Część 1 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1 1.. 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1.1. Wstęp echanika budowli stanowi dział mechaniki technicznej zajmującej się statyką, dynamiką, statecznością i optymalizacją konstrukcji budowlanych jak i jej poszczególnych elementów. Elementy konstrukcji zwane dźwigarami lub układami ciał odkształcalnych, połączonych ze sobą i z ziemią, tworzą układy geometrycznie niezmienne (ich liczba stopni swobody jest równa lub mniejsza od liczby więzów). Dźwigary mogą występować w postaci pojedynczych prętów lub całych układów prętowych (kratownic, ram, łuków, układów cięgnowych), tarcz, płyt i powłok. Obiektem naszych zainteresowań będą głównie układy prętowe. ręt jest takim dźwigarem, którego jeden wymiar (długość) jest znacznie większy w porównaniu z pozostałymi. Szczególnym typem prętów są struny i cięgna, które przenoszą tylko siły podłużne ponieważ nie posiadają sztywności na zginanie. Układy prętowe dzielimy na kratownice i układy ramowe. W kratownicach wszystkie pręty połączone są przegubowo, przy czym zakładamy, że siły zewnętrzne i ciężar własny przykładamy jedynie w węzłach, przez co w poszczególnych prętach mamy do czynienia jedynie z siłami osiowymi (ściskającymi lub rozciągającymi). Założenie połączeń przegubowych jest idealizacją ponieważ oznacza, że końce prętów mogą obracać się względem siebie podczas, gdy w rzeczywistości połączone są ze sobą śrubami lub nitami. W teorii kratownic zakładamy również prostoliniowość i nieważkość prętów. Ramy natomiast składają się z prętów prostoliniowych lub zakrzywionych. rzenoszą one momenty zginające, siły podłużne i poprzeczne, a obciążenie zewnętrzne może być przyłożone w dowolnym punkcie układu. Obciążenia zasadniczo dzielimy na powierzchniowe (zewnętrzne) i objętościowe (masowe). Siły powierzchniowe występują jako czynne (działające na układ niezależne siły zewnętrzne) i bierne (reakcje, będące wynikiem działania sił czynnych). Siły objętościowe związane są z konstrukcją jako z elementem obdarzonym masą (siła bezwładności, ciężar własny). Obciążenia dzielimy także na rozłożone (ciągłe) lub skupione (punktowe), będące idealizacją obciążenia działającego na małym obszarze. Dalej obciążenia dzielimy na stałe (np. ciężar własny lub stałe działające ciśnienie gruntu) oraz zmienne, które dodatkowo dzielimy na nieruchome (czyli zmienne tylko w czasie np. siła parcia wiatru oraz ruchome (zmienne zarówno w czasie jak i w przestrzeni, zmieniające położenie względem układu). Obciążeniem możemy nazwać także działanie czynników zewnętrznych (np. temperatury lub osiadania podpór). Zadaniem mechaniki budowli jest wyznaczanie sił wewnętrznych (momentów zginających, sił poprzecznych i podłużnych), reakcji podporowych oraz stanu przemieszczeń. W celu uproszczenia rozważań przyjęto następujące założenia: materiał jest liniowo sprężysty, więzy są idealne (nie ma luzów i tarcia), przemieszczenia są bardzo małe w porównaniu a wymiarami układu, układ jest geometrycznie niezmienny (może być przy tym statycznie wyznaczalny lub niewyznaczalny). Dobra D., Jambrożek S., Komosa., ikołajczak E., rzybylska., Sysak A., Wdowska A. Almaater
