PROCENT SKŁADANY, OPROCENTOWANIE LOKAT I KREDYTÓW. HARALD KAJZER ZST NR2 im. Mariana Batko

Wielkość: px
Rozpocząć pokaz od strony:

Download "PROCENT SKŁADANY, OPROCENTOWANIE LOKAT I KREDYTÓW. HARALD KAJZER ZST NR2 im. Mariana Batko"

Transkrypt

1 , OPROCENTOWANIE LOAT I REDYTÓW HARALD AJZER ZST NR im. Mariana Batko

2 Prześledźmy losy pewnego kapitału 1000 zł zdeponowanego w banku na lokacie terminowej oprocentowanej 5% w skali roku. o , , ,5110, ,5+0,05 110,5110,5+55,11157,6 itd. HARALD AJZER ZST nr im. Mariana Batko

3 WZÓR o kapitał początkowy, p odsetki w skali roku p 0 0(1 + p) + p (1 + p) (1 + p)(1 + p) 0(1 + p) p (1 + p) 0(1 + p) (1 + p) 0(1 + p) itd... (1 p) n 0 + n HARALD AJZER ZST nr im. Mariana Batko APITAŁ W OLEJNYCH LATACH ZACHOWUJE SIĘ JA CIĄG GEOMETRYCZNY O ILORAZIE q(1+p)

4 PRZYŁAD Zdeponowano w banku 0000 zł na lokacie terminowej oprocentowanej 8% w skali roku. Jaki będzie stan lokaty po dwóch latach jeŝeli lokata jest: a) roczna; b) półroczna; c) kwartalna? HARALD AJZER ZST nr im. Mariana Batko 4

5 LOATA ROCZNA dane: zł p 8% n 0000 (1 + 0,08) 0000 (1,08) , HARALD AJZER ZST nr im. Mariana Batko 5

6 LOATA PÓŁROCZNA dane: zł p 4% n (1 + 0,04) (1,04) , HARALD AJZER ZST nr im. Mariana Batko 6

7 LOATA WARTALNA dane: zł p % n (1 + 0,0) (1,0) , HARALD AJZER ZST nr im. Mariana Batko 7

8 PRZYŁAD STOPA ZWROTU Z INWESTYCJI WYNOSI 5% W SALI ROU. ZAINWESTOWANO ZŁ. PO JAIM CZASIE STAN APITAŁU PODWOI SIĘ? dane: , p 5%, n (1 + n 0,05) n (1,05) n 15 FATYCZNE OPROCENTOWANIE WYNOSI 6,67% HARALD AJZER ZST nr im. Mariana Batko 8

9 PRZYŁAD ZDEPONOWANO W BANU zł NA LOACIE PÓŁROCZNEJ. PIENIĄDZE PRZETRZYMANO PRZEZ CZTERY LATA, GDY STAN LOATY WYNOSIŁ zł. JAIE BYŁO OPROCENTOWANIE LOATY? dane: , p?, p , p 8 p / 8 1,03 1+ p 6% p HARALD AJZER ZST nr im. Mariana Batko 9

10 SYSTEMATYCZNE OSZCZĘDZANIE ZAŁOśONO SIĄśECZĘ SYSTEMATYCZNEGO OSZCZĘDZANIA WPŁACAJĄC CO ROU 1000 ZŁ. OPROCENTOWANIE SIĄśECZI TO 5% W SALI ROU. JAI BĘDZIE STAN OSZCZĘDNOŚCI PO 0 LATACH OSZCZĘDZANIA? MAMY DO CZYNIENIA Z CIĄGIEM GEOMETRYCZNYM, OBLICZAMY JEGO SUMĘ : a q 1 + p 1, 05 S 0? 0 1 1,05 1,6533 S , ,05 0, HARALD AJZER ZST nr im. Mariana Batko 10

