Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony

Wielkość: px
Rozpocząć pokaz od strony:

Download "Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony"

Transkrypt

1 Modele odpowiedzi do akusza Póbnej Matuy z OPERONEM Matematyka Poziom ozszezony Listopad 00 W kluczu są pezentowane pzykładowe pawidłowe odpowiedzi. Należy ównież uznać odpowiedzi ucznia, jeśli są inaczej sfomułowane, ale ich sens jest synonimiczny wobec schematu, oaz inne odpowiedzi, niepzewidziane w kluczu, ale popawne. Zdający otzymuje po punkcie za. Zdający spowadzi wyażenie do najpostszej postaci ^9x - 4h^x+ h ^- h^+ h^x+ h ^+ h^- h^x+ h -, + x = -- + $ x = = ^ h - ^+ h ^x- h^x+ h^+ h x - gdzie x!, x!-, x!-. Zdający zapisze iloaz w postaci sumy dwóch składników, z któych jeden jest liczbą całkowitą. Np.: - ( x - ) + = = + x - x - x - ozwiązanie do końca, ale z ustekami Zdający ozważy tylko dzielniki liczby, będące liczbami natualnymi, lub nie spawdzi, czy znalezione liczby należą do dziedziny wyażenia. Zdający zauważy, że watość wyażenia jest liczbą całkowitą, gdy x - jest dzielnikiem. x - = lub x - =- Zdający zapisze odpowiedź. x = lub x = 0 obie te liczby należą do dziedziny wyażenia.. ozwiązanie, w któym postęp jest niewielki, ale konieczny na dodze do pełnego Zdający wyóżni pzedziały: -,-, -, 4h, 4, ). ] g Zdający zapisze ównanie w poszczególnych pzedziałach. Np.: x! (-,-) -x- + x- 4 = 6 x! -4, h x! 4, ) x+ + x- 4 = 6 x+ - x+ 4 = 6 Zdający ozwiąże ównania. Zdający ustali, że dla x! (-,-) ównanie nie ma, dla x! -4, h ównanie nie ma, dla x! 4, ) ównane jest tożsamościowe każda liczba zeczywista należąca do tego pzedziału spełnia ównanie. pkt pkt

2 Zdający otzymuje po punkcie za Zdający poda odpowiedź: Do pzedziału 4, ) należy co najmniej jedna liczba niewymiena, np. 9. Liczba ta należy do zbiou ozwiązań ównania.. ozwiązanie, w któym postęp jest niewielki, ale konieczny na dodze do pełnego Zdający obliczy długość pomienia okęgu i jego śednicę d. = = 6,5 d = Zdający zauważy, że pzekątna tapezu jest postopadła do jednego z amion (kąt wpisany opaty na śednicy jest posty) i obliczy długość x tego amienia. x + =, x = 5 Zdający obliczy wysokość tapezu. 60 $ h = $ 5, h = Zdający zauważy, że tapez jest ównoamienny i obliczy długość kótszej podstawy. 9 b = Zdający obliczy pole tapezu P = 5 d + $ n = ozwiązanie, w któym postęp jest niewielki, ale konieczny na dodze do pełnego Zdający zapisze wielomian Wx () za pomocą wielomianu niezeowego Qx (), wielomianu Px () i eszty Rx () = ax + bx+ c. Wx () = Qx () $ Px () + ax + bx+ c Zdający zauważy, że eszta z dzielenia wielomianu Wx () pzez x- a jest ówna Wa ( ) i zapisze odpowiednie ówności. a+ b+ c = a- b+ c =- 4a- b+ c = Zdający ozwiąże otzymany układ ównań. 5 5 a =, b =, c =- Zdający zapisze esztę. 5 5 Rx () = x + x- 5. ozwiązanie, w któym postęp jest niewielki, ale konieczny na dodze do pełnego Zdający obliczy wyóżnik tójmianu. D = ^m - 5h -4^m- 7h = m - 4m+ 5 pkt pkt

3 Zdający otzymuje po punkcie za Zdający zapisze wyóżnik np. w postaci D = ^m - 7h + 4 i stwiedzi, że watość tego wyażenia jest zawsze dodatnia, zatem ównanie ma dla każdej liczby zeczywistej m dwa óżne piewiastki. Zdający zapisze waunek podany w zadaniu, wykozystując np. wzoy Viete a. x x + = ^x xx ( m 7) m + x h - = 6 -( m -5)@ - $ - = - m+ 9 Zdający zapisze sumę kwadatów piewiastków ównania w postaci x + x = ( m- 6) +. Zdający stwiedzi, że watość wyażenia ^m - 6 h + jest najmniejsza, gdy m = 6. pkt 6. ozwiązanie, w któym postęp jest niewielki, ale konieczny na dodze do pełnego Zdający obliczy wysokość H ganiastosłupa i długość x jego kawędzi podstawy. 6x+ H = 60 6x+ ( x+ ) = 60 x = 6, H = 8 Zdający spoządzi ysunek ganiastosłupa, zaznaczając odpowiedni pzekój lub naysuje odpowiedni tójkąt. pkt c a x Zdający obliczy długość c pzekątnej ściany bocznej ganiastosłupa i długość amienia a tójkąta, będącego pzekojem. c = 6+ 8 = 0 a = 6+ 4 = 5 Zdający stwiedzi, że ozpatywany pzekój jest tójkątem ównoamiennym o podstawie 0 i amieniu 5 i obliczy wysokość tego tójkąta. h = 5-5 = 7 Zdający obliczy pole pzekoju. P = $ 0 $ 7 = 5