Część 1 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 2 Wykorzystywane będą następujące zasady: zasada zesztywnienia Równania równowagi zapisujemy dla nieodkształconego układu. W rzeczywistości moment w utwierdzeniu powinien być obliczany z uwzględnieniem skrócenia ramienia działania siły o wartość przemieszczenia D (rys. 1.1). = ( l - ) Rys. 1.1. Układ rzeczywisty l = l l Rys. 1.2. odel obliczeniowy rzyjmując model obliczeniowy wyznaczamy moment bez uwzględniania przemieszczenia wywołanego działaniem siły (rys. 1.2). zasada superpozycji skutków Efekt działania kilku przyczyn jest równy sumie efektów działania wszystkich przyczyn z osobna. 1 2... n = 1 1 2 2... n n (1.1) 1.2. raca sił zewnętrznych na przemieszczeniach przez nie wywołanych Niech dana będzie belka statycznie wyznaczalna, geometrycznie niezmienna obciążona siłą skupioną (rys. 1.3): Dobra D., Jambrożek S., Komosa., ikołajczak E., rzybylska., Sysak A., Wdowska A. Almaater
Część 1 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 3 Rys. 1.3. Schemat obciążenia belki Wiadome jest, że pod takim obciążeniem belka dozna odkształcenia (rys. 1.4) Rys. 1.4. rzemieszczenie wywołane siłą Obliczmy pracę wykonaną przez siłę na przemieszczeniu D: L= (1.2) L= (1.3) gdzie: miara siły Δ miara przemieszczenia zgodna z kierunkiem działającej siły. Uogólnione przemieszczenie u jest wprost proporcjonalne do siły je wywołującej (rys. 1.5): u=c Q Q= u c (1.4) gdzie: u przemieszczenie uogólnione c współczynnik proporcjonalności Q obciążenie uogólnione L= 0 u Q du= 0 c du=1 u du= 1 c 0 2 1 (1.5) c Q δ u Rys. 1.5. Zależność pomiędzy przemieszczeniem i obciążeniem Dobra D., Jambrożek S., Komosa., ikołajczak E., rzybylska., Sysak A., Wdowska A. Almaater
Część 1 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 4 Z wzoru (1.4) wynika, że: czyli: 1 = (1.6) c L Z = 1 (1.7) 2 Wzór (1.7) opisuje pracę siły zewnętrznej na przemieszczeniu przez nią wywołanym. 1.3. Rodzaje podpór Zakładamy, że układy prętowe ulegają deformacji tylko w płaszczyźnie XY, zatem przekroje pręta mają trzy stopnie swobody: przemieszczenie poziome u, przemieszczenie pionowe v i kąt obrotu φ. amy też trzy reakcje więzów: siłę poziomą, pionową i moment. Ze względu na liczbę więzów i reakcji rozróżniamy następujące rodzaje podpór: utwierdzenie /2 /2 h = h z Rys. 1.6. Schemat utwierdzenia rzekrój traci 3 stopnie swobody, zatem pojawiają się 3 reakcje więzów: u=0 0 v=0 0 =0 0 utwierdzenie z poziomym przesuwem (podpora teleskopowa) Dobra D., Jambrożek S., Komosa., ikołajczak E., rzybylska., Sysak A., Wdowska A. Almaater
Część 1 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 5 z Rys. 1.7. Schemat podpory teleskopowej rzekrój traci 2 stopnie swobody, możliwy jest jedynie przesuw poziomy: u 0 =0 v=0 0 =0 0 podpora przegubowa nieprzesuwna z Rys.1.8. Schemat podpory nieprzesuwnej rzekrój traci 2 stopnie swobody, możliwy jest jedynie obrót przekroju wokół osi Y: u=0 0 v=0 0 0 =0 podpora przegubowa przesuwna Dobra D., Jambrożek S., Komosa., ikołajczak E., rzybylska., Sysak A., Wdowska A. Almaater
Część 1 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 6 z Rys. 1.9. Schemat podpory przesuwnej rzekrój traci 1 stopień swobody, możliwy jest obrót przekroju wokół osi Y oraz przemieszczenie poziome u: u 0 =0 v=0 0 0 =0 podpora ślizgowa h /2 /2 = h z Rys. 1.10. Schemat podpory ślizgowej rzekrój traci 2 stopnie swobody, możliwe jest przemieszczenie pionowe v: u=0 0 v 0 =0 =0 0 Zadanie 1 Obliczyć i narysować wykresy sił wewnętrznych w ramie Dobra D., Jambrożek S., Komosa., ikołajczak E., rzybylska., Sysak A., Wdowska A. Almaater
Część 1 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 7 q = 7 kn/m = 45 kn B C D = 32 knm 4 A E 2 3 2 2 [m] Rozwiązanie: a) obliczenie reakcji q = 7 kn/m R C = 45 kn C B C D R C C = 32 knm 4 A A R A E E 2 R E 3 2 2 [m] Układamy równania równowagi zgodnie z zasadami statyki: dla całego układu A : 7 4 2 45 5 32 R E 7 E 2=0 249 7 R E 2 E =0 E : 7 4 4 A 2 R A 7 45 2 32=0 2 A 7 R A 10=0 X spr : A 7 4 E =0 A E 28=0 Y spr : R A R E 45=0 Dobra D., Jambrożek S., Komosa., ikołajczak E., rzybylska., Sysak A., Wdowska A. Almaater