11 REDYTY, RATY I OPROCENTOWANIE ZACIĄGAMY REDYT W WYSOOŚCI 000 ZŁ NA ORES 4 MIESIĘCY OPROCENTOWANY 1%. JAIEJ WYSOOŚCI BĘDĄ RATY I JAI BĘDZIE CAŁOWITY OSZT REDYTU? RATA REDYTU SŁADA SIĘ Z CZĘŚCI APITAŁOWEJ I ODSETOWEJ O R zł 1 0 CZĘŚĆ APITAŁOWA RATY CZĘŚĆ ODSETOWA PIERWSZEJ RATY (ZMIENNE W AZDEJ RACIE) PIERWSZA RATA REDYTU HARALD AJZER ZST nr im. Mariana Batko 11

12 REDYTY, RATY I OPROCENTOWANIE O R zł POZOSTAŁY DO SPŁATY APITAŁ CZĘŚĆ ODSETOWA DRUGIEJ RATY DRUGA RATA REDYTU O R zł 3 10 POZOSTAŁY DO SPŁATY APITAŁ CZĘŚĆ ODSETOWA TRZECIEJ RATY TRZECIA RATA REDYTU R zł OSTATNIA RATA REDYTU 4 CAŁOWITY OSZT REDYTU TO 50 zł, CZYLI,5% HARALD AJZER ZST nr im. Mariana Batko 1

13 RATY STAŁE LUB MALEJĄCE BANI OFERUJĄ SPŁATĘ REDYTU W RATACH STAŁYCH LUB MALEJĄCYCH. JA OBLICZAĆ WYSOŚĆ RAT MALEJĄCYCH POAZUJE PRZYŁAD ZE SLAJDU 11 i 1. ABY POWSTAŁY RATY STAŁEJ WYSOOŚĆI NALEśY JE POP PROSTU UŚREDNIĆ: R ,5 HARALD AJZER ZST nr im. Mariana Batko 13

14 OPROCENTOWANIE REALNE I NOMINALNE OPROCENTOWANIE NOMINALNE TO OPROCENTOWANIE WIDNIEJĄCE NA UMOWIE Z BANIEM, OPROCENTOWANIE REALNE ODSETI FATYCZNIE ZAPŁACONE PRZEZ REDYTOBIORCĘ. W PRZYPADU REDYTU OPROCENTOWANIE REALNE BĘDZIE ZAWSZE NIśSZE OD NOMINALNEGO. W PRZYPADU LOATY OPROCENTOWANIE REALNE JEST WYśSZE OD NOMINALNEGO. HARALD AJZER ZST nr im. Mariana Batko 14

15 ZADANIA 1. BAN PROPONUJE DWIE LOATY ROCZNĄ Z OPROCENTOWANIEM 6% I PÓŁROCZNĄ Z OPROCENTOWANIEM 4%. TÓRA Z TYCH LOAT JEST ORZYSTNIEJSZA, JEśELI MAMY ZAMIAR ZDEPONOWAĆ PIENIĄDZE NA 3 LATA?. LOATA W WYSOOŚCI 8000 ZŁ JEST OPROCENTOWANA NA 4%. PO JAIM CZASIE STAN LOATY BĘDZIE WYNOSIŁ 150% APITAŁU POCZTOWEGO. 3. STAN LOATY OPROCENTOWANEJ 3% W SALI ROU PO 5 LATACH WYNOSIŁ 11597,41. NA JAA WOTĘ OPIEWAŁA LOATA W CHWILI JEJ ZAŁADANIA? 4. OBLICZ RATĘ REDYTU ORAZ REALNE OPROCENTOWANIE DLA REDYTU WYSOOŚCI ZŁ ZACIĄGNIĘTEGO NA 6 MIESIĘCY Z OPROCENTOWANIEM NOMINALNYM 4%. PRZEDSTAW PROPOZYCJĘ DLA RAT MALEJACYCH ORAZ STAŁYCH. HARALD AJZER ZST nr im. Mariana Batko 15

Matematyka I dla DSM zbiór zadań

Matematyka I dla DSM zbiór zadań I Sumowanie skończone W zadaniach -4 obliczyć podaną sumę. Matematyka I dla DSM zbiór zadań do użytku wewnętrznego dr Leszek Rudak Uniwersytet Warszawski Wydział Zarządzania. 5 i. i= 4 i 3. i= 5 ( ) i

