PRZEMIANA ENERGII ELEKTRYCZNEJ W CIELE STAŁYM

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "PRZEMIANA ENERGII ELEKTRYCZNEJ W CIELE STAŁYM"

Transkrypt

1 PRZEMIANA ENERGII ELEKTRYCZNE W CIELE STAŁYM Anaizowane są skutki pzepływu pądu pzemiennego o natężeniu I pzez pzewodnik okągły o pomieniu. Pzyęto wstępne założenia upaszcząace: - kształt pądu est sinusoidany, - stuktua pzewodu est ita, - pzewód posiada ednakową tempeatuę. Pzykładowy pzewodnik o ezystywności :.4 6 (Kantha poddany est działaniu poa eektomagnetycznego w okeśonym pzedziae częstotiwości ω( f : π f. Badany mateiał est feomagnetykiem o zmienne pzenikaności magnetyczne µo: 4π 7, µ : µo. Ze wzgędu na małe natężenia poa magnetycznego pzenikaności te można pzypisać watość stałą odpowiadaącą pzenikaności powiezchniowe, co pozwaa powadzić dasze ozważania tak ak da mateiału ednoodnego. Poniże pzedstawiono anaityczny opis zawiska i wynikaace z niego chaakteystyki zmienności paametów impedanci odbionika akim est dut postoiniowy poddany działaniom óżnych sposobów zasiania. Związki te powinny ułatwić ocenę zachowań wspomnianego odbionika podczas wykonywanego ekspeymantu z pomiaem podstawowych wiekości eektycznych. Znaomość zawiska powinna ównież ułatwić panowanie i dobó watości zasiacza umożiwiaacych właściwą intepetacę otzymywanych wyników. Z uwagi na symetię osiową pzewodnika okągłego pzyęto układ współzędnych wacowych. W pzewodzie pokazanym na ysunku pąd płynie w kieunku z. Gęstość pądu γ E, k, E E k ( ma ten sam kieunek, a natężenie poa magnetycznego kieunek styczny do okęgu: I, ϕ π d ( Kozystaąc z piewszego ównania Maxwea (pawo pzepływu ot ( mamy d ( d Rys.. Wycinek pzewodu Podobnie dugie ównanie Maxwea (pawo indukci okągłego wiodącego pąd zapiszemy eektyczny de d µ (4 d d τ W ceu uzyskania zaeżności edne tyko zmienne wzgędem podstawiamy ównanie (4 do ( uwzgędniaąc ( d d d γ µ (5 d d dτ eśi pąd ma pzebieg sinusoidany to ównież natężenie poa magnetycznego est sinusoidanie zmienne, a zatem d d d ω czyi ω γ µ (6 dτ d d

2 Równanie (6 waz z waunkami bzegowymi I π da na powiezchni pzewodnika, (7 s da w osi pzewodnika można ozwiązać anaitycznie kozystaąc z szeegów funkci cyindycznych, funkci Bessea z agumentem zespoonym ub numeycznie zastępuąc pochodne óżnicami skończonymi. Dopieo na podstawie ozkładu natężenia poa magnetycznego można okeśić ozkład gęstości pądu z ównania (. Rozkład ten związany est ściśe z natężeniem poa eektycznego E i ednostkową czynną moc obętościową pv decyduącą o statach enegii pzenoszone wzdłuż tego pzewodnika. Staty dodatkowe wyznacza ednostkowa biena moc obętościowa qv µ ω. Uwzgędniaąc w ównaniu (6 głębokość wnikania fai eektomagnetyczne ako µ ω ozwiązanie ozkładu natężenia poa magnetycznego można zapisać w postaci ( (8 a ozkład gęstości pądów wynosi ( (9 Impedancę wewnętzną odcinka pzewodu o długości obiczamy z zaeżności: E I X R I Z ( ( Posiłkuąc się współzędną wzgędną impedanca ta wynosi: π I Z ( a odniesiona do ezystanci pądu stałego π Z ( wyznacza współczynniki kształtu pzewodu cyindycznego be be be k ( be be be kx (4 okeśaące wzost opoów ezystancynych i eaktancynych kx k R Z (5

3 ( be ( ( ( be ( be kx Z R ( k kx Ogónie ezystanca pzewodu o ednostkowe długości zaeżna est od pomienia : R Funkce Bessea zeowego odzau oaz ich pochodne da agumentu zespoonego: a głebokość wnikania fai od częstotiwości i pzenikaności magnetyczne, pzymuąc stałą ezystywność ( f, :. Stąd, f (, :. ω( f µ f, ; π : są szeegami da małych i zaeżnościami tygonometycznymi da dużych agumentów. Pzymuąc kk: wyazów szeegu oaz pomocnicze fomuły, f, p, f, : sin( p(, f, a c, f, sin( p(, f, a c, f, ap, f, wyznaczono watości tych funkci: (, f, : if (, f, kk k A, f, 8, f, ( 4k ( k.5, f, ( k! exp p, f, ( : A, f, π a: 8 ( c(, f, c(, f, π, f, ap(, f, sin ( p (, f, a c, f, ap(, f, sin ( p (, f, a c4, f, a: a a5: ( 4 k 5a kk ( k.5, f, if < (, f, < k ( k! ( c( f c4( f A, f,,,,, othewise (,, : sin( p(, f, a5 sin( p(, f, a d f d, f, (,, : ap(, f, sin ( p (, f, a ap(, f, sin ( p (, f, a d f d4, f,, f, (,, : Re( (, f, Re( (, f, be f b, f, if, f, kk k A, f, ( 4 k.5, f, kk k.5, f, ( k if < (, f, < ( k ( k! k ( k ( k! ( d(, f, d(, f, (,, : Im( (, f, Im( (, f, f bi, f, ( 4 k ( d( f d4( f A, f,,,,, othewise Do anaizy i pezentaci chaakteystyk enegetycznych i impedancynych pewodu cyindycznego zakłożono zakesy zmienności: pomienia, częstotiwości i pzenikaności magnetyczne f : 5,.. :., :,.. 5 oaz okeśaąc ezystancę odpowiadaącą pądowi stałemu, któa zaeżna est edynie od pomienia pzewodu

4 R(. - składowe ezystancyne:, f, be(, f, bi (, f, k, f, :, f, kx, f, : wyznaczono współczynniki kształtu pzewodu cyindycznego - składowe eaktancyne: b (, f, be, f, b, f, b, f, bi(, f, b, f, (, f, bi (, f,, f, bi(, f, Iustacą współczynników kształtu pzewodu cyindycznego są poniższe wykesy k(,, 5 kx(,, 5 k(.5, f, kx(.5, f, f Znaąc współczynniki kształtu istniee możiwość szybkiego oszacowania impedanci R( ( k(, f, kx(, f, Z, f, Z(, f, ZM, f, oaz e składowych Re( Z(, f, R, f, Im( Z(, f, XL, f,.6.5 R(,, 5.4 R(.5, f, 5 XL(,, 5 XL(.5, f, 5 ZM(,, 5. ZM(.5, f, f 4