Część 1 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 8 dla części lewej: (A, B, C) dla części prawej: (C, D, E) C : R A 5 A 4 7 4 2=0 5 R A 4 A 56=0 C : 32 R E 2 E 6=0 Rozwiązujemy układy równań dobierając je tak, aby w każdym występowały te same niewiadome: { 249 7 R 2 =0 E E 32 2 R E 6 E =0 { 747 21 R 6 =0 E E 32 2 R E 6 E =0 { 747 32 21 R 2 R =0 E E 32 2 R E 6 E =0 { 779 19 R =0 E 16 R E 3 E =0 { 19 R =779 E 3 E =16 R E { R E =41 [kn ] E =19 [kn ] { 2 7 R 10=0 A A 4 A 5 R A 56=0 { 4 14 R 20=0 A A 4 A 5 R A 56=0 { 14 R 5 R 20 56=0 A A 2 A 7 R A 10=0 { 19 R =76 A 2 A =10 7 R { A R A =4 [kn ] A = 9 [kn ] ozostałe równania wykorzystujemy w celu sprawdzenia rozwiązań: A E 20= 9 19 28=0 R A R E 45=4 41 45=0 Aby otrzymać reakcje wewnętrzne układamy równania dla części lewej ramy (A, B, C): X : A 7 4 C =0 C = A 28 = 19 [kn ] Y : R A R C 45=0 R C =R A 45= 41 [kn ] Sprawdzeniem są równania ułożone dla części prawej (C, D, E): X spr : Y spr : E C = 19 19 =0 R E R C =41 41 =0 Na koniec wyniki zestawiamy na rysunku: Dobra D., Jambrożek S., Komosa., ikołajczak E., rzybylska., Sysak A., Wdowska A. Almaater
Część 1 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 9 q = 7 kn/m = 45 kn = 32 knm B C D 4 A 4 kn 9 kn E 2 3 2 2 [m] b) obliczenie sił wewnętrznych W ramie zaznaczamy punkty charakterystyczne A, B, C, D i E, którymi są: węzły ramy, podpory, miejsca przyłożenia obciążenia, przeguby itd. omiędzy punktami charakterystycznymi zaznaczamy przekroje a1, a2, a3, a4. α 3 α 2 q = 7 kn/m = 45 kn = 32 knm B C D α 4 α 3 α 2 α 4 4 α 1 A 9 kn α 1 4 kn 2 E 3 2 2 [m] rzecinamy ramę w poszczególnych przekrojach i dla odciętych części zapisujemy równania równowagi, z których wynikają funkcje sił wewnętrznych. Dobra D., Jambrożek S., Komosa., ikołajczak E., rzybylska., Sysak A., Wdowska A. Almaater
Część 1 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 10 dla przekroju α1 - α1 N T E 0, 6 X : T 19=0 T =19 [kn ] Y : N 41=0 N = 41 [kn ] : 19 dla =0 =0 dla =6 = 114 [ knm] dla przekroju α2 - α2 C T N 0, 2 X : N 19=0 N = 19 [kn ] Y : T 41=0 T = 41 [kn ] : 41 =0 dla =0 =0 dla =2 = 82 [ knm] dla przekroju α 3 - α 3 N T C = 45 kn 0, 2 X : N 19=0 N = 19 [kn ] Y : T 41 45=0 T =4 [kn ] : 45 41 =0 dla =0 =0 dla =2 = 8 [ knm] dla przekroju α4 - α4 B A 5 φ 3 4 sin = 4 5 =0,8 cos = 3 5 =0,6 Dobra D., Jambrożek S., Komosa., ikołajczak E., rzybylska., Sysak A., Wdowska A. Almaater
Część 1 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 11 y q = 7 kn/m A φ 9 kn 4 kn T N : N 9 cos 4 sin 7 y cos =0 N = 4,2 y 2,2 : T 4 cos 9 sin 7 y sin =0 T = 5,6 y 9,6 : 4 9 y 7 y y 2 =0 =4 9 y 3,5 y 2 { N =2,2 [kn ] dla =0 i y=0 T =9,6 [kn ] =0 { N = 14,6 [kn ] dla =3 i y=4 T = 12,8 [kn ] = 8 [knm] Otrzymane funkcje rysujemy na schemacie ramy i otrzymujemy wykresy sił wewnętrznych: -19,0-19,0 _ -14,6 _ -41,0 _ 2,2 N [kn] -41,0-41.0-41.0-12.8 + 4.0 4.0 19.0 + + 9.6 T [kn] 19.0 Dobra D., Jambrożek S., Komosa., ikołajczak E., rzybylska., Sysak A., Wdowska A. Almaater
Część 1 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 12 82.0 8.0 8.0 114.0 10.29 [knm] onieważ na pręcie AB wykres momentów zginających jest krzywoliniowy należy znaleźć ekstremum funkcji. Z wykresu sił tnących na podstawie proporcji szukamy punktu, gdzie T = 0: 5 12,8 A B 9,6 a 9,6 a = 12,8 5 a 12,8 a=48 9,6 a a=2,14 [m] Następnie wyznaczamy współrzędne punktu: 2,14 φ y =2,14 cos =1,38 [m] y=2,14 sin =1,71 [m] Na koniec obliczamy wartość momentu zginającego: dla =1,38 i y=1,71 =10,29 [ m] Dobra D., Jambrożek S., Komosa., ikołajczak E., rzybylska., Sysak A., Wdowska A. Almaater