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów
Bardziej szczegółowoKarta wybranych wzorów i stałych fizycznych
Kata wybanych wzoów i stałych fizycznych Mateiały pomocnicze opacowane dla potzeb egzaminu matualnego i dopuszczone jako pomoce egzaminacyjne. publikacja współfinansowana pzez Euopejski Fundusz Społeczny
Bardziej szczegółowomgh. Praca ta jest zmagazynowana w postaci energii potencjalnej,
Wykłd z fizyki. Piot Posmykiewicz 49 6-4 Enegi potencjln Cłkowit pc wykonn nd punktem mteilnym jest ówn zminie jego enegii kinetycznej. Często jednk, jesteśmy zinteesowni znlezieniem pcy jką sił wykonł
Bardziej szczegółowoSpektroskopia magnetyczna
Spektroskopia magnetyczna Literatura Zbigniew Kęcki, Podstawy spektroskopii molekularnej, PWN W- wa 1992 lub nowsze wydanie Przypomnienie 1) Mechanika ruchu obrotowego - moment bezwładności, moment pędu,
Bardziej szczegółowoPrędkość i przyspieszenie punktu bryły w ruchu kulistym
Pędkość i pzyspieszenie punktu były w uchu kulistym Położenie dowolnego punktu były okeślmy z pomocą wekto (o stłej długości) któego współzędne możemy podć w nieuchomym ukłdzie osi x y z ) z b) ζ ζ η z
Bardziej szczegółowoMateriały pomocnicze dla studentów I roku do wykładu Wstęp do fizyki I Wykład 1
Mateiał pomocnicze dla studentów I oku do wkładu Wstęp do fizki I Wkład 1 I. Skala i Wekto. Skala: Jest to wielkość, któą można jednoznacznie okeślić za pomocą liczb i jednostek; a więc mająca jednie watość,
Bardziej szczegółowoZadanie 1. Zadanie 2. Sprawdzam dla objętości, że z obwarzanków mogę posklejać całą kulę o promieniu R: r = {x, y, z}; A = * Cross r, B
Zadanie In[]:= = {x, y, z}; In[]:= B = B, B, B3 ; (* Bi to wielkości stałe *) In[3]:= A = - * Coss, B Out[3]= -B3 y + B z, B3 x - B z, -B x + B y In[4]:= {x,y,z} -B3 y + B z, B3 x - B z, -B x + B y Out[4]=
Bardziej szczegółowoKINEMATYKA. Pojęcia podstawowe
KINEMTYK Pojęcia podstawowe Kinematka jest diałem mechaniki ajmującm się badaniem uchu ciał be uwględniania pcn wwołującch ten uch. Jej celem jest opis tego uchu. Ruchem nawam mianę położenia ciała w odniesieniu
Bardziej szczegółowo7.0. Fundament pod słupami od stropu nad piwnicą. Rzut fundamentu. Wymiary:
7.0. Fundament pod słupami od stropu nad piwnicą. Rzut fundamentu Wymiary: B=1,2m L=4,42m H=0,4m Stan graniczny I Stan graniczny II Obciążenie fundamentu odporem gruntu OBCIĄŻENIA: 221,02 221,02 221,02
Bardziej szczegółowover magnetyzm
ver-2.01.12 magnetyzm prądy proste prądy elektryczne oddziałują ze soą. doświadczenie Ampère a (1820): F ~ 2 Ι 1 Ι 2 siła na jednostkę długości przewodów prądy proste w próżni jednostki w elektryczności
Bardziej szczegółowoPRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA
PĄD LKTYCZNY SŁA MAGNTYCZNA Na ładunek, opócz siły elektostatycznej, działa ównież siła magnetyczna popocjonalna do pędkości ładunku v. Pzekonamy się, że siła działająca na magnes to siła działająca na
Bardziej szczegółowoUkład okresowy. Przewidywania teorii kwantowej
Przewidywania teorii kwantowej 1 Chemia kwantowa - podsumowanie Cząstka w pudle Atom wodoru Równanie Schroedingera H ˆ = ˆ T e Hˆ = Tˆ e + Vˆ e j Chemia kwantowa - podsumowanie rozwiązanie Cząstka w pudle