5 .6.5 R(.5,,.4 R(.5, f, 5 XL(.5,, XL(.5, f, 5 ZM(.5,,. ZM(.5, f, p(.5, f, 5 Otzymane zastępcze paamety pzewodu eektycznego są pawidłowe edynie da mateiałów niemagnetycznych. Natomiast da mateiałów magnetycznych, w tym feomagnetycznych mogą stanowić tyko piewsze pzybiżenie. Kontynuuąc pzykładowe obiczenia naeży wybać odza wymuszenia: napięciowe ub pądowe. Napięciowe odpowiada gupie pzypadków nagzewania bezpośedniego, a pądowe może być pzymowane pzy pzesye enegii eektyczne. Ze wzgędu na to, że w ozwiązaniu ze źódłem napięciowym zawate est ozwiązanie ze źódłem padowym do ozważań zostanie pzyęte to piewsze. Zakładaąc napięcie o pzebiegu sinusoidanym i watości skuteczne U: V okeśono pąd U I, f, któy powodue okeśony pzepływ daący zewnętzne natężenie poa magnetycznego I, f,, f, : Z kzywe magnesowania można wyóznić związek µf( i apoksymować go następuącą funkcą wykładniczą o współczynnikach m:.4i m: 4.7 m µf, f, ZM, f, π ( m n ( (, f, µf(.5, 5, 5 µf(.5,, µf(.5,, Poównanie tożsamościowe pzenikaności µf z, np.: µf (.5, 5, µf (.5,, 7 7. µf (.5,, umożiwia wyznaczyć pzenikaność magnetyczną, któe watości osną waz z częstotiwością powoduącą maenie pądu. 5

6 787 7 I(.5, 5, I(.5, 5, 5 I(.5,, I(.5,, 8.97 I(.5,, I(.5,, 7 5 Pzecinaące się inie na wykesie If( ustaaą punkty wyznaczaące pądy w pzewodzie zasianym napieciem o óżne częstotiwości. Da tych watości wnoszone impedance wynoszą: Z(.5, 5, i Z(.5,, Moc czynna wytwazana w pzewodzie wynosi także maee - zupełnie inacze ak pzy zasianiu pądowym. Ciekawe są nie tyko zmiany mocy całkowite ecz ównież ednostkowe mocy obętościowe decyduące o szybkości nagzewania się pzewodu. Śednia e watość wynosi Pzedstawmy powyższe zaeżności od zmian - pomienia pzewodu 5 5 P(.5, 5, P(.5,, P(.5,, P, f, pv, f, : π I(, f, R(, f, P, f, P(, 5, pv(, 5, P(,, 7 P(,, 8 4 pv(,, 7 pv(,,

7 - pzenikaności magnetyczne P(.5, 5, P(.5,, P(.5,, pv(.5, 5, pv(.5,, 4. 6 pv(.5,, i częstotiwości P(.5, f, 787 P(.5, f, 7 P(.5, f, pv(.5, f, 787 pv(.5, f, pv(.5, f, f f Wzost każdego z wyże wymienionych paametów powodue zmnieszanie się uśednionych źódeł ciepła, co powadzi do wonieszych pzyostów tempeatu pzewodu. I nawet w pzypadku osnącego pomienia, gdy zwiększa się moc całkowita, obsewowane est spowonione nagzewania pzewodu. A. Ce ćwiczenia - Zwócenie uwagi na aspekty poznawcze pzetwazania enegii eektyczne w ciepną w ciee stałym, - Pzypomnienie ównań matematycznych opisuących enegetyczne właściwości tanspotu enegii eektyczne w uposzczonych stuktuach pzewodów cyindycznych, - Pzedstawienie zmian paametów zastępczych pzewodnika na pzykładzie dutu opoowego, - Wykonanie seii pomiaów ekspeymentanych - Dokonanie obiczeń uzupełniaących - wyznaczenie współczynników kształtu pzewodu, - Poównanie wyników doświadczanych z teoetycznymi. 7

8 B. Badania Podstawowe badania powadzone będą na stanowisku aboatoynym wyposażonym w: - Geneato mocy o sinusoidanym pzebiegu napięcia o eguowane ampitudzie do 4 V i częstotiwości w zakesie do kz. Geneato ten stanowiący źódło mocy może być obciążany do kikunastu ampeów. - Odbionik enegii zestawianego z postych pętów pzewodu opoowego o óżnych śednicach. - Układ pomiaowy złożony z haotonowego pzekładnika pądowego i sondy napięciowe oaz częstotiwościomieza. - Układ pzetwazaący pacuący w opaciu o mnożakę eektoniczną, któy z miezonych dwóch anaogowych pzebiegów pądu i napięcia wyznacza śednią moc czynną oaz watości skuteczne napięć i pądów. - Układ eestuący notuący unomowane (z pzełączaniem zakesów wspomniane wiekości pzy pomocy katy pomiaowe i pogamu obsługuącego. Składowe stanowiska pomiaowego pzedstawiono na ysunku. LEM geneato f va, U va częstotiwościomiez R i R R p z e w ód fit donopz. * mnożaka P >,, 4, 8 >,, 4, 8 P kata pomiaowa eestato Rys.. Układ zasiaący i kontono-pomiaowy do zbieania i eestowania zastępczych danych o pzebiegach eektycznych. Po pzygotowaniu stanowiska aboatoynego do pacy dokonać dwóch seii pomiaów pądów, napięć i mocy czynne da wymuszenia: - napięciowego, - pądowego pzy zmienne częstotiwości. Skozystać z zaeestowanych w tabicy i zbioze tekstowym pomiaów oaz wstępnych obiczeń niezbędnych do wyznaczenia opoów i współczynników kształtu, któe to ezutaty zamieścić w tabicy według wzou. 8

9 Tabica : Wiekości miezone i obiczone w zbioze tekstowym eestatoa komputeowego. dana pomiay obiczenia f zakes I P P U cos φ S Q z I / U A W W V - VA VA Tabica : Obiczenia opoów i współczynników kształtu pzewodu. f R X Z k kx z Ω Ω Ω - - Podczas nastawiania watości wymuszaących dokonać obsewaci pzebiegów padu i napięcia na oscyoskopie. Na podstawie któych oszacować watości ampitudowe oaz kąt pzesunięcia fazowego. Po badaniach częstotiwościowych wykonać koeną seię pomiaów pzy stałe częstotiwości (da któe współczynnik mocy est zędu,85 zmieniaąc moc dopowadzaną od namniesze do watości odpowiadaace pądowi mnieszemu od A. Da te gupy pomiaów dokonać anaogicznych obiczeń ak w pzypadkach popzednich. C. Opacowanie wyników C. Pzedstawić na wykesach współczynniki kształtu pzewodu w funkci częstotiwości pzy wymuszeniu napięciowym oaz pądowym. C. Okeśić zdoność do nagzewania się pzewodu pzy óżnych wymuszeniach. C. Wyznaczyć współczynnik mocy pzetwonika enegii eektyczne pzy stałe częstotiwości i osnące mocy. C4. Dokonać anaizy teoetyczne maące na ceu ustaenie wpływu watości pzetwazane enegii eektyczne na chaakte odbionika akim est pzewód postoiniowy feomagnetyczny. C5. Opacować wnioski i uwagi do ćwiczenia. 9

MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH

MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH Politechnika Białostocka Wydział Elektyczny Kateda Elektotechniki Teoetycznej i Metologii nstukcja do zajęć laboatoyjnych z pzedmiotu MENCTWO WEKOŚC EEKTYCZNYCH NEEEKTYCZNYCH Kod pzedmiotu: ENSC554 Ćwiczenie

