STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY)
|
|
- Monika Tomaszewska
- 5 lat temu
- Przeglądów:
Transkrypt
1 STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY) Dla opisania rozkładu badanej zmiennej, korzystamy z pewnych charakterystyk liczbowych. Dzielimy je na cztery grupy.. Określenie przeciętnej wartości zmiennej lub wartości, wokół której grupują się pomiary. Tutaj próbujemy odpowiedzieć na pytanie: Jaka wartość zmiennej jest najbardziej typowa? Dokonujemy tego przez obliczenie miar położenia (tendencji centralnej).. Określenie zmienności (rozproszenia) wartości zmiennej (najczęściej wokół pewnej wartości typowej). Tutaj próbujemy odpowiedzieć na pytanie: Jak bardzo typowa jest ta wartość typowa? Dokonujemy tego przez obliczenie miar rozproszenia. 3. Określenie stopnia asymetrii rozkładu zmiennej. Dokonujemy tego przez obliczenie miar asymetrii. 4. Określenie stopnia skupienia i spłaszczenia (w stosunku do kształtu krzywej rozkładu normalnego standardowego) rozkładu zmiennej. Dokonujemy tego przez obliczenie miar koncentracji.
2 Miary położenia. Dla zmiennych poziomu nominalnego używamy dominanty (mody). Jest to najczęściej spotykana wartość (kategoria) zmiennej. Dla zmiennych poziomu porządkowego, oprócz dominanty, używamy też mediany. Mediana to taka liczba, że połowa wartości zmiennej jest większa od niej, a połowa jest mniejsza od niej. Wyznacza się wzorem: x ( n+ ), n jest nieparzyste Me = x ( n ) +x ( n +), n jest parzyste. Indeksy w nawiasach oznaczają, że wartości x,..., x n zostały uporządkowane w sposób niemalejący, czyli x () x ()... x (n). Dla zmiennych poziomu ilościowego, oprócz dominanty i mediany, używamy też srednią arytmetyczną (średnią). Wyznacza się wzorem: x = n x i. n Średnia jest lepsza od mediany dla rozkładów bliskich do symetrycznych, gorsza od mediany dla rozkładów dalekich od symetrycznych lub w obecności wartości odstających (oddalonych). i=
3 Dla zmiennych poziomu ilościowego czasami uzywamy jeszcze nastepujących miar położenia: średnia ważona x w = n x i w i, w i 0, i= n w i = ; i= średnia geometryczna x g = n x x... x n ; średnia harmoniczna x h = n i= x i. Szczególnym przypadkiem średniej ważonej (oprócz średniej arytmetycznej) jest średnia ucięta: x u = n k n k i=k+ x (i), gdzie k jest wyznaczoną liczbą naturalną nie przewyższającą zwykle 5% wartości n. Kwantyle. Sa to liczby, które dzielą zbiór wartości badanej cechy na równe (mniej więcej) części pod względem liczby obserwowanych wartości. Najczęściej używane kwantyle to: kwartyle (3 kwartyle, podział na 4 części; drugi kwartyl to mediana), decyle (9 decyli, podział na 0 części), percentyle (99 percentyli, podział na 00 części). Pożytecznym wykresem, tworzonym na podstawie kwartyli, jest wykres skrzynkowy. 3
4 Miary rozproszenia. Używane są dla zmiennych poziomu ilościowego. Rozstęp. Jest to różnica pomiędzy największą a najmniejszą wartością zmiennej. Odchylenie przeciętne: n i= x i x. Wariancja: s = n i= (x i x). Odchylenie standardowe: s = n n i= (x i x). Współczynnik zmienności: v = s x pod warunkiem, że x 0. Ten ostatni współczynnik jest pożyteczny wtedy, gdy zmienność cechy rośnie wraz ze wzrostem jej wartości lub przy przeskalowaniu wartości zmiennej. Miara asymetrii. Używana jest dla zmiennych poziomu ilościowego. Współczynnik skośności: Sk = n i= (x i x) 3 (n )(n )s 3. Sk = 0 odpowiada rozkładowi idealnie symetrycznemu, Sk < 0 oznacza asymetrię lewostronną, Sk > 0 asymetrię prawostronną. 4
5 Miara koncentracji. Używana jest dla zmiennych poziomu ilościowego. Kurtoza: K = n(n + ) i= (x i x) 4 3(n )( i= (x i x) ). (n )(n )(n 3)s 4 K = 0 odpowiada rozkładowi normalnemu standardowemu, K < 0 oznacza rozkład bardziej spłaszczony od normalnego standardowego, K > 0 rozkład bardziej wysmukły, niż normalny standardowy. 5