4 Zdający otzymuje po punkcie za 7. ozwiązanie, w któym postęp jest niewielki, ale konieczny na dodze do pełnego Zdający pzekształci ozpatywane wyażenie, wykozystując odpowiednie wzoy. cos( a+ b) $ cos a- b = cos a cos b- sin a sin b cos a cos b+ sin a sin b = = cosa cosb-sina sinb ] g ] g] g Zdający wykozysta związki między funkcjami tygonometycznymi tego samego kąta do zapisania wyażenia za pomocą jednej funkcji tygonometycznej. Np.: cos a cos b- sin a sin b = cos a cos b-^-cos ah^-cos bh. Zdający pzekształci otzymane wyażenie do postaci cosa+ cosb-. Zdający zauważy, że cos a+ cos b G, zatem cos a+ cos b- G. 8. ozwiązanie, w któym postęp jest niewielki, ale konieczny na dodze do pełnego Zdający wykaże, że utwozone w ten sposób czwookąty są kwadatami C jest ombem, w któym każdy kąt ma miaę 90, jest więc kwadatem. Podobnie następne czwookąty są kwadatami. pkt Zdający wykaże, że pole każdego z następnych kwadatów jest ówne połowie pola kwadatu, z któego powstał. Zdający zauważy, że ciąg pól twozonych kwadatów jest ciągiem geometycznym o piewszym wyazie 8 i iloazie. Zdający zastosuje wzó na sumę m wyazów ciągu geometycznego, twoząc i ozwiązując odpowiednie ównanie. m - b l 8 $ = m 6 - b l = 64 b l m m = 6 = 64 Zdający wyznaczy liczbę n. n = 6- = 5 pkt 4

5 Zdający otzymuje po punkcie za 9. ozwiązanie, w któym postęp jest niewielki, ale konieczny na dodze do pełnego Zdający zapisze za pomocą wyażenia algebaicznego pawdopodobieństwo wyciągnięcia dwóch skapetek zielonych. x liczba skapetek zielonych PZZ ( ) x x - = $ - Zdający zapisze za pomocą wyażenia algebaicznego pawdopodobieństwo wyciągnięcia dwóch skapetek óżnych koloów. x x x x PRK ( ) = $ $ Zdający zapisze odpowiednie ównanie i spowadzi je do najpostszej postaci. x x - x x x x $ + = $ $ x - 9 4x + = - - Zdający ozwiąże ównanie obliczy liczbę skapetek zielonych. x = 4 Zdający poda liczbę wszystkich skapetek: 4+ 8 =. 0. ozwiązanie, w któym postęp jest niewielki, ale konieczny na dodze do pełnego Zdający zapisze ównanie okęgu ^x - h + ^y - h = 7 i zauważy, że każdy punkt leżący na osi OX ma współzędne x, 0. ] g Zdający wyznaczy współzędne pzecięcia okęgu z osią OX. ^x - h + = 7 ( x -) - 6 = 0 x -- 4 = 0 lub x = 6 lub x =- A = ] 6, 0g B = (-, 0) x = 0 Zdający wyznaczy długość odcinka AB : AB = 8 oaz odległość d punktu C od osi OX. pkt pkt $ 8 $ d = 4 d = 6 ozwiązanie do końca, lecz z ustekami, któe jednak nie pzekeślają popawności (np. błędy achunkowe) 5

6 Zdający otzymuje po punkcie za Zdający wyznaczy piewszą współzędną punktu C, wiedząc, że duga współzędna jest ówna 6 lub = 0 lub -^- 6h+ = 0 x = lub x =- Zdający poda współzędne punktu C. C 6, lub C = ^-, -6h = ] g. ozwiązanie, w któym postęp jest niewielki, ale konieczny na dodze do pełnego Zdający zauważy, że wykes funkcji f powstał w wyniku pzekształcenia pzez symetię względem osi OX wykesu funkcji sin ax oaz dwukotnego ozciągnięcia go wzdłuż osi OY. Okesem funkcji sin ax jest, stąd a =. Zdający zapisze wzó funkcji. fx () = ( - sin ) x =-sin x Zdający zapisze i pzekształci odpowiednie ównanie - sin x =- sin x = x = + k lub x = - + k, k! C Zdający poda ozwiązanie ównania. x = + k lub x = + k dla k! C 6 pkt 6

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony KRYTERIA OCENIANIA ODPOWIEDZI Póbna Matua z OPERONEM Matematyka Poziom ozszezony Listopad 0 W ni niej szym sche ma cie oce nia nia za dań otwa tych są pe zen to wa ne pzy kła do we po paw ne od po wie

Bardziej szczegółowo

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM Matematyka Poziom rozszerzony Listopad W kluczu są prezentowane przykładowe prawidłowe odpowiedzi. Należy również uznać odpowiedzi ucznia, jeśli są

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony KRYTERIA OCENIANIA ODPOWIEDZI Póbna Matua z OPERONEM Matematyka Poziom ozszezony Listopad W niniejszym schemacie oceniania zadań otwatych są pezentowane pzykładowe popawne odpowiedzi. W tego typu ch należy

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Konkusy w województwie podkapackim w oku szkolnym 08/09 KONKURS Z MTEMTYKI L UZNIÓW SZKÓŁ POSTWOWYH ETP REJONOWY KLUZ OPOWIEZI Zasady pzyznawania punktów za każdą popawną odpowiedź punkt za błędną odpowiedź

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ODPOWIEDZI DO ARKUSZA ROZSZERZONEGO Zadanie ( pkt) A Zadanie ( pkt) C Zadanie ( pkt) A, bo sinα + cosα sinα + cosα cos sinα sin cosα + π π + π sin α π A więc musi

Bardziej szczegółowo

GEOMETRIA PŁASZCZYZNY

GEOMETRIA PŁASZCZYZNY GEOMETRIA PŁASZCZYZNY. Oblicz pole tapezu ównoamiennego, któego podstawy mają długość cm i 0 cm, a pzekątne są do siebie postopadłe.. Dany jest kwadat ABCD. Punkty E i F są śodkami boków BC i CD. Wiedząc,

Bardziej szczegółowo

9. 1. KOŁO. Odcinki w okręgu i kole

9. 1. KOŁO. Odcinki w okręgu i kole 9.. KOŁO Odcinki w okęgu i kole Cięciwa okęgu (koła) odcinek łączący dwa dowolne punkty okęgu d Śednica okęgu (koła) odcinek łączący dwa dowolne punkty okęgu pzechodzący pzez śodek okęgu (koła) Pomień

Bardziej szczegółowo

Zadania otwarte. 2. Matematyka. Poziom rozszerzony Próbna Matura z OPERONEM i Gazetą Wyborczą n n. 2n n. lim 10.