Bardziej szczegółowo

Wykład 17. 13 Półprzewodniki

Wykład 17. 13 Półprzewodniki Wykład 17 13 Półpzewodniki 13.1 Rodzaje półpzewodników 13.2 Złącze typu n-p 14 Pole magnetyczne 14.1 Podstawowe infomacje doświadczalne 14.2 Pąd elektyczny jako źódło pola magnetycznego Reinhad Kulessa

Bardziej szczegółowo

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POITEHNIKI KRAKOWSKIEJ Instytut Fizyki ABORATORIUM PODSTAW EEKTROTEHNIKI, EEKTRONIKI I MIERNITWA ĆWIZENIE 7 Pojemność złącza p-n POJĘIA I MODEE potzebne do zozumienia

Bardziej szczegółowo

29 Rozpraszanie na potencjale sferycznie symetrycznym - fale kuliste

29 Rozpraszanie na potencjale sferycznie symetrycznym - fale kuliste 9 Rozpaszanie na potencjae sfeycznie symetycznym - fae kuiste W ozdziae tym zajmiemy się ozpaszaniem na potencjae sfeycznie symettycznym V ). Da uchu o dodatniej enegii E = k /m adiane ównanie Schödingea

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA

INSTRUKCJA DO ĆWICZENIA NSTRKJA DO ĆWZENA Temat: Rezonans w obwodach elektycznych el ćwiczenia elem ćwiczenia jest doświadczalne spawdzenie podstawowych właściwości szeegowych i ównoległych ezonansowych obwodów elektycznych.

Bardziej szczegółowo

PRACA MOC ENERGIA. Z uwagi na to, że praca jest iloczynem skalarnym jej wartość zależy również od kąta pomiędzy siłą F a przemieszczeniem r

PRACA MOC ENERGIA. Z uwagi na to, że praca jest iloczynem skalarnym jej wartość zależy również od kąta pomiędzy siłą F a przemieszczeniem r PRACA MOC ENERGIA Paca Pojęcie pacy używane jest zaówno w fizyce (w sposób ścisły) jak i w życiu codziennym (w sposób potoczny), jednak obie te definicje nie pokywają się Paca w sensie potocznym to każda

Bardziej szczegółowo

Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne

Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne Rozdział 5 Pole magnetyczne 5.1 Oddziaływanie pola magnetycznego na ładunki i pzewodniki z pądem 5.1.1 Podstawowe zjawiska magnetyczne W obecnym ozdziale ozpatzymy niektóe zagadnienia magnetostatyki. Magnetostatyką

Bardziej szczegółowo

II.6. Wahadło proste.

II.6. Wahadło proste. II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia

Bardziej szczegółowo

Zależność natężenia oświetlenia od odległości

Zależność natężenia oświetlenia od odległości Zależność natężenia oświetlenia CELE Badanie zależności natężenia oświetlenia powiezchni wytwazanego pzez żaówkę od niej. Uzyskane dane są analizowane w kategoiach paw fotometii (tzw. pawa odwotnych kwadatów

Bardziej szczegółowo

Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym

Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym 1.Wpowadzenie Wyznaczanie pofilu pędkości płynu w uociągu o pzekoju kołowym Dla ustalonego, jednokieunkowego i uwastwionego pzepływu pzez uę o pzekoju kołowym ównanie Naviea-Stokesa upaszcza się do postaci

Bardziej szczegółowo

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony Modele odpowiedzi do akusza Póbnej Matuy z OPERONEM Matematyka Poziom ozszezony Listopad 00 W kluczu są pezentowane pzykładowe pawidłowe odpowiedzi. Należy ównież uznać odpowiedzi ucznia, jeśli są inaczej

Bardziej szczegółowo

Laboratorium Półprzewodniki, Dielektryki i Magnetyki Ćwiczenie nr 10 Pomiary czasu życia nośników w półprzewodnikach

Laboratorium Półprzewodniki, Dielektryki i Magnetyki Ćwiczenie nr 10 Pomiary czasu życia nośników w półprzewodnikach Laboaoium Półpzewodniki, Dielekyki i Magneyki Ćwiczenie n 10 Pomiay czasu życia nośników w półpzewodnikach I. Zagadnienia do pzygoowania: 1. Pojęcia: nośniki mniejszościowe i większościowe, ównowagowe

Bardziej szczegółowo

A. POMIARY FOTOMETRYCZNE Z WYKORZYSTANIEM FOTOOGNIWA SELENOWEGO

A. POMIARY FOTOMETRYCZNE Z WYKORZYSTANIEM FOTOOGNIWA SELENOWEGO 10.X.010 ĆWCZENE NR 70 A. POMARY FOTOMETRYCZNE Z WYKORZYSTANEM FOTOOGNWA SELENOWEGO. Zestaw pzyządów 1. Ogniwo selenowe.. Źódło światła w obudowie 3. Zasilacz o wydajności pądowej min. 5A 4. Ampeomiez

Bardziej szczegółowo

MONITORING STACJI FOTOWOLTAICZNYCH W ŚWIETLE NORM EUROPEJSKICH

MONITORING STACJI FOTOWOLTAICZNYCH W ŚWIETLE NORM EUROPEJSKICH 51 Aleksande Zaemba *, Tadeusz Rodziewicz **, Bogdan Gaca ** i Maia Wacławek ** * Kateda Elektotechniki Politechnika Częstochowska al. Amii Kajowej 17, 42-200 Częstochowa e-mail: zaemba@el.pcz.czest.pl

Bardziej szczegółowo

OBWODY PRĄDU SINUSOIDALNEGO

OBWODY PRĄDU SINUSOIDALNEGO aboatoium Elektotechniki i elektoniki Temat ćwiczenia: BOTOM 06 OBODY ĄD SSODEGO omiay pądu, napięcia i mocy, wyznaczenie paametów modeli zastępczych cewki indukcyjnej, kondensatoa oaz oponika, chaakteystyki

Bardziej szczegółowo

11. DYNAMIKA RUCHU DRGAJĄCEGO

11. DYNAMIKA RUCHU DRGAJĄCEGO 11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie

Bardziej szczegółowo

MECHANIKA BUDOWLI 12

MECHANIKA BUDOWLI 12 Olga Koacz, Kzysztof Kawczyk, Ada Łodygowski, Michał Płotkowiak, Agnieszka Świtek, Kzysztof Tye Konsultace naukowe: of. d hab. JERZY RAKOWSKI Poznań /3 MECHANIKA BUDOWLI. DRGANIA WYMUSZONE, NIETŁUMIONE

Bardziej szczegółowo

Ocena siły oddziaływania procesów objaśniających dla modeli przestrzennych

Ocena siły oddziaływania procesów objaśniających dla modeli przestrzennych Michał Benad Pietzak * Ocena siły oddziaływania pocesów objaśniających dla modeli pzestzennych Wstęp Ekonomiczne analizy pzestzenne są ważnym kieunkiem ozwoju ekonometii pzestzennej Wynika to z faktu,

Bardziej szczegółowo

Model klasyczny gospodarki otwartej

Model klasyczny gospodarki otwartej Model klasyczny gospodaki otwatej Do tej poy ozpatywaliśmy model sztucznie zakładający, iż gospodaka danego kaju jest gospodaką zamkniętą. A zatem bak było międzynaodowych pzepływów dób i kapitału. Jeżeli

Bardziej szczegółowo

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Teat ćwiczenia: ZASTOSOWANIE RACHUNKU WYRÓWNAWCZEGO

Bardziej szczegółowo

LINIA PRZESYŁOWA PRĄDU STAŁEGO

LINIA PRZESYŁOWA PRĄDU STAŁEGO oitechnia Białostoca Wydział Eetyczny Kateda Eetotechnii Teoetycznej i Metoogii nstucja do zajęć aboatoyjnych Tytuł ćwiczenia LNA RZEYŁOWA RĄD TAŁEGO Nume ćwiczenia E Auto: mg inŝ. Łuasz Zaniewsi Białysto

Bardziej szczegółowo

ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI.

ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI. Modelowanie pzepływu cieczy pzez ośodki poowate Wykład VII ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI. 7. Pzepływ pzez goblę z uwzględnieniem zasilania wodami infiltacyjnymi.

Bardziej szczegółowo

Ćwiczenie 9 ZASTOSOWANIE ŻYROSKOPÓW W NAWIGACJI

Ćwiczenie 9 ZASTOSOWANIE ŻYROSKOPÓW W NAWIGACJI 9.1. Cel ćwiczenia Ćwiczenie 9 ZASTSWANIE ŻYRSKPÓW W NAWIGACJI Celem ćwiczenia jest pezentacja paktycznego wykozystania efektu żyoskopowego w lotniczych pzyządach nawigacyjnych. 9.2. Wpowadzenie Żyoskopy

Bardziej szczegółowo

PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA

PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA PĄD LKTYCZNY SŁA MAGNTYCZNA Na ładunek, opócz siły elektostatycznej, działa ównież siła magnetyczna popocjonalna do pędkości ładunku v. Pzekonamy się, że siła działająca na magnes to siła działająca na

Bardziej szczegółowo

ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ.

ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. STRESZCZENIE Na bazie fizyki klasycznej znaleziono nośnik ładunku gawitacyjnego, uzyskano jedność wszystkich odzajów pól ( elektycznych,

Bardziej szczegółowo

METEMATYCZNY MODEL OCENY

METEMATYCZNY MODEL OCENY I N S T Y T U T A N A L I Z R E I O N A L N Y C H w K i e l c a c h METEMATYCZNY MODEL OCENY EFEKTYNOŚCI NAUCZNIA NA SZCZEBLU IMNAZJALNYM I ODSTAOYM METODĄ STANDARYZACJI YNIKÓ OÓLNYCH Auto: D Bogdan Stępień

Bardziej szczegółowo

Modelowanie przepływu cieczy przez ośrodki porowate Wykład III

Modelowanie przepływu cieczy przez ośrodki porowate Wykład III Modelowanie pzepływu cieczy pzez ośodki poowate Wykład III 6 Ogólne zasady ozwiązywania ównań hydodynamicznego modelu pzepływu. Metody ozwiązania ównania Laplace a. Wpowadzenie wielkości potencjału pędkości

Bardziej szczegółowo

REZONATORY DIELEKTRYCZNE

REZONATORY DIELEKTRYCZNE REZONATORY DIELEKTRYCZNE Rezonato dielektyczny twozy małostatny, niemetalizowany dielektyk o dużej pzenikalności elektycznej ( > 0) i dobej stabilności tempeatuowej, zwykle w kształcie cylindycznych dysków

Bardziej szczegółowo

BADANIE SILNIKA WYKONAWCZEGO PRĄDU STAŁEGO

BADANIE SILNIKA WYKONAWCZEGO PRĄDU STAŁEGO LABORATORIUM ELEKTRONIKI I ELEKTROTECHNIKI BADANIE SILNIKA WYKONAWCZEGO PRĄDU STAŁEGO Opacował: d inŝ. Aleksande Patyk 1.Cel i zakes ćwiczenia. Celem ćwiczenia jest zapoznanie się z budową, właściwościami

Bardziej szczegółowo

Pracownia komputerowa

Pracownia komputerowa Stanisław Lampeski Ćwiczenia z chemii fizycznej Pacownia komputeowa Opis wykonania ćwiczeń WYDZIAŁ CHEMII UAM Poznań 009 Mateiały umieszczone na stonie: http://www.staff.amu.edu.pl/~slampe Spis teści Wstęp...

Bardziej szczegółowo

Wyznaczanie współczynnika sztywności drutu metodą dynamiczną.

Wyznaczanie współczynnika sztywności drutu metodą dynamiczną. Ćwiczenie M- Wyznaczanie współczynnika sztywności dutu metodą dynamiczną.. Ce ćwiczenia: pomia współczynnika sztywności da stai metodą dgań skętnych.. Pzyządy: dwa kążki metaowe, statyw, dut staowy, stope,

Bardziej szczegółowo

Badania nad kształtowaniem się wartości współczynnika podatności podłoża dla celów obliczeń statycznych obudowy tuneli

Badania nad kształtowaniem się wartości współczynnika podatności podłoża dla celów obliczeń statycznych obudowy tuneli AKADEMIA GÓRNICZO HUTNICZA im. Stanisława Staszica WYDZIAŁ GÓRNICTWA I GEOINŻYNIERII KATEDRA GEOMECHANIKI, BUDOWNICTWA I GEOTECHNIKI Rozpawa doktoska Badania nad kształtowaniem się watości współczynnika

Bardziej szczegółowo

Notatki z II semestru ćwiczeń z elektroniki, prowadzonych do wykładu dr. Pawła Grybosia.

Notatki z II semestru ćwiczeń z elektroniki, prowadzonych do wykładu dr. Pawła Grybosia. Notatki z II semestu ćwiczeń z elektoniki, powadzonych do wykładu d. Pawła Gybosia. Wojciech Antosiewicz Wydział Fizyki i Techniki Jądowej AGH al.mickiewicza 30 30-059 Kaków email: wojanton@wp.pl 2 listopada

Bardziej szczegółowo

1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym.

1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym. Wykład 3. Zasada zachowania momentu pędu. Dynamika punktu mateialnego i były sztywnej. Ruch obotowy i postępowy Większość ciał w pzyodzie to nie punkty mateialne ale ozciągłe ciała sztywne tj. obiekty,

Bardziej szczegółowo

Jak policzyć pole magnetyczne? Istnieją dwie metody wyznaczenia pola magnetycznego: prawo Biot Savarta i prawo Ampera.

Jak policzyć pole magnetyczne? Istnieją dwie metody wyznaczenia pola magnetycznego: prawo Biot Savarta i prawo Ampera. Elektyczność i magnetyzm. Równania Maxwella Wyznaczenie pola magnetycznego Jak policzyć pole magnetyczne? Istnieją dwie metody wyznaczenia pola magnetycznego: pawo iot Savata i pawo mpea. Pawo iota Savata

Bardziej szczegółowo

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii.