Bardziej szczegółowoBUDOWA ATOMU cd. MECHANIKA KWANTOWA
BUDOWA ATOMU cd. ajmuje się opisem ruchu cąstek elementarnch, układ można opiswać posługując się współrędnmi określającmi położenie bądź pęd, współrędne określa się pewnm prbliżeniem, np. współrędną dokładnością
Bardziej szczegółowof(g(x))g (x)dx = 6) x 2 1
Mtemtyk -. rok Trnsport, stcjonrne. stopie«przykªdowe zdni n kolokwium nr.cªki nieoznczone - cªkownie przez cz ±ci, cªkownie przez podstwienie Denicj F () = f(), f()d = F () + C Cªkownie przez cz ±ci:
Bardziej szczegółowoChemia kwantowa obliczeniowa
Chi kwtow obliciow / Pof. k Kęglwski Zgdii I. Podstw kstl chiki kwtow. Rokłd widow cił doskol cgo. Zwisko fotolktc. fkt Coto. Wido tou wodou II. Podstwow oęci chiki kwtow. iot d Bogli. Duli flowo-kouskul.
Bardziej szczegółowoMechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg
Mechanika kwantowa Erwin Schrödinger (1887-1961) Werner Heisenberg 1901-1976 Falowe równanie ruchu (uproszczenie: przypadek jednowymiarowy) Dla fotonów Dla cząstek Równanie Schrödingera y x = 1 c y t y(
Bardziej szczegółowoWstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 2 Tomasz Kwiatkowski 12 październik 2009 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 2 1/21 Plan wykładu Promieniowanie ciała doskonale czarnego Związek temperatury
Bardziej szczegółowoSymetrie. D. Kiełczewska, wykład9
Symetrie Symetrie a prawa zachowania Zachowanie momentu pędu (niezachowanie spinu) Parzystość, sprzężenie ładunkowe Symetria CP Skrętność (eksperyment Goldhabera) Zależność spinowa oddziaływań słabych
Bardziej szczegółowoWstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 2 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I,
Bardziej szczegółowo2.12. Zadania odwrotne kinematyki
Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów str. 1 2.12. Zadania odwrotne kinematyki Określenie zadania odwrotnego kinematyki T 0 N = [ ] n s a p = r 11 r 12 r 13 p x r 21 r 22 r 23
Bardziej szczegółowoLITERATURA Resnick R., Holliday O., Acosta V., Cowan C. L., Graham B. J., Wróblewski A. K., Zakrzewski J. A., Kleszczewski Z., Zastawny A.
LITERATURA. Resnick R., Holliday O., Fizyka, Tom i, lub nowe wydanie 5-tomowe. Acosta V., Cowan C. L., Gaham B. J., Podstawy Fizyki Współczesnej, 98,PWN. 3. Wóblewski A. K., Zakzewski J. A., Wstęp Do Fizyki,
Bardziej szczegółowoWykład 2: Atom wodoru
Wykład : Ato wodou Równani Schödinga Kwantowani ngii Wida atoow wodou Kwantowani ontu pędu Liczby kwantow Część adialna i kątowa funkcji falowj Radialny ozkład gęstości pawdopodobiństwa Kontuy obitali
Bardziej szczegółowoGuma Guma. Szkło Guma
1 Ładunek elektyczny jest cechą mateii. Istnieją dwa odzaje ładunków, nazywane dodatnimi i ujemnymi. Ładunki jednoimienne się odpychają, podczas gdy ładunki óżnoimeinne się pzyciągają Guma Guma Szkło Guma
Bardziej szczegółowo23. CAŁKA POWIERZCHNIOWA NIEZORIENTOWANA
. CAŁKA POWIERZCHNIOWA NIEZORIENTOWANA Płat powiechniow o ównaniach paametcnch: ( ) ( ) ( ) () gdie oba jet obaem eglanm nawam płatem gładkim (płatem eglanm) gd w każdm pnkcie tego płata itnieje płacna