Statystyka opisowa PROWADZĄCY: DR LUDMIŁA ZA JĄC -LAMPARSKA
Statystyka opisowa PRZEDMIOT: PODSTAWY STATYSTYKI PROWADZĄCY: DR LUDMIŁA ZA JĄC -LAMPARSKA Statystyka opisowa = procedury statystyczne stosowane do opisu właściwości próby (rzadziej populacji) Pojęcia:
Bardziej szczegółowoMIARY KLASYCZNE Miary opisujące rozkład badanej cechy w zbiorowości, które obliczamy na podstawie wszystkich zaobserwowanych wartości cechy
MIARY POŁOŻENIA Opisują średni lub typowy poziom wartości cechy. Określają tą wartość cechy, wokół której skupiają się wszystkie pozostałe wartości badanej cechy. Wśród nich można wyróżnić miary tendencji
Bardziej szczegółowoPozyskiwanie wiedzy z danych
Pozyskiwanie wiedzy z danych dr Agnieszka Goroncy Wydział Matematyki i Informatyki UMK PROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Pozyskiwanie wiedzy
Bardziej szczegółowoStatystyka. Wykład 4. Magdalena Alama-Bućko. 13 marca Magdalena Alama-Bućko Statystyka 13 marca / 41
Statystyka Wykład 4 Magdalena Alama-Bućko 13 marca 2017 Magdalena Alama-Bućko Statystyka 13 marca 2017 1 / 41 Na poprzednim wykładzie omówiliśmy następujace miary rozproszenia: Wariancja - to średnia arytmetyczna
Bardziej szczegółowo-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak
Wzory dla szeregu szczegółowego: Wzory dla szeregu rozdzielczego punktowego: ->Średnia arytmetyczna ważona -> Średnia arytmetyczna (5) ->Średnia harmoniczna (1) ->Średnia harmoniczna (6) (2) ->Średnia
Bardziej szczegółowoParametry statystyczne
I. MIARY POŁOŻENIA charakteryzują średni lub typowy poziom wartości cechy, wokół nich skupiają się wszystkie pozostałe wartości analizowanej cechy. I.1. Średnia arytmetyczna x = x 1 + x + + x n n = 1 n
Bardziej szczegółowoLaboratorium 3 - statystyka opisowa
dla szeregu rozdzielczego Laboratorium 3 - statystyka opisowa Agnieszka Mensfelt 11 lutego 2019 dla szeregu rozdzielczego Statystyka opisowa dla szeregu rozdzielczego Przykład wyniki maratonu Wyniki 18.
Bardziej szczegółowoWskaźnik asymetrii Jeżeli: rozkład jest symetryczny, to = 0, rozkład jest asymetryczny lewostronnie, to < 0. Kwartylowy wskaźnik asymetrii
Miary asymetrii Miary asymetrii (skośności) określają kierunek rozkładu cech zmiennych w zbiorowości (rozkład może być symetryczny lub asymetryczny lewostronnie lub prawostronnie) oraz stopień odchylenia
Bardziej szczegółowoStatystyka. Wykład 5. Magdalena Alama-Bućko. 26 marca Magdalena Alama-Bućko Statystyka 26 marca / 40
Statystyka Wykład 5 Magdalena Alama-Bućko 26 marca 2018 Magdalena Alama-Bućko Statystyka 26 marca 2018 1 / 40 Uwaga Gdy współczynnik zmienności jest większy niż 70%, czyli V s = s x 100% > 70% (co świadczy
Bardziej szczegółowo1 Podstawy rachunku prawdopodobieństwa
1 Podstawy rachunku prawdopodobieństwa Dystrybuantą zmiennej losowej X nazywamy prawdopodobieństwo przyjęcia przez zmienną losową X wartości mniejszej od x, tzn. F (x) = P [X < x]. 1. dla zmiennej losowej
Bardziej szczegółowoCharakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej)
Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej) 1 Podział ze względu na zakres danych użytych do wyznaczenia miary Miary opisujące
Bardziej szczegółowoStatystyka. Opisowa analiza zjawisk masowych
Statystyka Opisowa analiza zjawisk masowych Typy rozkładów empirycznych jednej zmiennej Rozkładem empirycznym zmiennej nazywamy przyporządkowanie kolejnym wartościom zmiennej (x i ) odpowiadających im
Bardziej szczegółowoMiary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej
Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej cechy. Średnia arytmetyczna suma wartości zmiennej wszystkich
Bardziej szczegółowoWykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy
Wykład Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Zbiorowość statystyczna - zbiór elementów lub wyników jakiegoś procesu powiązanych ze sobą logicznie (tzn. posiadających wspólne cechy
Bardziej szczegółowoStatystyczne metody analizy danych
Statystyczne metody analizy danych Statystyka opisowa Wykład I-III Agnieszka Nowak - Brzezińska Definicje Statystyka (ang.statistics) - to nauka zajmująca się zbieraniem, prezentowaniem i analizowaniem
Bardziej szczegółowoPróba własności i parametry
Próba własności i parametry Podstawowe pojęcia Zbiorowość statystyczna zbiór jednostek (obserwacji) nie identycznych, ale stanowiących logiczną całość Zbiorowość (populacja) generalna skończony lub nieskończony
Bardziej szczegółowoPodstawowe pojęcia. Własności próby. Cechy statystyczne dzielimy na
Podstawowe pojęcia Zbiorowość statystyczna zbiór jednostek (obserwacji) nie identycznych, ale stanowiących logiczną całość Zbiorowość (populacja) generalna skończony lub nieskończony zbiór jednostek, które
Bardziej szczegółowoSTATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych;
STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych; - badanie skuteczności nowego leku; - badanie stopnia zanieczyszczenia gleb metalami
Bardziej szczegółowoW kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów:
Na dzisiejszym wykładzie omówimy najważniejsze charakterystyki liczbowe występujące w statystyce opisowej. Poszczególne wzory będziemy podawać w miarę potrzeby w trzech postaciach: dla szeregu szczegółowego,
Bardziej szczegółowoStatystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.
Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Zadania analityczne (1) Analiza przewiduje badanie podobieństw
Bardziej szczegółowoStatystyka opisowa. Literatura STATYSTYKA OPISOWA. Wprowadzenie. Wprowadzenie. Wprowadzenie. Plan. Tomasz Łukaszewski
Literatura STATYSTYKA OPISOWA A. Aczel, Statystyka w Zarządzaniu, PWN, 2000 A. Obecny, Statystyka opisowa w Excelu dla szkół. Ćwiczenia praktyczne, Helion, 2002. A. Obecny, Statystyka matematyczna w Excelu
Bardziej szczegółowoOpisowa analiza struktury zjawisk statystycznych
Statystyka Opisowa z Demografią oraz Biostatystyka Opisowa analiza struktury zjawisk statystycznych Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2
Bardziej szczegółowoStatystyka. Podstawowe pojęcia: populacja (zbiorowość statystyczna), jednostka statystyczna, próba. Cechy: ilościowe (mierzalne),
Statystyka zbiór przetworzonych i zsyntetyzowanych danych liczbowych, nauka o ilościowych metodach badania zjawisk masowych, zmienna losowa będąca funkcją próby. Podstawowe pojęcia: populacja (zbiorowość
Bardziej szczegółowoWykład 2. Statystyka opisowa - Miary rozkładu: Miary położenia
Wykład 2 Statystyka opisowa - Miary rozkładu: Miary położenia Podział miar Miary położenia (measures of location): 1. Miary tendencji centralnej (measures of central tendency, averages): Średnia arytmetyczna
Bardziej szczegółowo1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć:
Wprowadzenie Statystyka opisowa to dział statystyki zajmujący się metodami opisu danych statystycznych (np. środowiskowych) uzyskanych podczas badania statystycznego (np. badań terenowych, laboratoryjnych).
Bardziej szczegółowoStatystyka. Wykład 2. Magdalena Alama-Bućko. 5 marca Magdalena Alama-Bućko Statystyka 5 marca / 34
Statystyka Wykład 2 Magdalena Alama-Bućko 5 marca 2018 Magdalena Alama-Bućko Statystyka 5 marca 2018 1 / 34 Banki danych: Bank danych lokalnych : Główny urzad statystyczny: Baza Demografia : https://bdl.stat.gov.pl/
Bardziej szczegółowoStatystyka opisowa. Robert Pietrzykowski.
Statystyka opisowa Robert Pietrzykowski email: robert_pietrzykowski@sggw.pl www.ekonometria.info 2 Na dziś Sprawy bieżące Przypominam, że 14.11.2015 pierwszy sprawdzian Konsultacje Sobota 9:00 10:00 pok.