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii. Wykład: paca siły, pojęcie enegii potencjalnej. Zasada zachowania enegii. Uwaga: Obazki w tym steszczeniu znajdują się stonie www: http://www.whfeeman.com/tiple/content /instucto/inde.htm Pytanie: Co to

Bardziej szczegółowo

POLITECHNIKA OPOLSKA Wydział Elektrotechniki i Automatyki

POLITECHNIKA OPOLSKA Wydział Elektrotechniki i Automatyki POLITECHNIKA OPOLSKA Wydział Elektotechniki i Automatyki Mg inż. Michał Tomaszewski MODEL PRZEDSIĘBIORSTWA DYSTRYBUCYJNEGO DZIAŁAJĄCEGO NA OTWARTYM RYNKU ENERGII ELEKTRYCZNEJ Autoefeat pacy doktoskiej

Bardziej szczegółowo

m q κ (11.1) q ω (11.2) ω =,

m q κ (11.1) q ω (11.2) ω =, OPIS RUCHU, DRGANIA WŁASNE TŁUMIONE Oga Kopacz, Adam Łodygowski, Kzysztof Tymbe, Michał Płotkowiak, Wojciech Pawłowski Konsutacje naukowe: pof. d hab. Jezy Rakowski Poznań 00/00.. Opis uchu OPIS RUCHU

Bardziej szczegółowo

POLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął

POLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął POLE MAGNETYCZNE W PÓŻNI W oku 8 Oested zaobsewował oddziaływanie pzewodnika, w któym płynął pąd, na igłę magnetyczną Dopowadziło to do wniosku, że pądy elektyczne są pzyczyną powstania pola magnetycznego

Bardziej szczegółowo

4πε0ε w. q dl. a) V m 2

4πε0ε w. q dl. a) V m 2 Rozwiązania są moje, Batka i jeszcze te któe znaazłem w A. Niestety nie mogę zagwaantować, że są popawne :( Jeżei twoje opowiezi óżnią się o tych, to napisz o mnie (najepiej z wyjaśnienie ską bieze się

Bardziej szczegółowo

Siła. Zasady dynamiki

Siła. Zasady dynamiki Siła. Zasady dynaiki Siła jest wielkością wektoową. Posiada okeśloną watość, kieunek i zwot. Jednostką siły jest niuton (N). 1N=1 k s 2 Pzedstawienie aficzne A Siła pzyłożona jest do ciała w punkcie A,

Bardziej szczegółowo

Ruch obrotowy. Wykład 6. Wrocław University of Technology

Ruch obrotowy. Wykład 6. Wrocław University of Technology Wykład 6 Wocław Univesity of Technology Oboty - definicje Ciało sztywne to ciało któe obaca się w taki sposób, że wszystkie jego części są związane ze sobą dzięki czemu kształt ciała nie ulega zmianie.

Bardziej szczegółowo

Atom (cząsteczka niepolarna) w polu elektrycznym

Atom (cząsteczka niepolarna) w polu elektrycznym Dieektyki Dieektyki substancje, w któych nie występują swobodne nośniki ładunku eektycznego (izoatoy). Może być w nich wytwozone i utzymane bez stat enegii poe eektyczne. dieektyk Faaday Wpowadzenie do

Bardziej szczegółowo

Elementarne przepływy potencjalne (ciąg dalszy)

Elementarne przepływy potencjalne (ciąg dalszy) J. Szanty Wykład n 4 Pzepływy potencjalne Aby wytwozyć w pzepływie potencjalnym siły hydodynamiczne na opływanych ciałach konieczne jest zyskanie pzepływ asymetycznego.jest to możliwe pzy wykozystani kolejnego

Bardziej szczegółowo

ANALIZA DANYCH W STATA 8.0

ANALIZA DANYCH W STATA 8.0 ANALIZA DANYCH W STATA 8.0 ZAJĘCIA 3 1. Rozpoczęcie 1. Stwozyć w katalogu C:/temp katalog stata_3 2. Ściągnąć z intenetu ze stony http://akson.sgh.waw.pl/~mpoch plik zajecia3.zip (kyje się on pod tekstem

Bardziej szczegółowo

Metody optymalizacji. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metody optymalizacji. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metody optymalizacji d inż. Paweł Zalewski kademia Moska w Szczecinie Optymalizacja - definicje: Zadaniem optymalizacji jest wyznaczenie spośód dopuszczalnych ozwiązań danego polemu ozwiązania najlepszego

Bardziej szczegółowo

KOMPUTEROWO WSPOMAGANA ANALIZA KINEMATYKI MECHANIZMU DŹWIGNIOWEGO

KOMPUTEROWO WSPOMAGANA ANALIZA KINEMATYKI MECHANIZMU DŹWIGNIOWEGO XIX Międzynaodowa Szkoła Komputeowego Wspomagania Pojektowania, Wytwazania i Eksploatacji D hab. inż. Józef DREWNIAK, pof. ATH Paulina GARLICKA Akademia Techniczno-Humanistyczna w Bielsku-Białej DOI: 10.17814/mechanik.2015.7.226

Bardziej szczegółowo

LABORATORIUM WIBROAKUSTYKI MASZYN. Wydział Budowy Maszyn i Zarządzania Instytut Mechaniki Stosowanej Zakład Wibroakustyki i Bio-Dynamiki Systemów

LABORATORIUM WIBROAKUSTYKI MASZYN. Wydział Budowy Maszyn i Zarządzania Instytut Mechaniki Stosowanej Zakład Wibroakustyki i Bio-Dynamiki Systemów LABORAORIUM WIBROAKUSYKI MASZYN Wydział Budowy Maszyn i Zaządzania Instytut Mechaniki Stosowanej Zakład Wiboakustyki i Bio-Dynamiki Systemów Ćwiczenie n WYZNACZANIE PARAMERÓW DYNAMICZNYCH UKŁADÓW metodą

Bardziej szczegółowo

AKADEMIA INWESTORA INDYWIDUALNEGO CZĘŚĆ II. AKCJE.

AKADEMIA INWESTORA INDYWIDUALNEGO CZĘŚĆ II. AKCJE. uma Pzedsiębiocy /6 Lipiec 205. AKAEMIA INWESTORA INYWIUALNEGO CZĘŚĆ II. AKCJE. WYCENA AKCJI Wycena akcji jest elementem analizy fundamentalnej akcji. Następuje po analizie egionu, gospodaki i banży, w

Bardziej szczegółowo

KOLOKACJA SYSTEMÓW BEZPRZEWODOWYCH NA OBIEKTACH MOBILNYCH

KOLOKACJA SYSTEMÓW BEZPRZEWODOWYCH NA OBIEKTACH MOBILNYCH KOLOKACJA SYSTEMÓW BEZPRZEWODOWYCH NA OBIEKTACH MOBILNYCH Janusz ROMANIK, Kzysztof KOSMOWSKI, Edwad GOLAN, Adam KRAŚNIEWSKI Zakład Radiokomunikacji i Walki Elektonicznej Wojskowy Instytut Łączności 05-30

Bardziej szczegółowo

ι umieszczono ladunek q < 0, który może sie ι swobodnie poruszać. Czy środek okregu ι jest dla tego ladunku po lożeniem równowagi trwa lej?

ι umieszczono ladunek q < 0, który może sie ι swobodnie poruszać. Czy środek okregu ι jest dla tego ladunku po lożeniem równowagi trwa lej? ozwiazania zadań z zestawu n 7 Zadanie Okag o pomieniu jest na ladowany ze sta l a gestości a liniowa λ > 0 W śodku okegu umieszczono ladunek q < 0, któy może sie swobodnie pouszać Czy śodek okegu jest

Bardziej szczegółowo

Energia kinetyczna i praca. Energia potencjalna

Energia kinetyczna i praca. Energia potencjalna negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut

Bardziej szczegółowo

23 PRĄD STAŁY. CZĘŚĆ 2

23 PRĄD STAŁY. CZĘŚĆ 2 Włodzimiez Wolczyński 23 PĄD STAŁY. CZĘŚĆ 2 zadanie 1 Tzy jednakowe oponiki, każdy o opoze =30 Ω i opó =60 Ω połączono ze źódłem pądu o napięciu 15 V, jak na ysunku obok. O ile zwiększy się natężenie pądu