Bardziej szczegółowo

Akademia Młodego Ekonomisty

Akademia Młodego Ekonomisty Akademia Młodego Ekonomisty Matematyka Finansowa dla liderów dr Aneta Kaczyńska Uniwersytet Ekonomiczny w Poznaniu 30 listopada 2017 r. Dr Tomaszie Projektami EKONOMICZNY UNIWERSYTET DZIECIĘCY Copywrite

Bardziej szczegółowo

Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3

Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3 Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3 Uwaga! Każde ćwiczenie rozpoczynamy od stworzenia w katalogu Moje dokumenty swojego własnego katalogu roboczego, w którym będziecie Państwo zapisywać swoje pliki.

Bardziej szczegółowo

mgr Katarzyna Niewińska; Wydział Zarządzania UW Ćwiczenia 3

mgr Katarzyna Niewińska; Wydział Zarządzania UW Ćwiczenia 3 Ćwiczenia 3 Rachunek rentowy Jako rachunek rentowy traktuje się regularne płatności płacone w stałych przedziałach czasu przy czym towarzyszy temu stała stopa procentowa. Wykorzystanie: renty; płatności

Bardziej szczegółowo

Cztery lokaty Zadanie Którą lokatę wybrać?

Cztery lokaty Zadanie Którą lokatę wybrać? Marian Maciocha Cztery lokaty Zadanie Którą lokatę wybrać? Chcemy ulokować 1000 zł na cztery miesiące i mamy do wyboru cztery propozycje: Propozycja 1: Lokata z oprocentowaniem 4% w skali roku. Odsetki

Bardziej szczegółowo

Licz i zarabiaj matematyka na usługach rynku finansowego

Licz i zarabiaj matematyka na usługach rynku finansowego Licz i zarabiaj matematyka na usługach rynku finansowego Przedstawiony zestaw zadań jest przeznaczony dla uczniów szkół ponadgimnazjalnych i ma na celu ukazanie praktycznej strony matematyki, jej zastosowania

Bardziej szczegółowo

Procent prosty Def.: Procent prosty Zad. 1. Zad. 2. Zad. 3

Procent prosty Def.: Procent prosty Zad. 1. Zad. 2. Zad. 3 Procent prosty Zakładając konto w banku, decydujesz się na określone oprocentowanie tego rachunku. Zależy ono między innymi od czasu, w jakim zobowiązujesz się nie naruszać stanu konta, czyli tzw. lokaty

Bardziej szczegółowo

Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3. Zadanie 1 Amortyzacja środków trwałych

Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3. Zadanie 1 Amortyzacja środków trwałych Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3 Uwaga! Każde ćwiczenie rozpoczynamy od stworzenia w katalogu Moje dokumenty swojego własnego katalogu roboczego, w którym będziecie Państwo zapisywać swoje pliki.

Bardziej szczegółowo

INDEKS FINANSISTY. Monika Skrzydłowska. PWSZ w Chełmie. październik Projekt dofinansowała Fundacja mbanku

INDEKS FINANSISTY. Monika Skrzydłowska. PWSZ w Chełmie. październik Projekt dofinansowała Fundacja mbanku INDEKS FINANSISTY Monika Skrzydłowska PWSZ w Chełmie październik 2017 Projekt dofinansowała Fundacja mbanku Monika Skrzydłowska (PWSZ w Chełmie) INDEKS FINANSISTY październik 2017 1 / 19 Spis treści 1

Bardziej szczegółowo

Informacja dla lokat terminowych założonych do dnia Obowiązująca od LOKATY TERMINOWE ZWYKŁE

Informacja dla lokat terminowych założonych do dnia Obowiązująca od LOKATY TERMINOWE ZWYKŁE SPÓŁDZIELCZA KASA OSZCZĘDNOŚCIOWO-KREDYTOWA JAWORZNO Informacja dla lokat terminowych założonych do dnia 13.04.2014 Obowiązująca od 01.05.2014 LOKATY TERMINOWE ZWYKŁE Lokaty terminowe obowiązuje dla lokat

Bardziej szczegółowo

Akademia Młodego Ekonomisty Matematyka finansowa dla liderów Albert Tomaszewski Grupy 1-2 Zadanie 1.