Bardziej szczegółowoII.5 Sprzężenie spin-orbita - oddziaływanie orbitalnych i spinowych momentów magnetycznych
r. akad. 004/005 II.5 Sprzężenie spin-orbita - oddziaływanie orbitalnych i spinowych momentów magnetycznych Sprzężenie spin - orbita jest drugim, po efektach relatywistycznych, źródłem rozszczepienia subtelnego
Bardziej szczegółowo[ ] D r ( ) ( ) ( ) POLE ELEKTRYCZNE
LKTYCZNOŚĆ Pole elektcne Lne sł pola elektcnego Pawo Gaussa Dpol elektcn Pole elektcne w delektkach Pawo Gaussa w delektkach Polaacja elektcna Potencjał pola elektcnego Bewowość pola elektcnego óŝnckowa
Bardziej szczegółowoGranica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
Bardziej szczegółowoPręty silnie zakrzywione 1
Pęt silnie akwione. DEFIICJ Pętem silnie akwionm nawam pęt, któego oś jest płaską kwą, a stosunek wmiau pekoju popecnego (leżącego w płascźnie kwin) do pomienia kwin osi ciężkości () pęta spełnia waunek.
Bardziej szczegółowoDODATEK 6. Pole elektryczne nieskończenie długiego walca z równomiernie rozłożonym w nim ładunkiem objętościowym. Φ = = = = = π
DODATEK 6 Pole elektycne nieskońcenie długiego walca ównomienie ołożonym w nim ładunkiem objętościowym Nieskońcenie długi walec o pomieniu jest ównomienie naładowany ładunkiem objętościowym o stałej gęstości
Bardziej szczegółowoSposób opisu symetrii figur lub brył skończonych
Wkłd drugi - smetri Smetri (gr. συμμετρια podobn mir) dl figur lub brł - istnienie nietrwilnego prekstłceni, które odworowuje obiekt w smego siebie minie mogą ulegć współrędne prestrenne, cs, kolor itp.
Bardziej szczegółowoWydajność konwersji energii słonecznej:
Wykład II E we Wydajność konwersji energii słonecznej: η = E wy E we η całkowite = η absorpcja η kreacja η dryft/dyf η separ η zbierania E wy Jednostki fotometryczne i energetyczne promieniowania elektromagnetycznego
Bardziej szczegółowocz. 2 dr inż. Zbigniew Szklarski
Wykłd 11: Elektrosttyk cz. 2 dr inż. Zbigniew Szklrski szkl@gh.edu.pl http://lyer.uci.gh.edu.pl/z.szklrski/ Pole elektryczne przewodnik N powierzchni metlicznej (przewodzącej) cły łdunek gromdzi się n
Bardziej szczegółowoRACHUNEK WEKTOROWY W FIZYCE
Pzedmiot: Fizk RACHUNEK WEKTOROWY W FIZYCE Wkłd 2 2015/2016, zim 1 Pzedmiot: Fizk Pln Pojęcie wekto Dziłni n wektoch Wekto w ktezjńskim ukłdzie współzędnch Pzkłd wkozstni wektoów i dziłń n nich w fizce
Bardziej szczegółowoStrumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie
Problemy elektrodynamiki. Prawo Gaussa i jego zastosowanie przy obliczaniu pól ładunku rozłożonego w sposób ciągły. I LO im. Stefana Żeromskiego w Lęborku 19 marca 2012 Nowe spojrzenie na prawo Coulomba
Bardziej szczegółowoWłaściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).
Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej
Bardziej szczegółowoOddziaływania fundamentalne
Oddziaływania fundamentalne Siła gawitacji (siła powszechnego ciążenia, oddziaływanie gawitacyjne) powoduje spadanie ciał i ządzi uchem ciał niebieskich Księżyc Ziemia Słońce Newton Dotyczy ciał posiadających
Bardziej szczegółowo