Bardziej szczegółowo

Podstawowe konstrukcje tranzystorów bipolarnych

Podstawowe konstrukcje tranzystorów bipolarnych Tanzystoy Podstawowe konstukcje tanzystoów bipolanych Zjawiska fizyczne występujące w tanzystoach bipolanych, a w związku z tym właściwości elektyczne tych tanzystoów, zaleŝą od ich konstukcji i technologii

Bardziej szczegółowo

WYZNACZANIE SIŁ MIĘŚNIOWYCH I REAKCJI W STAWACH KOŃCZYNY DOLNEJ PODCZAS NASKOKU I ODBICIA

WYZNACZANIE SIŁ MIĘŚNIOWYCH I REAKCJI W STAWACH KOŃCZYNY DOLNEJ PODCZAS NASKOKU I ODBICIA MODELOWANIE INŻYNIERSKIE ISSN 896-77X 44, s. 49-56, Gliwice 0 WYZNACZANIE SIŁ MIĘŚNIOWYCH I REAKCJI W SAWACH KOŃCZYNY DOLNEJ PODCZAS NASKOKU I ODBICIA KRZYSZO DRAPAŁA, KRZYSZO DZIEWIECKI, ZENON MAZUR,

Bardziej szczegółowo

Mechanika ogólna. Więzy z tarciem. Prawa tarcia statycznego Coulomba i Morena. Współczynnik tarcia. Tarcie statyczne i kinetyczne.

Mechanika ogólna. Więzy z tarciem. Prawa tarcia statycznego Coulomba i Morena. Współczynnik tarcia. Tarcie statyczne i kinetyczne. Więzy z tacie Mechanika oólna Wykład n Zjawisko tacia. awa tacia. awa tacia statyczneo Couloba i Moena Siła tacia jest zawsze pzeciwna do występująceo lub ewentualneo uchu. Wielkość siły tacia jest niezależna

Bardziej szczegółowo

cz. 1. dr inż. Zbigniew Szklarski

cz. 1. dr inż. Zbigniew Szklarski Wykład 10: Gawitacja cz. 1. d inż. Zbiniew Szklaski szkla@ah.edu.pl http://laye.uci.ah.edu.pl/z.szklaski/ Doa do pawa powszechneo ciążenia Ruch obitalny planet wokół Słońca jak i dlaczeo? Reulane, wieloletnie

Bardziej szczegółowo

MODELOWANIE USŁUG TRANSPORTOWYCH W OBSZARZE DZIAŁANIA CENTRUM LOGISTYCZNO-DYSTRYBUCYJNEGO

MODELOWANIE USŁUG TRANSPORTOWYCH W OBSZARZE DZIAŁANIA CENTRUM LOGISTYCZNO-DYSTRYBUCYJNEGO PACE NAUKOWE POLIECHNIKI WASZAWSKIEJ z. 64 anspot 2008 Jolanta ŻAK Wydział anspotu Politechniki Waszawskie Zakład Logistyki i Systemów anspotowych ul. Koszykowa 75, 00-662 Waszawa logika@it.pw.edu.pl MODELOWANIE

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony KRYTERIA OCENIANIA ODPOWIEDZI Póbna Matua z OPERONEM Matematyka Poziom ozszezony Listopad W niniejszym schemacie oceniania zadań otwatych są pezentowane pzykładowe popawne odpowiedzi. W tego typu ch należy

Bardziej szczegółowo

ANALIZA WPŁYWU KOŁA SWOBODNEGO

ANALIZA WPŁYWU KOŁA SWOBODNEGO POLITECHIKA OPOLSKA WYZIAŁ ELEKTROTECHIKI, AUTOMATYKI I IFORMATYKI MGR IŻ. TOMASZ PYKA AALIZA WPŁYWU KOŁA SWOBOEGO W ROBOCIE MOBILYM TRÓJKOŁOWYM A JAKOŚĆ STEROWAIA RUCHU ROBOTA PO TRAJEKTORII AUTOREFERAT

Bardziej szczegółowo

Rys. 1. Ilustracja modelu. Oddziaływanie grawitacyjne naszych ciał z masą centralną opisywać będą wektory r 1

Rys. 1. Ilustracja modelu. Oddziaływanie grawitacyjne naszych ciał z masą centralną opisywać będą wektory r 1 6 FOTON 6, Wiosna 0 uchy Księżyca Jezy Ginte Uniwesytet Waszawski Postawienie zagadnienia Kiedy uczy się o uchach ciał niebieskich na pozioie I klasy liceu, oawia się najczęściej najpiew uch Ziei i innych

Bardziej szczegółowo

FIZYKA 2. Janusz Andrzejewski

FIZYKA 2. Janusz Andrzejewski FIZYKA 2 wykład 4 Janusz Andzejewski Pole magnetyczne Janusz Andzejewski 2 Pole gawitacyjne γ Pole elektyczne E Definicja wektoa B = γ E = Indukcja magnetyczna pola B: F B F G m 0 F E q 0 qv B = siła Loentza

Bardziej szczegółowo

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO Wykład 8 lato 2015/16 1 Definicja wektoa indukcji pola magnetycznego F = q( v B) Jednostką indukcji pola B jest 1T (tesla) 1T=1N/Am Pole magnetyczne zakzywia

Bardziej szczegółowo

Temat ćwiczenia. Pomiary kół zębatych

Temat ćwiczenia. Pomiary kół zębatych POLITECHNIKA ŚLĄSKA W YDZIAŁ TRANSPORTU Temt ćwiczeni Pomiy kół zębtych I. Cel ćwiczeni Zpoznnie studentów z metodmi pomiu uzębień wlcowych kół zębtych o zębch postych oz pktyczny pomi koł. II. Widomości

Bardziej szczegółowo

Pole grawitacyjne. Definicje. Rodzaje pól. Rodzaje pól... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek.

Pole grawitacyjne. Definicje. Rodzaje pól. Rodzaje pól... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek. Pole gawitacyjne d inż. Ieneusz Owczaek CNMiF PŁ ieneusz.owczaek@p.lodz.pl http://cmf.p.lodz.pl/iowczaek 1 d inż. Ieneusz Owczaek Pole gawitacyjne Definicje to pzestzenny ozkład wielkości fizycznej. jest

Bardziej szczegółowo

Przygotowanie do Egzaminu Potwierdzającego Kwalifikacje Zawodowe

Przygotowanie do Egzaminu Potwierdzającego Kwalifikacje Zawodowe Pzygotowanie do Egzaminu Potwiedzającego Kwalifikacje Zawodowe Powtózenie mateiału Opacował: mg inż. Macin Wieczoek Jednostki podstawowe i uzupełniające układu SI. Jednostki podstawowe Wielkość fizyczna

Bardziej szczegółowo

Tradycyjne mierniki ryzyka

Tradycyjne mierniki ryzyka Tadycyjne mieniki yzyka Pzykład 1. Ryzyko w pzypadku potfela inwestycyjnego Dwie inwestycje mają następujące stopy zwotu, zależne od sytuacji gospodaczej: Sytuacja Pawdopodobieństwo R R Recesja 0, 9,0%

Bardziej szczegółowo

Na skutek takiego przemieszcznia ładunku, energia potencjalna układu pole-ładunek zmienia się o:

Na skutek takiego przemieszcznia ładunku, energia potencjalna układu pole-ładunek zmienia się o: E 0 Na ładunek 0 znajdujący się w polu elektycznym o natężeniu E działa siła elektostatyczna: F E 0 Paca na pzemieszczenie ładunku 0 o ds wykonana pzez pole elektyczne: dw Fds 0E ds Na skutek takiego pzemieszcznia

