Programowanie wielocelowe lub wieloryterialne
Zadanie wielocelowe ma co najmniej dwie funcje celu nazywane celami cząstowymi. Cele cząstowe f numerujemy indesem = 1, 2, K. Programowanie wielocelowe ciągłe. Zmienne decyzyjne zadania są ilościowe. Ilości odzwierciedlają proporcje i relacje w zbiorze liczbowym (są nieujemne, zwyle rzeczywiste lub całowite) i podlegają arytmetyce. Programowanie wielocelowe dysretne. Zmienne decyzyjne zadania są nominalne. Wielości zmiennej nominalnej, nawet liczbowe, nie oddają relacji i proporcji w zbiorze liczbowym i nie podlegają arytmetyce. Arytmetyce podlegają wielości funcji celów dla danej wielości zmiennej. Metody: 1. Wyznaczanie zbioru rozwiązań sprawnych wieloryterialnie nazywanego granicą efetywną. Rozwiązanie jest sprawne, inaczej efetywne lub Pareto optymalne, gdy nie ma innego, tóre jest lepsze w co najmniej jednym celu i nie gorsze w celach pozostałych. 2. Hierarchia celów. Decydent przyjmuje cel najważniejszy, tóry jest optymalizowany. Cele pozostałe, czyli poboczne, przeształca się w waruni ograniczające zadania, nadając im limit. Limit wyznacza minimalny poziom realizacji celu pobocznego. Limit jest wielością absolutną, tórą można wyliczyć jao procent od wartości optymalnej celu.
3. Metaryterium u(x) to funcja agregująca funcje celu, pod waruniem że ich jednosti pomiarowe są jednaowe: u w1 f1( x)... w f w 1 f 1( x)... wk fk max, Gdzie: f 1,,f max oraz f +1,,f K min i decydent przyjął wagi w : Przyład metaryterium: Zys [zł] = Przychód [zł] Koszty [zł] max 4. Średnia i średnia ważona dla funcji celów o tym samym ierunu optymalizacji i mierzonych w jednaowej sali i jednostce. To szczególne przypadi metaryterium. 5. Metoda puntowa. Polega na subietywnej ocenie celów cząstowych w tej samej sali puntowej i wyliczenia metaryterium sumy puntów lub średniej puntów. Stosujemy, gdy zmienna decyzyjna jest dysretna, a funcje celu oddają jaościowe (subietywne) aspety oceny. 6. Stopień realizacji -tego ryterium przez rozwiązanie x (gdy ryteria mają różne jednosti pomiarowe lub ieruni optymalizacji): g f m M f, f max albo g, f min. M m M m Gdzie M to masimum, a m to minimum -tego ryterium.
7. Minimalizacja odległości rozwiązania od puntu idealnego. W zadaniu wielocelowym ciągłym rozwiązanie optymalne wielocelowo ma równy stopień realizacji wszystich celów. 8. Minimalizacja standaryzowanej odległości od puntu idealnego (TOPSIS) 9. Metody hierarchicznej analizy preferencji celów i rozwiązań, np. AHP, czyli proces analizy hierarchicznej. ANP proces analizy sieciowej.
Przyład 1. Wielocelowe ciągłe. Przedsiębiorstwo produuje 2 wyroby: M i N, zużywając surowiec S. Zużycie surowca S, naład roboczogodzin i przychody na jednostę wyrobów przedstawiono w tabeli: M N Zasób Surowiec S (g) 1 1,5 12 Roboczogodziny 3 4 Przychód (zł) 400 1200 Jedna roboczogodzina osztuje 100 zł. Wyrobu N można produować najwyżej 4 jednosti, a łączna producja obu wyrobów powinna wynosić przynajmniej 4 jednosti. 1.Sformułować zadanie o dwóch ryteriach: masymalizacji przychodu i minimalizacji osztu robocizny. 2.Metodą geometryczną wyznaczyć zbiór rozwiązań dopuszczalnych, plan producji masymalizujący przychód i plan producji minimalizujący oszt robocizny. Znaleźć punt idealny oraz zbiór rozwiązań optymalnych w sensie Pareto. 3.Kryterium minimalizacji osztu jest dla przedsiębiorstwa 1,5 razy ważniejsze niż ryterium przychodu. Sformułuj metaryterium i podaj jego rozwiązanie 4. Hierarchia celów. Przychód ma wynosić co najmniej 6000.
Przyład 2. Tabela przedstawia wybrane oceny 6 studentów II rou Wydziału Zarządzania. a. Czy można wyliczyć średnią? Jeśli ta, to uporządować studentów według średniej arytmetycznej. b. Wybrać najlepszego studenta, tóry ma ocenę z W-F co najmniej 4, ocenę z rachunowości co najmniej 4,5 i najwyższą ocenę ze statystyi. c. Uporządować studentów, jeżeli wiadomo, że ocena z rachunowości jest ta samo ważna ja ocena ze statystyi, a ocena z W-F jest od nich dwa razy mniej ważna. Studenci Piotr Paweł Anna Ewa Adam Jan Rachunowość 5 4,5 4 3,5 3 4,5 Statystya 3 4,5 5 4,5 4 3,5 W-F 4 3,5 4,5 5 5 5 d. Czy potrafisz wsazać studentów sprawnych z tych trzech przedmiotów? Rozwiązanie to X={Piotr, Paweł, Anna, Ewa i Jan}. Czemu Adam nie jest rozwiązaniem sprawnym (porównaj go z Ewą)?
Przyład 3. Tabela 2 przedstawia miesięczne oprocentowanie loat i redytów (%) oraz miesięczne opłaty banowe (zł) Bani są oceniane przez potencjalnych lientów, tórym zależy na masymalizacji pierwszego ryterium (loaty) i minimalizacji pozostałych dwóch ryteriów. Tabela 2. Bani P S T R Loaty 0,40 0,60 0,35 0,20 Kredyty 1,00 1,10 0,70 0,80 Opłaty 1,50 2,00 0,50 2,00 a. Ustalić macierz stopni realizacji ryteriów i doonać raningu metodą masymalizacji minimalnego stopnia realizacji. b. Ustalić macierz względnych odchyleń realizacji. c. Biorąc pod uwagę wyjściowe dane o oprocentowaniu loat i redytów oraz o opłatach, znaleźć te bani, tóre stanowią rozwiązania optymalne w sensie Pareto.