Akademia Młodego Ekonomisty Matematyka finansowa dla liderów Albert Tomaszewski Grupy 1-2 Zadanie 1. Grupy 1-2 Zadanie 1. Sprawdźcie ofertę dowolnych 5 banków i wybierzcie najlepszą ofertę oszczędnościową (lokatę lub konto oszczędnościowe). Obliczcie, jaki zwrot przyniesie założenie jednej takiej lokaty

Bardziej szczegółowo

WACC Montaż finansowy Koszt kredytu

WACC Montaż finansowy Koszt kredytu WACC Montaż finansowy Koszt kredytu Na następne zajęcia proszę przygotować listę zakupów niezbędną do realizacji projektu. PYTANIA KONTROLNE Co oznacza pojęcie kapitalizacja odsetek? Zdefiniuj stopę procentową

Bardziej szczegółowo

zaliczenie na ocenę z elementarnej matematyki finansowej I rok MF, 21 czerwca 2012 godz. 8:15 czas trwania 120 min.

zaliczenie na ocenę z elementarnej matematyki finansowej I rok MF, 21 czerwca 2012 godz. 8:15 czas trwania 120 min. zaliczenie na ocenę z elementarnej matematyki finansowej I rok MF, 21 czerwca 2012 godz. 8:15 czas trwania 120 min. Imię nazwisko:... numer indeksu:... nr zadania zad.1 zad.2 zad.3 zad.4 zad.5 zad.6 zad.7

Bardziej szczegółowo

Akademia Młodego Ekonomisty

Akademia Młodego Ekonomisty Temat spotkania: Matematyka finansowa dla liderów Temat wykładu: Matematyka finansowa wokół nas Prowadzący: Szkoła Główna Handlowa w Warszawie 14 października 2014 r. Matematyka finansowa dla liderów Po

Bardziej szczegółowo

WACC Montaż finansowy Koszt kredytu

WACC Montaż finansowy Koszt kredytu WACC Montaż finansowy Koszt kredytu PYTANIA KONTROLNE Co oznacza pojęcie kapitalizacja odsetek? Zdefiniuj stopę procentową i dyskontową Co oznacza pojęcie wartość przyszła i bieżąca? Jakimi symbolami we

Bardziej szczegółowo

Rachunek rent. Pojęcie renty. Wartość początkowa i końcowa renty. Renty o stałych ratach. Renta o zmiennych ratach. Renta uogólniona.

Rachunek rent. Pojęcie renty. Wartość początkowa i końcowa renty. Renty o stałych ratach. Renta o zmiennych ratach. Renta uogólniona. Temat: Rachunek rent. Pojęcie renty. Wartość początkowa i końcowa renty. Renty o stałych ratach. Renta o zmiennych ratach. Renta uogólniona. Zadanie Przez 2 lata na koniec każdego miesiąca wpłacamy 200

Bardziej szczegółowo

Granice ciągów liczbowych

Granice ciągów liczbowych Granice ciągów liczbowych Obliczyć z definicji granicę ciągu o wyrazie, gdzie jest pewną stałą liczbą. Definicja: granicą ciągu jest liczba, jeśli Sprawdzamy, czy i kiedy granica rozpatrywanego ciągu wynosi

Bardziej szczegółowo

System finansowy gospodarki. Zajęcia nr 6 Matematyka finansowa

System finansowy gospodarki. Zajęcia nr 6 Matematyka finansowa System finansowy gospodarki Zajęcia nr 6 Matematyka finansowa Rachunek rentowy (annuitetowy) Mianem rachunku rentowego określa się regularne płatności w stałych odstępach czasu przy założeniu stałej stopy

Bardziej szczegółowo

Funkcje w MS Excel. Arkadiusz Banasik arkadiusz.banasik@polsl.pl

Funkcje w MS Excel. Arkadiusz Banasik arkadiusz.banasik@polsl.pl Funkcje w MS Excel Arkadiusz Banasik arkadiusz.banasik@polsl.pl Plan prezentacji Wprowadzenie Funkcje matematyczne Funkcje logiczne Funkcje finansowe Podsumowanie 2/27 Wprowadzenie Funkcje: Są elementami