Bardziej szczegółowoMiary statystyczne w badaniach pedagogicznych
Miary statystyczne w badaniach pedagogicznych Szeregi statystyczne Szczegółowy - gdzie materiał uporządkowany jest rosnąco lub malejąco Rozdzielczy - gdzie poszczególnym wariantom zmiennej przyporządkowane
Bardziej szczegółowoWykład 5: Statystyki opisowe (część 2)
Wykład 5: Statystyki opisowe (część 2) Wprowadzenie Na poprzednim wykładzie wprowadzone zostały statystyki opisowe nazywane miarami położenia (średnia, mediana, kwartyle, minimum i maksimum, modalna oraz
Bardziej szczegółowo1 n. s x x x x. Podstawowe miary rozproszenia: Wariancja z populacji: Czasem stosuje się też inny wzór na wariancję z próby, tak policzy Excel:
Wariancja z populacji: Podstawowe miary rozproszenia: 1 1 s x x x x k 2 2 k 2 2 i i n i1 n i1 Czasem stosuje się też inny wzór na wariancję z próby, tak policzy Excel: 1 k 2 s xi x n 1 i1 2 Przykład 38,
Bardziej szczegółowoW1. Wprowadzenie. Statystyka opisowa
W1. Wprowadzenie. Statystyka opisowa dr hab. Jerzy Nakielski Zakład Biofizyki i Morfogenezy Roślin Plan wykładu: 1. O co chodzi w statystyce 2. Etapy badania statystycznego 3. Zmienna losowa, rozkład
Bardziej szczegółowoSTATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Statystyka zbiór przetworzonych i zsyntetyzowanych danych liczbowych, nauka o ilościowych metodach
Bardziej szczegółowoStatystyka opisowa. Literatura STATYSTYKA OPISOWA. Wprowadzenie. Wprowadzenie. Wprowadzenie. Plan. Tomasz Łukaszewski
STATYSTYKA OPISOWA Literatura A. Aczel, Statystyka w Zarządzaniu, PWN, 2000 A. Obecny, Statystyka opisowa w Excelu dla szkół. Ćwiczenia praktyczne, Helion, 2002. A. Obecny, Statystyka matematyczna w Excelu
Bardziej szczegółowoSTATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE
STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE CECHY mogą być: jakościowe nieuporządkowane - skala nominalna płeć, rasa, kolor oczu, narodowość, marka samochodu,
Bardziej szczegółowoPlan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii
Plan wykładu Statystyka opisowa Dane statystyczne miary położenia miary rozproszenia miary asymetrii Statystyka matematyczna Podstawy estymacji Testowanie hipotez statystycznych Żródła Korzystałam z ksiażek:
Bardziej szczegółowoPodstawowe funkcje statystyki: informacyjna, analityczna, prognostyczna.
Podstawy Podstawowe funkcje statystyki: informacyjna, analityczna, prognostyczna. Funkcja informacyjna umożliwia pełny i obiektywny obraz badanych zjawisk Funkcja analityczna umożliwia określenie czynników
Bardziej szczegółowoĆwiczenia 1-2 Analiza rozkładu empirycznego
Ćwiczenia 1-2 Zadanie 1. Z kolokwium z ekonometrii studenci otrzymali następujące oceny: 5 osób dostało piątkę, 20 os. dostało czwórkę, 10 os. trójkę, a 3 osoby nie zaliczyły tego kolokwium. Należy w oparciu
Bardziej szczegółowoStatystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl
Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Wprowadzenie Podstawowe cele analizy zbiorów danych Uogólniony opis poszczególnych
Bardziej szczegółowoStatystyka opisowa w wycenie nieruchomości Część I - wyznaczanie miar zbioru danych
dr Agnieszka Bitner Rzeczoznawca majątkowy Katedra Geodezji Rolnej, Katastru i Fotogrametrii Uniwersytet Rolniczy w Krakowie ul. Balicka 253c 30-198 Kraków, e-mail: rmbitner@cyf-kr.edu.pl WPROWADZENIE
Bardziej szczegółowoWykład 5. Opis struktury zbiorowości. 1. Miary asymetrii.