Zadania otwarte.  2. Matematyka. Poziom rozszerzony Próbna Matura z OPERONEM i Gazetą Wyborczą n n. 2n n. lim 10. KRYTERIA OCENIANIA ODPOWIEDZI Póbna Matua z OPERONEM Matematyka Poziom ozszezony Listoad 05 Zadania zamknięte Za każdą oawną odowiedź zdający otzymuje unkt. Nume Poawna odowiedź Wskazówki do ozwiązania.

Bardziej szczegółowo

KURS GEOMETRIA ANALITYCZNA

KURS GEOMETRIA ANALITYCZNA KURS GEOMETRIA ANALITYCZNA Lekcja 2 Działania na wektoach w układzie współzędnych. ZADANIE DOMOWE www.etapez.pl Stona 1 Część 1: TEST Zaznacz popawną odpowiedź (tylko jedna jest pawdziwa). Pytanie 1 Któe

Bardziej szczegółowo

SCENARIUSZ LEKCJI MATEMATYKI Temat: Zadania na dowodzenie w trygonometrii. Cel: Uczeń tworzy łańcuch argumentów i uzasadnia jego poprawność.

SCENARIUSZ LEKCJI MATEMATYKI Temat: Zadania na dowodzenie w trygonometrii. Cel: Uczeń tworzy łańcuch argumentów i uzasadnia jego poprawność. SCENAIUSZ LEKCJI MATEMATYKI Temat: Zadania na dowodzenie w tygonometii Cel: Uczeń twozy łańcuch agumentów i uzasadnia jego popawność Czas: godzina lekcyjna Cele zajęć: Uczeń po zajęciach: wykozystuje definicje

Bardziej szczegółowo

CHARAKTERYSTYKI GEOMETRYCZNE FIGUR PŁASKICH

CHARAKTERYSTYKI GEOMETRYCZNE FIGUR PŁASKICH Politecnika Rzeszowska Wydział Budowy Maszyn i Lotnictwa Kateda Samolotów i Silników Lotniczyc Pomoce dydaktyczne Wytzymałość Mateiałów CHRKTERYSTYKI GEOMETRYCZNE FIGUR PŁSKICH Łukasz Święc Rzeszów, 18

Bardziej szczegółowo

11. 3.BRYŁY OBROTOWE. Walec bryła obrotowa powstała w wyniku obrotu prostokąta dokoła prostej zawierającej jeden z jego boków

11. 3.BRYŁY OBROTOWE. Walec bryła obrotowa powstała w wyniku obrotu prostokąta dokoła prostej zawierającej jeden z jego boków ..BRYŁY OBROTOWE Wae była obotowa powstała w wyniku obotu postokąta dokoła postej zawieająej jeden z jego boków pomień podstawy waa wysokość waa twoząa waa Pzekój osiowy waa postokąt o boka i Podstawa

Bardziej szczegółowo

Konkurs Matematyczny dla uczniów gimnazjów województwa lubuskiego 19 stycznia 2012 r. zawody II stopnia (rejonowe)

Konkurs Matematyczny dla uczniów gimnazjów województwa lubuskiego 19 stycznia 2012 r. zawody II stopnia (rejonowe) Kod ucznia:. Ilość punktów: Konkus Matematyczny dla uczniów gimnazjów województwa lubuskiego 19 stycznia 2012. zawody II stopnia (ejonowe) Witamy Cię na dugim etapie Konkusu Matematycznego. Pzed pzystąpieniem

Bardziej szczegółowo

11. DYNAMIKA RUCHU DRGAJĄCEGO

11. DYNAMIKA RUCHU DRGAJĄCEGO 11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie

Bardziej szczegółowo

Scenariusz lekcji. Temat: Podsumowanie wiadomości o walcu. Cele lekcji

Scenariusz lekcji. Temat: Podsumowanie wiadomości o walcu. Cele lekcji opacowała: Maia Kukułka Scenaiusz lekcji Temat: Podsumowanie wiadomości o walcu. Cele lekcji Uczeń potafi: ozpoznać walec wśód innych był obliczyć pole powiezchni walca obliczyć objętość walca zaznaczyć

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Matematyka Poziom rozszerzony Listopad W niniejszym schemacie oceniania zadań otwartych są prezentowane przykładowe poprawne odpowiedzi. W tego typu

Bardziej szczegółowo

L(x, 0, y, 0) = x 2 + y 2 (3)

L(x, 0, y, 0) = x 2 + y 2 (3) 0. Małe dgania Kótka notatka o małych dganiach wyjasniające możliwe niejasności. 0. Poszukiwanie punktów ównowagi Punkty ównowagi wyznaczone są waunkami x i = 0, ẋi = 0 ( Pochodna ta jest ówna pochodnej

Bardziej szczegółowo

II.6. Wahadło proste.

II.6. Wahadło proste. II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia

Bardziej szczegółowo

Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne

Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne Rozdział 5 Pole magnetyczne 5.1 Oddziaływanie pola magnetycznego na ładunki i pzewodniki z pądem 5.1.1 Podstawowe zjawiska magnetyczne W obecnym ozdziale ozpatzymy niektóe zagadnienia magnetostatyki. Magnetostatyką

Bardziej szczegółowo

Graf skierowany. Graf zależności dla struktur drzewiastych rozgrywających parametrycznie

Graf skierowany. Graf zależności dla struktur drzewiastych rozgrywających parametrycznie Gaf skieowany Gaf skieowany definiuje się jako upoządkowaną paę zbioów. Piewszy z nich zawiea wiezchołki gafu, a dugi składa się z kawędzi gafu, czyli upoządkowanych pa wiezchołków. Ruch po gafie możliwy