Bardziej szczegółowo

Sprawdzian 4- lokaty i kredyty

Sprawdzian 4- lokaty i kredyty Sprawdzian 4- lokaty i kredyty Przykładowetypowe) zadania ZADANIE. Pan X wpłacił 000 zł do banku na czteroletni a lokatę oprocentowana w wysokości 8% rocznie. Odsetki dopisywane były do kapitału w końcu

Bardziej szczegółowo

1. Jaką kwotę zgromadzimy po 3 latach na lokacie bankowej jeśli roczna NSP wynosi 4%, pierwsza wpłata wynosi 300 zl i jest dokonana na poczatku

1. Jaką kwotę zgromadzimy po 3 latach na lokacie bankowej jeśli roczna NSP wynosi 4%, pierwsza wpłata wynosi 300 zl i jest dokonana na poczatku 1. Jaką kwotę zgromadzimy po 3 latach na lokacie bankowej jeśli roczna NSP wynosi 4%, pierwsza wpłata wynosi 300 zl i jest dokonana na poczatku miesiąca a każda następna miesięczna wpłata jest (a) Większa

Bardziej szczegółowo

Rachunek rent. Pojęcie renty. Wartość początkowa i końcowa renty. Renty o stałych ratach. Renta o zmiennych ratach. Renta uogólniona.

Rachunek rent. Pojęcie renty. Wartość początkowa i końcowa renty. Renty o stałych ratach. Renta o zmiennych ratach. Renta uogólniona. Temat: Rachunek rent Pojęcie renty Wartość początkowa i końcowa renty Renty o stałych ratach Renta o zmiennych ratach Renta uogólniona Zadanie 1 Przez 2 lata na koniec każdego miesiąca wpłacamy 1 000 PLN

Bardziej szczegółowo

WARTOŚĆ PIENIĄDZA W CZASIE c.d. (WACC + Spłata kredytu)

WARTOŚĆ PIENIĄDZA W CZASIE c.d. (WACC + Spłata kredytu) WARTOŚĆ PIENIĄDZA W CZASIE c.d. (WACC + Spłata kredytu) PYTANIA KONTROLNE Co oznacza pojęcie kapitalizacja odsetek? Co oznacza pojęcie wartość przyszła i bieżąca? Jakimi symbolami we wzorach oznaczamy

Bardziej szczegółowo

Akademia Młodego Ekonomisty

Akademia Młodego Ekonomisty Akademia Młodego Ekonomisty Matematyka finansowa dla liderów Matematyka finansowa wokół nas dr Agnieszka Bem Uniwersytet Ekonomiczny we Wrocławiu 20 listopada 2017 r. Wartość pieniądzaw czasie Wartość

Bardziej szczegółowo

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1 Ćwiczenia ZPI 1 W banku A oprocentowanie lokat 4% przy kapitalizacji kwartalnej. W banku B oprocentowanie lokat 4,5% przy kapitalizacji miesięcznej. W banku A ulokowano kwotę 1000 zł. Jaki kapitał należy

Bardziej szczegółowo

Czym jest ciąg? a 1, a 2, lub. (a n ), n = 1,2,

Czym jest ciąg? a 1, a 2, lub. (a n ), n = 1,2, Ciągi liczbowe Czym jest ciąg? Ciąg liczbowy, to funkcja o argumentach naturalnych, której wartościami są liczby rzeczywiste. Wartość ciągu dla liczby naturalnej n oznaczamy symbolem a n i nazywamy n-tym

Bardziej szczegółowo

Zadania do wykładu Matematyka bankowa 1 i 2

Zadania do wykładu Matematyka bankowa 1 i 2 Zadania do wykładu Matematyka bankowa 1 i 2 Dorota Klim Department of Nonlinear Analysis, Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland E-mail address:

Bardziej szczegółowo

ZADANIE 1. NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI

ZADANIE 1.  NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI ZADANIE 1 Na budowę domu możesz zaciagn ać pożyczkę w wysokości 63450 e. Do wyboru sa dwa warianty spłaty: I w każdym miesiacu spłacasz równe raty, każda w wysokości 2% pożyczonej kwoty. II pierwsza rata

Bardziej szczegółowo

Wartość przyszła pieniądza

Wartość przyszła pieniądza O koszcie kredytu nie można mówić jedynie na podstawie wysokości płaconych odsetek. Dla pożyczającego pieniądze najważniejszą kwestią jest kwota, jaką będzie musiał zapłacić za korzystanie z cudzych środków

Bardziej szczegółowo

Ekonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 06 MSTiL niestacjonarne (II stopień)

Ekonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 06 MSTiL niestacjonarne (II stopień) dr Adam Salomon Ekonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 06 MSTiL niestacjonarne (II stopień) program wykładu 06. Rola współczynnika procentowego i współczynnika dyskontowego

Bardziej szczegółowo

[1 ] M. Podgórska, J. Klimkowska, Matematyka finansowa, PWN

[1 ] M. Podgórska, J. Klimkowska, Matematyka finansowa, PWN LITERATURA: [1 ] M. Podgórska, J. Klimkowska, Matematyka finansowa, PWN [2 ] E. Smaga, Arytmetyka finansowa, PWN [3 ] M. Sobczyk, Matematyka finansowa, Placet [4 ] M. Szałański, Podstawy matematyki finansowej,

Bardziej szczegółowo

Akademia Młodego Ekonomisty

Akademia Młodego Ekonomisty Akademia Młodego Ekonomisty Matematyka finansowa wokół nas Michał Trzęsiok Uniwersytet Ekonomiczny w Katowicach 20 października 2014 r. Czym jest pieniądz? Pieniądz - dobro, które jest powszechnie akceptowane

Bardziej szczegółowo

Zadania do wykładu Matematyka bankowa 2

Zadania do wykładu Matematyka bankowa 2 Zadania do wykładu Matematyka bankowa 2 Dorota Klim Department of Nonlinear Analysis, Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland E-mail address: klimdr@math.uni.ldz.pl

Bardziej szczegółowo

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r.

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Komisja Egzaminacyjna dla Aktuariuszy XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU Czas egzaminu: 100 minut

Bardziej szczegółowo

Zastosowanie matematyki w finansach i bankowości

Zastosowanie matematyki w finansach i bankowości Zastosowanie matematyki w finansach i bankowości Maciej Wolny I. Kalkulacja wartości pieniądza w czasie... 1 II. Nominalna, efektywna i realna stopa procentowa... 4 III. Spłata kredytów w równych i różnych

Bardziej szczegółowo

System finansowy gospodarki. Zajęcia nr 5 Matematyka finansowa

System finansowy gospodarki. Zajęcia nr 5 Matematyka finansowa System finansowy gospodarki Zajęcia nr 5 Matematyka finansowa Wartość pieniądza w czasie 1 złoty posiadany dzisiaj jest wart więcej niż 1 złoty posiadany w przyszłości, np. za rok. Powody: Suma posiadana

Bardziej szczegółowo

mgr Katarzyna Niewińska; Wydział Zarządzania UW Ćwiczenia 2

mgr Katarzyna Niewińska; Wydział Zarządzania UW Ćwiczenia 2 Ćwiczenia 2 Wartość pieniądza w czasie Zmienna wartość pieniądza w czasie jest pojęciem, które pozwala porównać wartość różnych sum pieniężnych otrzymanych w różnych okresach czasu. Czy 1000 PLN otrzymane

Bardziej szczegółowo

2a. Przeciętna stopa zwrotu

2a. Przeciętna stopa zwrotu 2a. Przeciętna stopa zwrotu Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie Matematyka finansowa rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 2a. Przeciętna stopa zwrotu Matematyka

Bardziej szczegółowo

2b. Inflacja. Grzegorz Kosiorowski. Uniwersytet Ekonomiczny w Krakowie. Matematyka finansowa