Wykład 5. Opis struktury zbiorowości 1. Miary asymetrii. 2. Miary koncentracji. Przykład Zbadano stawkę godzinową (w zł) pracowników dwóch branŝ, otrzymując następujące charakterysty ki liczbowe: Stawka
Bardziej szczegółowoWykład 3: Statystyki opisowe - miary położenia, miary zmienności, miary asymetrii
Wykład 3: Statystyki opisowe - miary położenia, miary zmienności, miary asymetrii Wprowadzenie W przypadku danych liczbowych do ich charakterystyki można wykorzystać tak zwane STATYSTYKI OPISOWE. Za pomocą
Bardziej szczegółowoPo co nam charakterystyki liczbowe? Katarzyna Lubnauer 34
Po co nam charakterystyki liczbowe? Katarzyna Lubnauer 34 Def. Charakterystyki liczbowe to wielkości wyznaczone na podstawie danych statystycznych, charakteryzujące własności badanej cechy. Klasyfikacja
Bardziej szczegółowoWydział Inżynierii Produkcji. I Logistyki. Statystyka opisowa. Wykład 3. Dr inż. Adam Deptuła
12.03.2017 Wydział Inżynierii Produkcji I Logistyki Statystyka opisowa Wykład 3 Dr inż. Adam Deptuła METODY OPISU DANYCH ILOŚCIOWYCH SKALARNYCH Wykresy: diagramy, histogramy, łamane częstości, wykresy
Bardziej szczegółowoStatystyka. Wykład 2. Magdalena Alama-Bućko. 27 lutego Magdalena Alama-Bućko Statystyka 27 lutego / 39
Statystyka Wykład 2 Magdalena Alama-Bućko 27 lutego 2017 Magdalena Alama-Bućko Statystyka 27 lutego 2017 1 / 39 Banki danych: Bank danych lokalnych : Główny urzad statystyczny: https://bdl.stat.gov.pl/
Bardziej szczegółowoAnaliza statystyczna w naukach przyrodniczych
Analiza statystyczna w naukach przyrodniczych Po co statystyka? Człowiek otoczony jest różnymi zjawiskami i próbuje je poznać, dowiedzieć się w jaki sposób funkcjonują, jakie relacje między nimi zachodzą.
Bardziej szczegółowoStatystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl
Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Wprowadzenie Podstawowe cele analizy zbiorów danych Uogólniony opis poszczególnych
Bardziej szczegółowoStatystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2011/2012 Wykład 2 Statystyka Do tej pory było: Wiadomości praktyczne o przedmiocie Podstawowe
Bardziej szczegółowoStatystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych.
Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych. Statystyka zajmuje się prawidłowościami zaistniałych zdarzeń. Teoria prawdopodobieństwa dotyczy przewidywania, jak często mogą zajść
Bardziej szczegółowoStatystyka matematyczna. dr Katarzyna Góral-Radziszewska Katedra Genetyki i Ogólnej Hodowli Zwierząt
Statystyka matematyczna dr Katarzyna Góral-Radziszewska Katedra Genetyki i Ogólnej Hodowli Zwierząt Zasady zaliczenia przedmiotu: część wykładowa Maksymalna liczba punktów do zdobycia 40. Egzamin będzie
Bardziej szczegółowoStatystyka Opisowa WK Andrzej Pawlak. Intended Audience: PWR
Statystyka Opisowa WK1.2017 Andrzej Pawlak Intended Audience: PWR POJĘCIA STATYSTYKI 1. Zbiór danych liczbowych pokazujących kształtowanie się określonych zjawisk i procesów (roczniki statystyczne). 2.
Bardziej szczegółowoWykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy)
Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy) Co na dzisiejszym wykładzie: definicje, sposoby wyznaczania i interpretacja STATYSTYK OPISOWYCH prezentacja
Bardziej szczegółowoXi B ni B
Zadania ze statystyki cz.2 I rok Socjologii lic. Zadanie 1 Ustal dla danych zawartych w tabelach poniżej, prezentujących rozkład liczebności (ni) różnej wielkości gospodarstw domowych w dwóch populacjach,
Bardziej szczegółowoWykład dla studiów doktoranckich IMDiK PAN. Biostatystyka I. dr Anna Rajfura Kat. Doświadczalnictwa i Bioinformatyki SGGW
Wykład dla studiów doktoranckich IMDiK PAN Biostatystyka I dr Anna Rajfura Kat. Doświadczalnictwa i Bioinformatyki SGGW anna_rajfura@sggw.pl Program wykładu w skrócie 1. Wprowadzenie: rozkład empiryczny,
Bardziej szczegółowoPopulacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część
Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część populacji, którą podaje się badaniu statystycznemu
Bardziej szczegółowoWykład 4: Statystyki opisowe (część 1)
Wykład 4: Statystyki opisowe (część 1) Wprowadzenie W przypadku danych mających charakter liczbowy do ich charakterystyki można wykorzystać tak zwane STATYSTYKI OPISOWE. Za pomocą statystyk opisowych można
Bardziej szczegółowoWYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 2 1 / 20 MIARY ROZPROSZENIA, Wariancja Wariancją z próby losowej X
Bardziej szczegółowoMiary zmienności STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 6 marca 2018
STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 6 marca 2018 1 MIARY ZMIENNOŚCI (inaczej: rozproszenia, rozrzutu, zróżnicowania, dyspersji) informuja o zróżnicowaniu jednostek zbiorowości
Bardziej szczegółowoWykład 3. Opis struktury zbiorowości. 1. Parametry opisu rozkładu badanej cechy. 3. Średnia arytmetyczna. 4. Dominanta. 5. Kwantyle.