Bardziej szczegółowo

POLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął

POLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął POLE MAGNETYCZNE W PÓŻNI W oku 8 Oested zaobsewował oddziaływanie pzewodnika, w któym płynął pąd, na igłę magnetyczną Dopowadziło to do wniosku, że pądy elektyczne są pzyczyną powstania pola magnetycznego

Bardziej szczegółowo

POMIARY MAKRONAPRĘŻEŃ METODĄ DYFRAKCJI PROMIENIOWANIA RENTGENOWSKIEGO

POMIARY MAKRONAPRĘŻEŃ METODĄ DYFRAKCJI PROMIENIOWANIA RENTGENOWSKIEGO POMIARY MAKRONAPRĘŻEŃ METODĄ DYFRAKCJI PROMIENIOWANIA RENTGENOWSKIEGO Dominik SENCZYK Politechnika Poznańska E-mail: dominik.senczyk@put.poznan.pl Sebastian MORYKSIEWICZ. Cegielski Poznań S. A. E-mail:

Bardziej szczegółowo

KOMPUTEROWO WSPOMAGANA ANALIZA KINEMATYKI MECHANIZMU DŹWIGNIOWEGO

KOMPUTEROWO WSPOMAGANA ANALIZA KINEMATYKI MECHANIZMU DŹWIGNIOWEGO XIX Międzynaodowa Szkoła Komputeowego Wspomagania Pojektowania, Wytwazania i Eksploatacji D hab. inż. Józef DREWNIAK, pof. ATH Paulina GARLICKA Akademia Techniczno-Humanistyczna w Bielsku-Białej DOI: 10.17814/mechanik.2015.7.226

Bardziej szczegółowo

KOOF Szczecin: Komitet Główny Olimpiady Fizycznej. Andrzej Wysmołek Komitet Główny Olimpiady Fizycznej, IFD UW.

KOOF Szczecin:   Komitet Główny Olimpiady Fizycznej. Andrzej Wysmołek Komitet Główny Olimpiady Fizycznej, IFD UW. LVII OLIMPIADA FIZYCZNA (007/008). Stopień III, zadanie doświadczalne D Źódło: Auto: Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej. Andzej Wysmołek Komitet Główny Olimpiady

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna Zadanie. Zapisać, używając symboli i, następujące wyrażenia (a) n!; (b) sin() + sin() sin() +... + sin() sin()... sin(n); (c) ( + )( + /)( + / + /)... ( + / + / +... + /R). Zadanie.

Bardziej szczegółowo

Atom wodoru w mechanice kwantowej

Atom wodoru w mechanice kwantowej Fizyka II, lato 016 Tójwymiaowa studnia potencjału atomu wodou jest badziej złożona niż studnie dyskutowane wcześniej np. postokątna studnia. Enegia potencjalna U() jest wynikiem oddziaływania kulombowskiego

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Wiadomości i rozumienie Matematyka poziom rozszerzony Wykorzystanie pojęcia wartości argumentu i wartości

Bardziej szczegółowo

Energia kinetyczna i praca. Energia potencjalna

Energia kinetyczna i praca. Energia potencjalna negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut

Bardziej szczegółowo

Metody optymalizacji. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metody optymalizacji. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metody optymalizacji d inż. Paweł Zalewski kademia Moska w Szczecinie Optymalizacja - definicje: Zadaniem optymalizacji jest wyznaczenie spośód dopuszczalnych ozwiązań danego polemu ozwiązania najlepszego

Bardziej szczegółowo

1. Wielomiany Podstawowe definicje i twierdzenia

1. Wielomiany Podstawowe definicje i twierdzenia 1. Wielomiany Podstawowe definicje i twierdzenia Definicja wielomianu. Wielomianem stopnia n zmiennej rzeczywistej x nazywamy funkcję w określoną wzorem w(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, przy

Bardziej szczegółowo

należą do grupy odbiorników energii elektrycznej idealne elementy rezystancyjne przekształcają energię prądu elektrycznego w ciepło

należą do grupy odbiorników energii elektrycznej idealne elementy rezystancyjne przekształcają energię prądu elektrycznego w ciepło 07 0 Opacował: mg inż. Macin Wieczoek www.mawie.net.pl. Elementy ezystancyjne. należą do gupy odbioników enegii elektycznej idealne elementy ezystancyjne pzekształcają enegię pądu elektycznego w ciepło.

Bardziej szczegółowo

m q κ (11.1) q ω (11.2) ω =,

m q κ (11.1) q ω (11.2) ω =, OPIS RUCHU, DRGANIA WŁASNE TŁUMIONE Oga Kopacz, Adam Łodygowski, Kzysztof Tymbe, Michał Płotkowiak, Wojciech Pawłowski Konsutacje naukowe: pof. d hab. Jezy Rakowski Poznań 00/00.. Opis uchu OPIS RUCHU

Bardziej szczegółowo

Wykład 1. Elementy rachunku prawdopodobieństwa. Przestrzeń probabilistyczna.

Wykład 1. Elementy rachunku prawdopodobieństwa. Przestrzeń probabilistyczna. Podstawowe pojęcia. Wykład Elementy achunku pawdopodobieństwa. Pzestzeń pobabilistyczna. Doświadczenie losowe-doświadczenie (zjawisko, któego wyniku nie możemy pzewidzieć. Pojęcie piewotne achunku pawdopodobieństwa

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

WIELOMIANY. ZADANIE 1 (5 PKT) Reszta z dzielenia wielomianu x 3 + px 2 x + q przez trójmian (x + 2) 2 wynosi 1 x. Wyznacz pierwiastki tego wielomianu.