Bardziej szczegółowo

Źródła pola magnetycznego

Źródła pola magnetycznego Pole magnetyczne Źódła pola magnetycznego Cząstki elementane takie jak np. elektony posiadają własne pole magnetyczne, któe jest podstawową cechą tych cząstek tak jak q czy m. Pouszający się ładunek elektyczny

Bardziej szczegółowo

Ruch punktu materialnego

Ruch punktu materialnego WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA INNOWACYJNY PROGRAM NAUCZANIA FIZYKI W SZKOŁACH PONADGIMNAZJALNYCH Moduł dydaktyczny: fizyka - infomatyka Ruch punktu mateialnego Elżbieta Kawecka

Bardziej szczegółowo

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO POLE MAGNETYZNE ŹRÓDŁA POLA MAGNETYZNEGO Wykład lato 01 1 Definicja wektoa indukcji pola magnetycznego F = q( v B) Jednostką indukcji pola B jest 1T (tesla) 1T=1N/Am Pole magnetyczne zakzywia to uchu ładunku

Bardziej szczegółowo

ĆWICZENIE 5. Badanie przekaźnikowych układów sterowania

ĆWICZENIE 5. Badanie przekaźnikowych układów sterowania ĆWICZENIE 5 Badanie zekaźnikowych układów steowania 5. Cel ćwiczenia Celem ćwiczenia jest badanie zekaźnikowych układów steowania obiektem całkującoinecyjnym. Ćwiczenie dotyczy zekaźników dwu- i tójołożeniowych

Bardziej szczegółowo

- substancje zawierające swobodne nośniki ładunku elektrycznego:

- substancje zawierające swobodne nośniki ładunku elektrycznego: Pzewodniki - substancje zawieające swobodne nośniki ładunku elektycznego: elektony metale, jony wodne oztwoy elektolitów, elektony jony zjonizowany gaz (plazma) pzewodnictwo elektyczne metali pzewodnictwo

Bardziej szczegółowo

Guma Guma. Szkło Guma

Guma Guma. Szkło Guma 1 Ładunek elektyczny jest cechą mateii. Istnieją dwa odzaje ładunków, nazywane dodatnimi i ujemnymi. Ładunki jednoimienne się odpychają, podczas gdy ładunki óżnoimeinne się pzyciągają Guma Guma Szkło Guma

Bardziej szczegółowo

Modelowanie zmienności i dokładność oszacowania jakości węgla brunatnego w złożu Bełchatów (pole Bełchatów)

Modelowanie zmienności i dokładność oszacowania jakości węgla brunatnego w złożu Bełchatów (pole Bełchatów) Akademia Góniczo-Hutnicza, Kopalnia Węgla Bunatnego, Wydział Geologii, Geofizyki i Ochony śodowiska Bełchatów Wasztaty Gónicze 24 Jacek Mucha, Tadeusz Słomka, Wojciech Mastej, Tomasz Batuś Akademia Góniczo-Hutnicza,

Bardziej szczegółowo

Wartości wybranych przedsiębiorstw górniczych przy zastosowaniu EVA *

Wartości wybranych przedsiębiorstw górniczych przy zastosowaniu EVA * ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO n 786 Finanse, Rynki Finansowe, Ubezpieczenia n 64/1 (2013) s. 269 278 Watości wybanych pzedsiębiostw góniczych pzy zastosowaniu EVA * Adam Sojda ** Steszczenie:

Bardziej szczegółowo

ROZKŁAD NORMALNY. 2. Opis układu pomiarowego

ROZKŁAD NORMALNY. 2. Opis układu pomiarowego ROZKŁAD ORMALY 1. Opis teoetyczny do ćwiczenia zamieszczony jest na stonie www.wtc.wat.edu.pl w dziale DYDAKTYKA FIZYKA ĆWICZEIA LABORATORYJE (Wstęp do teoii pomiaów). 2. Opis układu pomiaowego Ćwiczenie

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony KRYTERIA OCENIANIA ODPOWIEDZI Póbna Matua z OPERONEM Matematyka Poziom ozszezony Listopad 0 W ni niej szym sche ma cie oce nia nia za dań otwa tych są pe zen to wa ne pzy kła do we po paw ne od po wie

Bardziej szczegółowo

Moment pędu w geometrii Schwarzshilda

Moment pędu w geometrii Schwarzshilda Moent pędu w geoetii Schwazshilda Zasada aksyalnego stazenia się : Doga po jakiej pousza się cząstka swobodna poiędzy dwoa zdazeniai w czasopzestzeni jest taka aby czas ziezony w układzie cząstki był aksyalny.

Bardziej szczegółowo

Kognitywistyka II r. Teoria rzetelności wyników testu. Teorie inteligencji i sposoby jej pomiaru (4) Rzetelność czyli dokładność pomiaru

Kognitywistyka II r. Teoria rzetelności wyników testu. Teorie inteligencji i sposoby jej pomiaru (4) Rzetelność czyli dokładność pomiaru Kognitywistyka II Teoie inteligencji i sposoby jej pomiau (4) Teoia zetelności wyników testu Rzetelność czyli dokładność pomiau W języku potocznym temin zetelność oznacza niezawodność (dokładność). W psychometii

Bardziej szczegółowo

E4. BADANIE POLA ELEKTRYCZNEGO W POBLIŻU NAŁADOWANYCH PRZEWODNIKÓW

E4. BADANIE POLA ELEKTRYCZNEGO W POBLIŻU NAŁADOWANYCH PRZEWODNIKÓW 4. BADANI POLA LKTRYCZNGO W POBLIŻU NAŁADOWANYCH PRZWODNIKÓW tekst opacował: Maek Pękała Od oku 1785 pawo Coulomba opisuje posty pzypadek siły oddziaływania dwóch punktowych ładunków elektycznych, któy

Bardziej szczegółowo

Wzbudzenia sieci fonony

Wzbudzenia sieci fonony Wzbudzenia sieci fonony pzybliżenie adiabatyczne elastomechaniczny model kyształu, poęcie fononu, Dynamiczna Funkca Dielektyczna w opisie wzbudzeń sieci wzbudzenia podłużne i popzeczne w ównaniach Maxwella

Bardziej szczegółowo

Wyznaczanie promienia krzywizny soczewki płasko-wypukłej metodą pierścieni Newtona

Wyznaczanie promienia krzywizny soczewki płasko-wypukłej metodą pierścieni Newtona Wyznaczanie poienia kzywizny soczewki płasko-wypukłej etodą pieścieni Newtona I. Cel ćwiczenia: zapoznanie ze zjawiskie intefeencji światła, poia poienia soczewki płasko-wypukłej. II. Pzyządy: lapa sodowa,

Bardziej szczegółowo

KINEMATYCZNE WŁASNOW PRZEKŁADNI

KINEMATYCZNE WŁASNOW PRZEKŁADNI KINEMATYCZNE WŁASNOW ASNOŚCI PRZEKŁADNI Waunki współpacy pacy zazębienia Zasada n 1 - koła zębate mogą ze sobą współpacować, kiedy mają ten sam moduł m. Czy to wymaganie jest wystaczające dla pawidłowej