Wykład 3. Opis struktury zbiorowości 1. Parametry opisu rozkładu badanej cechy. 2. Miary połoŝenia rozkładu. 3. Średnia arytmetyczna. 4. Dominanta. 5. Kwantyle. W praktycznych zastosowaniach bardzo często
Bardziej szczegółowoStatystyka. Wykład 4. Magdalena Alama-Bućko. 19 marca Magdalena Alama-Bućko Statystyka 19 marca / 33
Statystyka Wykład 4 Magdalena Alama-Bućko 19 marca 2018 Magdalena Alama-Bućko Statystyka 19 marca 2018 1 / 33 Analiza struktury zbiorowości miary położenia ( miary średnie) miary zmienności (rozproszenia,
Bardziej szczegółowoPodstawy statystyki - ćwiczenia r.
Zadanie 1. Na podstawie poniższych danych wyznacz i zinterpretuj miary tendencji centralnej dotyczące wysokości miesięcznych zarobków (zł): 1290, 1500, 1600, 2250, 1400, 1600, 2500. Średnia arytmetyczna
Bardziej szczegółowoStatystyka. Wykład 3. Magdalena Alama-Bućko. 6 marca Magdalena Alama-Bućko Statystyka 6 marca / 28
Statystyka Wykład 3 Magdalena Alama-Bućko 6 marca 2017 Magdalena Alama-Bućko Statystyka 6 marca 2017 1 / 28 Szeregi rozdzielcze przedziałowe - kwartyle - przypomnienie Po ustaleniu przedziału, w którym
Bardziej szczegółowoBiostatystyka, # 1 /Weterynaria I/
Biostatystyka, # 1 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, p. 221 bud. CIW, e-mail: zdzislaw.otachel@up.lublin.pl
Bardziej szczegółowoInteligentna analiza danych
Numer indeksu 150946 Michał Moroz Imię i nazwisko Numer indeksu 150875 Grzegorz Graczyk Imię i nazwisko kierunek: Informatyka rok akademicki: 2010/2011 Inteligentna analiza danych Ćwiczenie I Wskaźniki
Bardziej szczegółowoMatematyka z el. statystyki, # 1 /Geodezja i kartografia II/
Matematyka z el. statystyki, # 1 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a bud. Agro II, e-mail: zdzislaw.otachel@up.lublin.pl
Bardziej szczegółowoSTATYSTYKA wykłady. L.Gruszczyński Elementy statystyki dla socjologów Dr. Pactwa pon. i wtorek 09:30 11:00 (pok. 217) I. (08.X)
STATYSTYKA wykłady L.Gruszczyński Elementy statystyki dla socjologów Dr. Pactwa pon. i wtorek 09:30 11:00 (pok. 17) I. (08.X) 1. Statystyka jest to nauka zajmująca się metodami ilościowymi badania prawidłowości
Bardziej szczegółowoZmienne losowe. Statystyka w 3
Zmienne losowe Statystyka w Zmienna losowa Zmienna losowa jest funkcją, w której każdej wartości R odpowiada pewien podzbiór zbioru będący zdarzeniem losowym. Zmienna losowa powstaje poprzez przyporządkowanie
Bardziej szczegółowoWIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY Liczebności i częstości Liczebność liczba osób/respondentów/badanych, którzy udzielili tej konkretnej odpowiedzi. Podawana w osobach. Częstość odsetek,
Bardziej szczegółowoAnaliza struktury i przeciętnego poziomu cechy
Analiza struktury i przeciętnego poziomu cechy Analiza struktury Pod pojęciem analizy struktury rozumiemy badanie budowy (składu) określonej zbiorowości, lub próby, tj. ustalenie, z jakich składa się elementów
Bardziej szczegółowoWprowadzenie do zagadnień statystycznych
Wprowadzenie do zagadnień statystycznych Jednym z podstawowych celów nauki jest wyjaśnianie i przewidywanie wyników obserwacji zdarzeń i relacji przyczynowych, jakie między nimi zachodzą. Pomocna w tych
Bardziej szczegółowoMiary asymetrii STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 6 marca 2018
STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 6 marca 2018 1 pozwalaja określić, czy jednostki zbiorowości maja tendencje do skupiania się przy niskich wartościach cechy (tzw. asymetria
Bardziej szczegółowoAgata Boratyńska. WYKŁAD 1. Wstępna analiza danych, charakterystyki opisowe. Indeksy statystyczne.