WIELOMIANY. ZADANIE 1 (5 PKT) Reszta z dzielenia wielomianu x 3 + px 2 x + q przez trójmian (x + 2) 2 wynosi 1 x. Wyznacz pierwiastki tego wielomianu. IMIE I NAZWISKO WIELOMIANY SUMA PUNKTÓW: 125 ZADANIE 1 (5 PKT) Reszta z dzielenia wielomianu x 3 + px 2 x + q przez trójmian (x + 2) 2 wynosi 1 x. Wyznacz pierwiastki tego wielomianu. ZADANIE 2 (5 PKT)

Bardziej szczegółowo

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015 EGZAMIN MATURALNY W ROKU SZKOLNYM 0/0 FORMUŁA OD 0 ( NOWA MATURA ) MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 0 Egzamin maturalny z matematyki nowa formuła Klucz

Bardziej szczegółowo

PRZEMIANA ENERGII ELEKTRYCZNEJ W CIELE STAŁYM

PRZEMIANA ENERGII ELEKTRYCZNEJ W CIELE STAŁYM PRZEMIANA ENERGII ELEKTRYCZNE W CIELE STAŁYM Anaizowane są skutki pzepływu pądu pzemiennego o natężeniu I pzez pzewodnik okągły o pomieniu. Pzyęto wstępne założenia upaszcząace: - kształt pądu est sinusoidany,

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY W ROKU SZKOLNYM 018-019 MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ZADAŃ KIELCE MARZEC 019 Str. Klucz odpowiedzi do zadań zamkniętych 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17

Bardziej szczegółowo

Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym

Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym 1.Wpowadzenie Wyznaczanie pofilu pędkości płynu w uociągu o pzekoju kołowym Dla ustalonego, jednokieunkowego i uwastwionego pzepływu pzez uę o pzekoju kołowym ównanie Naviea-Stokesa upaszcza się do postaci

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony KRYTERIA OCENIANIA ODPOWIEDZI Próna Matura z OPERONEM Matematyka Poziom rozszerzony Listopad W ni niej szym sche ma cie oce nia nia za dań otwar tych są pre zen to wa ne przy kła do we po praw ne od po

Bardziej szczegółowo

GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r.

GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r. GRAWITACJA Pawo powszechnego ciążenia (pawo gawitacji) Dwa punkty mateialne o masach m 1 i m pzyciągają się wzajemnie siłą popocjonalną do iloczynu ich mas i odwotnie popocjonalną do kwadatu ich odległości.

Bardziej szczegółowo

8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI

8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8.. Płaski stan napężenia Tacza układ, ustój ciągły jednoodny, w któym jeden wymia jest znacznie mniejszy od pozostałych,

Bardziej szczegółowo

1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym.

1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym. Wykład 3. Zasada zachowania momentu pędu. Dynamika punktu mateialnego i były sztywnej. Ruch obotowy i postępowy Większość ciał w pzyodzie to nie punkty mateialne ale ozciągłe ciała sztywne tj. obiekty,

Bardziej szczegółowo

Grzegorz Kornaś. Powtórka z fizyki

Grzegorz Kornaś. Powtórka z fizyki Gzegoz Konaś Powtóka z fizyki - dla uczniów gimnazjów, któzy chcą wiedzieć to co tzeba, a nawet więcej, - dla uczniów liceów, któzy chcą powtózyć to co tzeba, aby zozumieć więcej, - dla wszystkich, któzy

Bardziej szczegółowo

Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania

Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń 0 Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania KLUCZ ODPOWIEDZI DO ZADAŃ ZAMKNIĘTYCH Nr zadania 4 5 6 7 8 9 0 4 5 6 7 8 9 0 Odpowiedź

Bardziej szczegółowo

MECHANIKA OGÓLNA (II)

MECHANIKA OGÓLNA (II) MECHNIK GÓLN (II) Semest: II (Mechanika I), III (Mechanika II), ok akademicki 2017/2018 Liczba godzin: sem. II*) - wykład 30 godz., ćwiczenia 30 godz. sem. III*) - wykład 30 godz., ćwiczenia 30 godz. (dla

Bardziej szczegółowo

dr inż. Małgorzata Langer Architektura komputerów

dr inż. Małgorzata Langer Architektura komputerów Instukcja współfinansowana pzez Unię Euopejską w amach Euopejskiego Funduszu Społecznego w pojekcie Innowacyjna dydaktyka bez oganiczeń zintegowany ozwój Politechniki Łódzkiej zaządzanie Uczelnią, nowoczesna

Bardziej szczegółowo

Wykład 15. Reinhard Kulessa 1

Wykład 15. Reinhard Kulessa 1 Wykład 5 9.8 Najpostsze obwody elektyczne A. Dzielnik napięcia. B. Mostek Wheatstone a C. Kompensacyjna metoda pomiau siły elektomotoycznej D. Posty układ C. Pąd elektyczny w cieczach. Dysocjacja elektolityczna.

Bardziej szczegółowo

ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ.

ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. STRESZCZENIE Na bazie fizyki klasycznej znaleziono nośnik ładunku gawitacyjnego, uzyskano jedność wszystkich odzajów pól ( elektycznych,

Bardziej szczegółowo

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii.

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii. Wykład: paca siły, pojęcie enegii potencjalnej. Zasada zachowania enegii. Uwaga: Obazki w tym steszczeniu znajdują się stonie www: http://www.whfeeman.com/tiple/content /instucto/inde.htm Pytanie: Co to

Bardziej szczegółowo

WIELOMIANY. Poziom podstawowy

WIELOMIANY. Poziom podstawowy WIELOMIANY Poziom podstawowy Zadanie (5 pkt) Liczba 7 jest miejscem zerowym W(x) Wyznacz resztę z dzielenia tego wielomianu przez wielomian P ( x) = x + 54, jeśli wiadomo, że w wyniku dzielenia wielomianu

Bardziej szczegółowo

Wielomiany. XX LO (wrzesień 2016) Matematyka elementarna Temat #2 1 / 1

Wielomiany. XX LO (wrzesień 2016) Matematyka elementarna Temat #2 1 / 1 XX LO (wrzesień 2016) Matematyka elementarna Temat #2 1 / 1 Definicja Definicja Wielomianem stopnia n zmiennej rzeczywistej x nazywamy funkcję W (x) = a n x n + a n 1 x n 1 + + a 2 x 2 + a 1 x + a 0 gdzie