Bardziej szczegółowo

9.1 POMIAR PRĘDKOŚCI NEUTRINA W CERN

9.1 POMIAR PRĘDKOŚCI NEUTRINA W CERN 91 POMIAR PRĘDKOŚCI NEUTRINA W CERN Rozdział należy do teoii pt "Teoia Pzestzeni" autostwa Daiusza Stanisława Sobolewskiego http: wwwtheoyofspaceinfo Z uwagi na ozważania nad pojęciem czasu 1 możemy pzyjąć,

Bardziej szczegółowo

DIAGNOSTYKA STOPNIA DEGRADACJI ZMĘCZENIOWEJ STALI METODĄ SPEKTROSKOPII IMPEDANCJI I REZONANSU

DIAGNOSTYKA STOPNIA DEGRADACJI ZMĘCZENIOWEJ STALI METODĄ SPEKTROSKOPII IMPEDANCJI I REZONANSU Maszyny Elektyczne - Zeszyty Poblemowe N 2/215 (16) 153 Zbigniew Hilay Żuek, Politechnika Śląska, Katowice Daiusz Baon, EthosEnegy Poland S.A., Lubliniec DIAGNOSTYKA STOPNIA DEGRADACJI ZMĘCZENIOWEJ STALI

Bardziej szczegółowo

OCZYSZCZANIE POWIETRZA Z LOTNYCH ZWIĄZKÓW ORGANICZNYCH

OCZYSZCZANIE POWIETRZA Z LOTNYCH ZWIĄZKÓW ORGANICZNYCH DZIŁ HMIZN POLITHNIKI RSZSKIJ ZKŁD THNOLOGII NIORGNIZNJ I RMIKI Laboatoium PODST THNOLOGII HMIZNJ Instukcja do ćwiczenia pt. OZSZZNI POITRZ Z LOTNH ZIĄZKÓ ORGNIZNH Powadzący: d inŝ. ogdan Ulejczyk STĘP

Bardziej szczegółowo

Wykład 15. Reinhard Kulessa 1

Wykład 15. Reinhard Kulessa 1 Wykład 5 9.8 Najpostsze obwody elektyczne A. Dzielnik napięcia. B. Mostek Wheatstone a C. Kompensacyjna metoda pomiau siły elektomotoycznej D. Posty układ C. Pąd elektyczny w cieczach. Dysocjacja elektolityczna.

Bardziej szczegółowo

Cieplne Maszyny Przepływowe. Temat 8 Ogólny opis konstrukcji promieniowych maszyn wirnikowych. Część I Podstawy teorii Cieplnych Maszyn Przepływowych.

Cieplne Maszyny Przepływowe. Temat 8 Ogólny opis konstrukcji promieniowych maszyn wirnikowych. Część I Podstawy teorii Cieplnych Maszyn Przepływowych. Temat 8 Ogólny opis konstkcji 06 8. Wstęp Istnieje wiele typów i ozwiązań konstkcyjnych. Mniejsza wiedza dotycząca zjawisk pzepływowych Niski koszt podkcji Kótki cykl pojektowy Solidna konstkcja pod względem

Bardziej szczegółowo

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki): Ruch drgający -. Ruch drgający Ciało jest sprężyste, jeżei odzyskuje pierwotny kształt po ustaniu działania siły, która ten kształt zmieniła. Właściwość sprężystości jest ograniczona, to znaczy, że przy

Bardziej szczegółowo

8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI

8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8.. Płaski stan napężenia Tacza układ, ustój ciągły jednoodny, w któym jeden wymia jest znacznie mniejszy od pozostałych,

Bardziej szczegółowo

Elektroenergetyczne sieci rozdzielcze SIECI 2004 V Konferencja Naukowo-Techniczna

Elektroenergetyczne sieci rozdzielcze SIECI 2004 V Konferencja Naukowo-Techniczna Elektoenegetyczne sieci ozdzielcze SIECI 2004 V Konfeencja Naukowo-Techniczna Politechnika Wocławska Instytut Enegoelektyki Andzej SOWA Jaosław WIATER Politechnika Białostocka, 15-353 Białystok, ul. Wiejska

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA Wydział Budownictwa, Mechaniki i Petrochemii Instytut Inżynierii Mechanicznej

POLITECHNIKA WARSZAWSKA Wydział Budownictwa, Mechaniki i Petrochemii Instytut Inżynierii Mechanicznej PITECHNIKA WARSZAWSKA Wydział Budownictwa, Mechaniki i Petochemii Instytut Inżynieii Mechanicznej w Płocku Zakład Apaatuy Pzemysłowej ABRATRIUM TERMDYNAMIKI Instukcja stanowiskowa Temat: Analiza spalin

Bardziej szczegółowo

PRZENIKANIE PRZEZ ŚCIANKĘ PŁASKĄ JEDNOWARSTWOWĄ. 3. wnikanie ciepła od ścianki do ośrodka ogrzewanego

PRZENIKANIE PRZEZ ŚCIANKĘ PŁASKĄ JEDNOWARSTWOWĄ. 3. wnikanie ciepła od ścianki do ośrodka ogrzewanego PRZENIKANIE W pzemyśle uch ciepła zachodzi ównocześnie dwoma lub tzema sposobami, najczęściej odbywa się pzez pzewodzenie i konwekcję. Mechanizm tanspotu ciepła łączący wymienione sposoby uchu ciepła nazywa

Bardziej szczegółowo

Wstęp. Prawa zostały znalezione doświadczalnie. Zrozumienie faktu nastąpiło dopiero pod koniec XIX wieku.

Wstęp. Prawa zostały znalezione doświadczalnie. Zrozumienie faktu nastąpiło dopiero pod koniec XIX wieku. Równania Maxwella Wstęp James Clek Maxwell Żył w latach 1831-1879 Wykonał decydujący kok w ustaleniu paw opisujących oddziaływania ładunków i pądów z polami elektomagnetycznymi oaz paw ządzących ozchodzeniem

Bardziej szczegółowo

IV.2. Efekt Coriolisa.

IV.2. Efekt Coriolisa. IV.. Efekt oiolisa. Janusz B. Kępka Ruch absolutny i względny Załóżmy, że na wiującej taczy z pędkością kątową ω = constant ciało o masie m pzemieszcza się ze stałą pędkością = constant od punktu 0 wzdłuż

Bardziej szczegółowo

MECHANIKA OGÓLNA (II)

MECHANIKA OGÓLNA (II) MECHNIK GÓLN (II) Semest: II (Mechanika I), III (Mechanika II), ok akademicki 2017/2018 Liczba godzin: sem. II*) - wykład 30 godz., ćwiczenia 30 godz. sem. III*) - wykład 30 godz., ćwiczenia 30 godz. (dla

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Chemia Poziom rozszerzony

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Chemia Poziom rozszerzony KRYTERIA OCENIANIA ODPOWIEDZI Póbna Matua z OPERONEM Chemia Poziom ozszezony Listopad W niniejszym schemacie oceniania zadań otwatych są pezentowane pzykładowe popawne odpowiedzi. W tego typu ch należy

Bardziej szczegółowo

PRĘDKOŚCI KOSMICZNE OPRACOWANIE

PRĘDKOŚCI KOSMICZNE OPRACOWANIE PRĘDKOŚCI KOSMICZNE OPRACOWANIE I, II, III pędkość komiczna www.iwiedza.net Obecnie, żyjąc w XXI wieku, wydaje ię nomalne, że człowiek potafi polecieć w komo, opuścić Ziemię oaz wylądować na Kiężycu. Poza

Bardziej szczegółowo