1 Agata Boratyńska WYKŁAD 1. Wstępna analiza danych, charakterystyki opisowe. Indeksy statystyczne. Agata Boratyńska Wykłady ze statystyki 2 Literatura J. Koronacki i J. Mielniczuk Statystyka WNT 2004
Bardziej szczegółowoMatematyka stosowana i metody numeryczne
Adam Wosatko Magdalena Jakubek Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 4 Podstawy statystyki 4. Wstęp Statystyka nauka o metodach badań właściwości populacji (zbiorowości),
Bardziej szczegółowo4.2. Statystyczne opracowanie zebranego materiału
4.2. Statystyczne opracowanie zebranego materiału Zebrany i pogrupowany materiał badawczy należy poddać analizie statystycznej w celu dokonania pełnej i szczegółowej charakterystyki interesujących badacza
Bardziej szczegółowoStatystyka. Wydział Zarządzania Uniwersytetu Łódzkiego
Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Statystyka to nauka zajmująca się badaniem prawidłowości w procesach masowych, to jest takich, które realizują się na dużą skalę (np. procesy
Bardziej szczegółowoSTATYSTYKA OPISOWA. Dr Alina Gleska. 28 września Instytut Matematyki WE PP
STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 28 września 2018 1 2 Wyróżniamy następujace miary statystyczne: POŁOŻENIA, które służa do określenia takiej wartości cechy, wokół której skupiaja
Bardziej szczegółowoPorównaj płace pracowników obu zakładów, dokonując kompleksowej analizy struktury. Zastanów się, w którym zakładzie jest korzystniej pracować?
1 Zadanie 1.1 W dwóch zakładach produkcyjnych Złomex I i Złomex II, należących do tego samego przedsiębiorstwa Złomowanie na zawołanie w ostatnim miesiącu następująco kształtowały się wynagrodzenia pracowników.
Bardziej szczegółowoStatystyka opisowa SYLABUS A. Informacje ogólne
Statystyka opisowa SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Rok
Bardziej szczegółowoMiary w szeregach. 1 Miary klasyczne. 1.1 Średnia Średnia arytmetyczna
Miary w szeregach 1 Miary klasyczne 1.1 Średnia 1.1.1 Średnia arytmetyczna Zad. 1 średnia dla szeregu rozdzielczego punktowego W tabeli zestawiono wyniki badań czasu wykonania 15 detali. Jest to szereg
Bardziej szczegółowo2.Wstępna analiza danych c.d.- wykład z 5.03.2006 Populacja i próba
2.Wstępna analiza danych c.d.- wykład z 5.03.2006 Populacja i próba Populacja- zbiorowość skończona lub nieskończona, w stosunku do której mają być formułowane wnioski. Próba- skończony podzbiór populacji
Bardziej szczegółowoZakład Ubezpieczeń Społecznych Departament Statystyki. Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji w marcu 2010 roku.
Zakład Ubezpieczeń Społecznych Departament Statystyki Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji w marcu 2010 roku. Warszawa 2010 I. Badana populacja. W marcu 2010 r. emerytury
Bardziej szczegółowoStatystyka opisowa. Robert Pietrzykowski.
Statystyka opisowa Robert Pietrzykowski email: robert_pietrzykowski@sggw.pl www.ekonometria.info Statystyka jest jak kostium bikini: pokazuje wiele, ale nie pokazuje najważniejszego. Aaron Levenstein Jeśli
Bardziej szczegółowoWprowadzenie 2010-10-20
PODSTAWY STATYSTYKI Dr hab. inż. Piotr Konieczka piotr.konieczka@pg.gda.pl 1 Wprowadzenie Wynik analityczny to efekt przeprowadzonego pomiaru(ów). Pomiar to zatem narzędzie wykorzystywane w celu uzyskania
Bardziej szczegółowoTypy zmiennych. Zmienne i rekordy. Rodzaje zmiennych. Graficzne reprezentacje danych Statystyki opisowe
Typy zmiennych Graficzne reprezentacje danych Statystyki opisowe Jakościowe charakterystyka przyjmuje kilka możliwych wartości, które definiują klasy Porządkowe: odpowiedzi na pytania w ankiecie ; nigdy,
Bardziej szczegółowoPrzedmiot statystyki. Graficzne przedstawienie danych.
Przedmiot statystyki. Graficzne przedstawienie danych. dr Mariusz Grządziel 2 marca 2009 Populacja i próba Populacja- zbiorowość skończona lub nieskończona, w stosunku do której mają być formułowane wnioski.