Bardziej szczegółowo

EGZAMIN MATURALNY 2012 MATEMATYKA

EGZAMIN MATURALNY 2012 MATEMATYKA entralna Komisja Egzaminacyjna EGZAMIN MATURALNY 0 MATEMATYKA POZIOM PODSTAWOWY Kryteria oceniania odpowiedzi SIERPIEŃ 0 Zadanie. (0 ) Zakres umiejętności (standardy) Opis wymagań Wykonuje obliczenia procentowe;

Bardziej szczegółowo

ĆWICZENIE 3 REZONANS W OBWODACH ELEKTRYCZNYCH

ĆWICZENIE 3 REZONANS W OBWODACH ELEKTRYCZNYCH ĆWZENE 3 EZONANS W OBWODAH EEKTYZNYH el ćwiczenia: spawdzenie podstawowych właściwości szeegowego i ównoległego obwodu ezonansowego pzy wymuszeniu napięciem sinusoidalnym, zbadanie wpływu paametów obwodu

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. Etapy rozwiązania zadania

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. Etapy rozwiązania zadania Przykładowy zestaw zadań nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM PODSTAWOWY Nr zadania Nr czynności Etapy rozwiązania zadania Liczba punktów Uwagi. Podanie dziedziny funkcji f:

Bardziej szczegółowo

Zadanie 1. Zadanie 2. Sprawdzam dla objętości, że z obwarzanków mogę posklejać całą kulę o promieniu R: r = {x, y, z}; A = * Cross r, B

Zadanie 1. Zadanie 2. Sprawdzam dla objętości, że z obwarzanków mogę posklejać całą kulę o promieniu R: r = {x, y, z}; A = * Cross r, B Zadanie In[]:= = {x, y, z}; In[]:= B = B, B, B3 ; (* Bi to wielkości stałe *) In[3]:= A = - * Coss, B Out[3]= -B3 y + B z, B3 x - B z, -B x + B y In[4]:= {x,y,z} -B3 y + B z, B3 x - B z, -B x + B y Out[4]=

Bardziej szczegółowo

23 PRĄD STAŁY. CZĘŚĆ 2

23 PRĄD STAŁY. CZĘŚĆ 2 Włodzimiez Wolczyński 23 PĄD STAŁY. CZĘŚĆ 2 zadanie 1 Tzy jednakowe oponiki, każdy o opoze =30 Ω i opó =60 Ω połączono ze źódłem pądu o napięciu 15 V, jak na ysunku obok. O ile zwiększy się natężenie pądu

Bardziej szczegółowo

III. Funkcje rzeczywiste

III. Funkcje rzeczywiste . Pojęcia podstawowe Załóżmy, że dane są dwa niepuste zbiory X i Y. Definicja. Jeżeli każdemu elementowi x X przyporządkujemy dokładnie jeden element y Y, to mówimy, że na zbiorze X została określona funkcja

Bardziej szczegółowo

Arkusze maturalne poziom podstawowy

Arkusze maturalne poziom podstawowy Akusze matualne poziom postawowy zaania zamknięte N zaania 5 7 8 9 0 Pawiłowa opowieź a c a b c b a Liczba punktów zaania otwate N zaania Pawiłowa opowieź Punkty Q mg 00 N Z III zasay ynamiki wynika, że

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA

INSTRUKCJA DO ĆWICZENIA NSTRKJA DO ĆWZENA Temat: Rezonans w obwodach elektycznych el ćwiczenia elem ćwiczenia jest doświadczalne spawdzenie podstawowych właściwości szeegowych i ównoległych ezonansowych obwodów elektycznych.

Bardziej szczegółowo

ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI.

ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI. Modelowanie pzepływu cieczy pzez ośodki poowate Wykład VII ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI. 7. Pzepływ pzez goblę z uwzględnieniem zasilania wodami infiltacyjnymi.

Bardziej szczegółowo

KINEMATYCZNE WŁASNOW PRZEKŁADNI

KINEMATYCZNE WŁASNOW PRZEKŁADNI KINEMATYCZNE WŁASNOW ASNOŚCI PRZEKŁADNI Waunki współpacy pacy zazębienia Zasada n 1 - koła zębate mogą ze sobą współpacować, kiedy mają ten sam moduł m. Czy to wymaganie jest wystaczające dla pawidłowej

Bardziej szczegółowo

29 Rozpraszanie na potencjale sferycznie symetrycznym - fale kuliste

29 Rozpraszanie na potencjale sferycznie symetrycznym - fale kuliste 9 Rozpaszanie na potencjae sfeycznie symetycznym - fae kuiste W ozdziae tym zajmiemy się ozpaszaniem na potencjae sfeycznie symettycznym V ). Da uchu o dodatniej enegii E = k /m adiane ównanie Schödingea

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY LISTOPAD 0 Instrukcja dla zdającego Czas pracy: 80 minut. Sprawdź, czy arkusz egzaminacyjny zawiera 4 stron

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Zadanie. W kolejnych okesach czasu t =,,3,... ubezpieczony, chaakteyzujący się paametem yzyka Λ, geneuje szkód. Dla danego Λ = λ zmienne N t N, N, N 3,... są waunkowo niezależne i mają (bzegowe) ozkłady

Bardziej szczegółowo

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze I. Funkcja i jej własności POZIOM PODSTAWOWY Pojęcie

Bardziej szczegółowo

00502 Podstawy kinematyki D Część 2 Iloczyn wektorowy i skalarny. Wektorowy opis ruchu. Względność ruchu. Prędkość w ruchu prostoliniowym.

00502 Podstawy kinematyki D Część 2 Iloczyn wektorowy i skalarny. Wektorowy opis ruchu. Względność ruchu. Prędkość w ruchu prostoliniowym. 1 00502 Kinematyka D Dane osobowe właściciela akusza 00502 Podstawy kinematyki D Część 2 Iloczyn wektoowy i skalany. Wektoowy opis uchu. Względność uchu. Pędkość w uchu postoliniowym. Instukcja dla zdającego

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY LISTOPAD 2010 Instrukcja dla zdającego Czas pracy 180 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 13

Bardziej szczegółowo

Egzamin maturalny z matematyki Poziom rozszzerzony. Rozwiązanie Przekształcamy równanie do postaci, w której występuje tylko jedna funkcja

Egzamin maturalny z matematyki Poziom rozszzerzony. Rozwiązanie Przekształcamy równanie do postaci, w której występuje tylko jedna funkcja Zadanie ( pkt) Wyznacz wszystkie rozwiązania równania, π sin 7cos = należące do przedziału Rozwiązanie Przekształcamy równanie do postaci, w której występuje tylko jedna funkcja cos 7 cos = trygonometryczna

Bardziej szczegółowo

Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania

Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń 0 Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania Okręgowa Komisja Egzaminacyjna w Poznaniu KLUCZ ODPOWIEDZI DO ZADAŃ ZAMKNIĘTYCH

Bardziej szczegółowo

20 ELEKTROSTATYKA. PRAWO COULOMBA.

20 ELEKTROSTATYKA. PRAWO COULOMBA. Włodzimiez Wolczyński Pawo Coulomba 20 ELEKTROSTATYKA. PRAWO COULOMBA. POLE CENTRALNE I JEDNORODNE Q q = k- stała, dla póżni = 9 10 = 1 4 = 8,9 10 -stała dielektyczna póżni ε względna stała dielektyczna

Bardziej szczegółowo

ι umieszczono ladunek q < 0, który może sie ι swobodnie poruszać. Czy środek okregu ι jest dla tego ladunku po lożeniem równowagi trwa lej?

ι umieszczono ladunek q < 0, który może sie ι swobodnie poruszać. Czy środek okregu ι jest dla tego ladunku po lożeniem równowagi trwa lej? ozwiazania zadań z zestawu n 7 Zadanie Okag o pomieniu jest na ladowany ze sta l a gestości a liniowa λ > 0 W śodku okegu umieszczono ladunek q < 0, któy może sie swobodnie pouszać Czy śodek okegu jest

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka. Poziom podstawowy. Listopad Wskazówki do rozwiązania zadania 22 = 2

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka. Poziom podstawowy. Listopad Wskazówki do rozwiązania zadania 22 = 2 Vademecum GIELMTURLN.PL OIERZ KO OSTĘPU* Matematyka - Twój indywidualny klucz do wiedzy! *Kod na końcu klucza odpowiedzi KRYTERI OENINI OPOWIEZI Próbna Matura z OPERONEM Operon 00% MTUR 07 V EMEUM Matematyka

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j),

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j), ELEKTROTECHNIKA Semestr Rok akad. / 5 ZADANIA Z MATEMATYKI Zestaw. Przedstaw w postaci algebraicznej liczby zespolone: (3 + j)(5 j) 3 j +j (5 + j) (3 + j) 3. Narysuj zbiory punktów na płaszczyźnie: +j

Bardziej szczegółowo

Modelowanie przepływu cieczy przez ośrodki porowate Wykład III

Modelowanie przepływu cieczy przez ośrodki porowate Wykład III Modelowanie pzepływu cieczy pzez ośodki poowate Wykład III 6 Ogólne zasady ozwiązywania ównań hydodynamicznego modelu pzepływu. Metody ozwiązania ównania Laplace a. Wpowadzenie wielkości potencjału pędkości

Bardziej szczegółowo

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna Arkusz A03 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Dany jest ciąg arytmetyczny (a

Bardziej szczegółowo

WYKŁAD 11 OPTYMALIZACJA WIELOKRYTERIALNA

WYKŁAD 11 OPTYMALIZACJA WIELOKRYTERIALNA WYKŁAD OPTYMALIZACJA WIELOKYTEIALNA Wstęp. W wielu pzypadkach pzy pojektowaniu konstukcji technicznych dla okeślenia ich jakości jest niezędne wpowadzenie więcej niż jednego kyteium oceny. F ) { ( ), (

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ 2014/2015 MATEMATYKA POZIOM ROZSZERZONY

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ 2014/2015 MATEMATYKA POZIOM ROZSZERZONY PRÓNY EGZAMIN MATURALNY Z NOWĄ ERĄ 0/0 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA Copyright by Nowa Era Sp z oo Klucz odpowiedzi do zadań zamkniętych Nr zadania Odpowiedź C

Bardziej szczegółowo

Odpowiedzi do zadań zamkniętych. Schemat oceniania zadań otwartych

Odpowiedzi do zadań zamkniętych. Schemat oceniania zadań otwartych Odpowiedzi do zadań zamkniętych Nr zadania 3 4 5 6 7 8 9 0 3 4 5 6 7 8 9 0 3 4 5 Odpowiedź A C C B C A B C A D B C D B D C A B A A A C B A A Schemat oceniania zadań otwartych Zadanie 6. ( pkt) Rozwiąż

Bardziej szczegółowo

Siła. Zasady dynamiki

Siła. Zasady dynamiki Siła. Zasady dynaiki Siła jest wielkością wektoową. Posiada okeśloną watość, kieunek i zwot. Jednostką siły jest niuton (N). 1N=1 k s 2 Pzedstawienie aficzne A Siła pzyłożona jest do ciała w punkcie A,

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1. Matematyka poziom podstawowy Wyznaczanie wartości funkcji dla danych argumentów i jej miejsca zerowego. Zdający

Bardziej szczegółowo

BADANIE DYNAMICZNEGO TŁUMIKA DRGA

BADANIE DYNAMICZNEGO TŁUMIKA DRGA Ćwiczenie 3 BDNIE DYNMICZNEGO TŁUMIK DRGŃ. Cel ćwiczenia yłumienie dgań układu o częsości ezonansowej za pomocą dynamicznego łumika dgań oaz wyznaczenie zakesu częsości wymuszenia, w kóym łumik skuecznie

Bardziej szczegółowo

PROJEKT nr 2. Ściągacz dwuramienny do kół zębatych i łożysk tocznych.