Bardziej szczegółowoStatystyka to nauka o metodach badań (liczbowo wyrażalnych) własności zbiorowości. Próba. Próba Populacja. Próba
Statystyka Opisowa Wstępna analiza danych Rodzaje prezentacji danych Miary tendencji centralnej Miary zmienności (zróżnicowania) Miara asymetrii (skośności) Miara spłaszczenia Statystyka to nauka o metodach
Bardziej szczegółowoGraficzna prezentacja danych statystycznych
Szkolenie dla pracowników Urzędu Statystycznego nt. Wybrane metody statystyczne w analizach makroekonomicznych Katowice, 12 i 26 czerwca 2014 r. Dopasowanie narzędzia do typu zmiennej Dobór narzędzia do
Bardziej szczegółowoStatystyka. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski
Statystyka Šukasz Dawidowski Instytut Matematyki, Uniwersytet l ski Statystyka Statystyka: nauka zajmuj ca si liczbowym opisem zjawisk masowych oraz ich analizowaniem, zbiory informacji liczbowych. (Sªownik
Bardziej szczegółowoRok akademicki: 2013/2014 Kod: ZIE n Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: -
Nazwa modułu: Statystyka opisowa i ekonomiczna Rok akademicki: 2013/2014 Kod: ZIE-1-205-n Punkty ECTS: 6 Wydział: Zarządzania Kierunek: Informatyka i Ekonometria Specjalność: - Poziom studiów: Studia I
Bardziej szczegółowoStatystyka. Wykład 5. Magdalena Alama-Bućko. 20 marca Magdalena Alama-Bućko Statystyka 20 marca / 26
Statystyka Wykład 5 Magdalena Alama-Bućko 20 marca 2017 Magdalena Alama-Bućko Statystyka 20 marca 2017 1 / 26 Koncentracja Analiza struktury zbiorowości miary położenia ( miary średnie) miary zmienności
Bardziej szczegółowoKURS PRAWDOPODOBIEŃSTWO
KURS PRAWDOPODOBIEŃSTWO Lekcja 6 Ciągłe zmienne losowe ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Zmienna losowa ciągła jest
Bardziej szczegółowoZawartość. Zawartość
Opr. dr inż. Grzegorz Biesok. Wer. 2.20 2011 Zawartość Zawartość 1. Tworzenie szeregu rozdzielczego przedziałowego (klasowego)... 3 2. Podstawowy opis struktury... 3 3. Opis rozkładu jednej cechy szereg
Bardziej szczegółowoYou created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)
Prezentacja materiału statystycznego Szeroko rozumiane modelowanie i prognozowanie jest zwykle kluczowym celem analizy danych. Aby zbudować model wyjaśniający relacje pomiędzy różnymi aspektami rozważanego
Bardziej szczegółowoSTATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss
Bardziej szczegółowoDane i ich struktura Skale pomiarowe i ich przekształcanie. Mariusz Dacko
Dane i ich struktura Skale pomiarowe i ich przekształcanie Mariusz Dacko Zjawisko masowe staje się widoczne w dużej liczbie obserwacji (lecz jest niewidoczne w obserwacji pojedynczej) Zjawisko masowe jest
Bardziej szczegółowoRachunek prawdopodobieństwa i statystyka
Rachunek prawdopodobieństwa i statystyka Współczynnik zmienności Klasycznym współczynnikiem (wskaźnikiem) zmienności zmiennej losowej X nazywamy wyrażenie gdzie E(X) 0. v k z (X) = D(X) E(X), Klasyczny
Bardziej szczegółowoStatystyka. Katarzyna Chudy Laskowska
Statystyka Katarzyna Chudy Laskowska http://kc.sd.prz.edu.pl/ 1. ORGANIZACJA ZAJĘĆ 15 h WYKŁADÓW 15 h LABORATORIÓW Program komputerowy: Statistica PL 8.1 (wydział posiada licencję, która uprawnia studentów
Bardziej szczegółowoStatystyka opisowa. Wykªad II. Elementy statystyki opisowej. Edward Kozªowski.
Statystyka opisowa. Wykªad II. e-mail:e.kozlovski@pollub.pl Spis tre±ci Mediana i moda 1 Mediana i moda 2 3 4 Mediana i moda Median m e (warto±ci ±rodkow ) próbki x 1,..., x n nazywamy ±rodkow liczb w
Bardziej szczegółowoAnaliza zróżnicowania, asymetrii i koncentracji
Analiza zróżnicowania, asymetrii i koncentracji Miary zróżnicowania Miary średnie, chociaż reprezentują wszystkie jednostki badanej zbiorowości, nie dają wyczerpującej charakterystyki szeregu statystycznego,
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA WYKŁAD 3. Populacje i próby danych
STATYSTYKA MATEMATYCZNA WYKŁAD 3 Populacje i próby danych POPULACJA I PRÓBA DANYCH POPULACJA population Obserwacje dla wszystkich osobników danego gatunku / rasy PRÓBA DANYCH sample Obserwacje dotyczące
Bardziej szczegółowo