PROJEKT nr 2. Ściągacz dwuramienny do kół zębatych i łożysk tocznych. PROJEKT n Ściąacz dwuamienny do kół zębatych i łożysk tocznych. Spoządził: Andzej Wölk PROJEKT n Zapojektować ściąacz dwuamienny do kół zębatych i łożysk tocznych. Maksymalna siła wzdłużna potzebna pzy

Bardziej szczegółowo

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania. 10 1 Wykazać, że liczba 008 008 10 + + jest większa od Nie używając kalkulatora, porównać liczby a = log 5 log 0 + log oraz b = 6 5 Rozwiązać równanie x + 4y + x y + 1 = 4xy 4 W prostokątnym układzie współrzędnych

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRZED MATURĄ MAJ 2017 POZIOM ROZSZERZONY Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron (zadania 1 18). 2. Rozwiązania zadań wpisuj

Bardziej szczegółowo

Egzamin wstępny z Matematyki 1 lipca 2011 r.

Egzamin wstępny z Matematyki 1 lipca 2011 r. Egzamin wstępny z Matematyki 1 lipca 011 r. 1. Mamy 6 elementów. Ile jest możliwych permutacji tych elementów jeśli: a) wszystkie elementy są różne, b) dwa elementy wśród nich są identyczne, a wszystkie

Bardziej szczegółowo

KURS CAŁKI WIELOKROTNE

KURS CAŁKI WIELOKROTNE KURS CAŁKI WIELOKROTNE Lekcja Całki potójne ZADANIE DOMOWE www.etapez.pl Stona 1 Częśd 1: TEST Zaznacz popawną odpowiedź (tylko jedna jest pawdziwa). Pytanie 1 Obszaem całkowania w całce potójnej jest:

Bardziej szczegółowo

Czas pracy: 170 minut. Liczba punktów do uzyskania: 50. UZUPEŁNIA UCZEŃ miejsce KOD UCZNIA PESEL na naklejkę z kodem UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

Czas pracy: 170 minut. Liczba punktów do uzyskania: 50. UZUPEŁNIA UCZEŃ miejsce KOD UCZNIA PESEL na naklejkę z kodem UZUPEŁNIA ZESPÓŁ NADZORUJĄCY Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 UZUPEŁNIA UCZEŃ miejsce KOD UCZNIA PESEL na naklejkę z kodem UZUPEŁNIA ZESPÓŁ NADZORUJĄCY EGZAMIN MATURALNY

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski ykład 5: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Enegia a paca Enegia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele

Bardziej szczegółowo

BRYŁA SZTYWNA. Umowy. Aby uprościć rozważania w tym dziale będziemy przyjmować następujące umowy:

BRYŁA SZTYWNA. Umowy. Aby uprościć rozważania w tym dziale będziemy przyjmować następujące umowy: Niektóe powody aby poznać ten dział: BRYŁA SZTYWNA stanowi dobe uzupełnienie mechaniki punktu mateialnego, opisuje wiele sytuacji z życia codziennego, ma wiele powiązań z innymi działami fizyki (temodynamika,

Bardziej szczegółowo

Przykładowy zestaw zadań nr 1 z matematyki Odpowiedzi i schemat punktowania poziom podstawowy ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 1

Przykładowy zestaw zadań nr 1 z matematyki Odpowiedzi i schemat punktowania poziom podstawowy ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 1 Nr zadania Nr czynności. Przykładowy zestaw zadań nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR Etapy rozwiązania zadania POZIOM PODSTAWOWY Obliczenie wyróżnika oraz pierwiastków trójmianu

Bardziej szczegółowo

Szkice rozwiązań zadań z arkuszy maturalnych zamieszczonych w 47. numerze Świata Matematyki, który można nabyć w sklepie na

Szkice rozwiązań zadań z arkuszy maturalnych zamieszczonych w 47. numerze Świata Matematyki, który można nabyć w sklepie na Szkice rozwiązań zadań z arkuszy maturalnych zamieszczonych w 47. numerze Świata Matematyki, który można nabyć w sklepie na www.swiatmatematyki.pl 1. Wypiszmy początkowe potęgi liczby Zestaw podstawowy

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 1 POZIOM PODSTAWOWY

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 1 POZIOM PODSTAWOWY Nr zadania Przykładowy zestaw zadań nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM PODSTAWOWY Nr Etapy rozwiązania zadania czynności Obliczenie wyróżnika oraz pierwiastków trójmianu

Bardziej szczegółowo

θ = s r, gdzie s oznacza długość łuku okręgu o promieniu r odpowiadającą kątowi 2. Rys Obrót ciała wokół osi z

θ = s r, gdzie s oznacza długość łuku okręgu o promieniu r odpowiadającą kątowi 2. Rys Obrót ciała wokół osi z IX. OBROTY 9.1. Zmienne obotowe W celu opisania uchu obotowego ciała wokół ustalonej osi (zwanej osią obotu) należy wybać linię postopadłą do osi obotu, któa jest związana z ciałem i któa obaca się waz

Bardziej szczegółowo

Badania nad kształtowaniem się wartości współczynnika podatności podłoża dla celów obliczeń statycznych obudowy tuneli

Badania nad kształtowaniem się wartości współczynnika podatności podłoża dla celów obliczeń statycznych obudowy tuneli AKADEMIA GÓRNICZO HUTNICZA im. Stanisława Staszica WYDZIAŁ GÓRNICTWA I GEOINŻYNIERII KATEDRA GEOMECHANIKI, BUDOWNICTWA I GEOTECHNIKI Rozpawa doktoska Badania nad kształtowaniem się watości współczynnika

Bardziej szczegółowo

CAŁKI NIEOZNACZONE C R}.

CAŁKI NIEOZNACZONE C R}. CAŁKI NIEOZNACZONE Definicja 1 Funkcja F jest funkcją pierwotną funkcji f na przedziale I, jeżeli F (x) = f(x) dla każdego x I. Np. funkcjami pierwotnymi funkcji f(x) = sin x na R są cos x, cos x+1, cos

Bardziej szczegółowo

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k. Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy

Bardziej szczegółowo