2b. Inflacja. Grzegorz Kosiorowski. Uniwersytet Ekonomiczny w Krakowie. Matematyka finansowa 2b. Inflacja Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie Matematyka finansowa rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 2b. Inflacja Matematyka finansowa 1 / 22 1 Motywacje i

Bardziej szczegółowo

Temat 1: Wartość pieniądza w czasie

Temat 1: Wartość pieniądza w czasie Temat 1: Wartość pieniądza w czasie Inwestycja jest w istocie bieżącym wyrzeczeniem się dla przyszłych korzyści. Ale teraźniejszość jest względnie dobrze znana, natomiast przyszłość to zawsze tajemnica.

Bardziej szczegółowo

Nauka o finansach. Prowadzący: Dr Jarosław Hermaszewski

Nauka o finansach. Prowadzący: Dr Jarosław Hermaszewski Nauka o finansach Prowadzący: Dr Jarosław Hermaszewski WARTOŚĆ PIENIĄDZA W CZASIE Wykład 4 Prawda ekonomiczna Pieniądz, który mamy realnie w ręku, dziś jest wart więcej niż oczekiwana wartość tej samej

Bardziej szczegółowo

Elementy matematyki finansowej w programie Maxima

Elementy matematyki finansowej w programie Maxima Maxima-03_windows.wxm 1 / 8 Elementy matematyki finansowej w programie Maxima 1 Wartość pieniądza w czasie Umiejętność przenoszenia kwot pieniędzy w czasie, a więc obliczanie ich wartości na dany moment,

Bardziej szczegółowo

Matematyka finansowa. Ćwiczenia ZPI. Ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1

Matematyka finansowa. Ćwiczenia ZPI. Ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1 Matematyka finansowa Ćwiczenia ZPI 1 Zadanie 1. Procent składany W banku A oprocentowanie lokat 4% przy kapitalizacji kwartalnej. W banku B oprocentowanie lokat 4,5% przy kapitalizacji miesięcznej. W banku

Bardziej szczegółowo

Matematyka podstawowa V. Ciągi

Matematyka podstawowa V. Ciągi Matematyka podstawowa V Ciągi Teoria ciąg arytmetyczny - pierwszy wyraz ciągu - różnica Kolejny wyraz ciągu arytmetycznego powstaje przez dodanie do poprzedniego różnicy. = + Np. =2,=3 :2,5,8,11 = 4,=2

Bardziej szczegółowo

WARTOŚĆ PIENIĄDZA W CZASIE WPROWADZENIE

WARTOŚĆ PIENIĄDZA W CZASIE WPROWADZENIE WARTOŚĆ PIENIĄDZA W CZASIE WPROWADZENIE PYTANIA KONTROLNE Różnica pomiędzy: inwestycją, projektem inwestycyjnym, przedsięwzięciem inwestycyjnym Rodzaje inwestycji ze względu na cel Wartość pieniądza w

Bardziej szczegółowo

Tabela oprocentowania dla konsumentów

Tabela oprocentowania dla konsumentów KONTA Konto Osobiste Oprocentowanie konta 0,10% Brak kwoty minimalnej. zmienne obowiązuje od 18.05.2015 r. Miesięczna kapitalizacja odsetek. Odsetki za niedozwolone saldo debetowe oraz odsetki za przekroczenie

Bardziej szczegółowo

PROCENTY, PROPORCJE, WYRAŻENIA POTEGOWE

PROCENTY, PROPORCJE, WYRAŻENIA POTEGOWE PROCENTY, PROPORCJE, WYRAŻENIA POTEGOWE ORAZ ŚREDNIE 1. Procenty i proporcje DEFINICJA 1. Jeden procent (1%) pewnej liczby a to setna część tej liczby, tórą oznacza się: 1% a, przy czym 1% a = 1 p a, zaś

Bardziej szczegółowo

Wytyczne do stosowania zapisów Rekomendacji S

Wytyczne do stosowania zapisów Rekomendacji S Wytyczne do stosowania zapisów Rekomendacji S Informacje podstawowe. Wprowadzona przez KNF Rekomendacja S w swoich zaleceniach odnosi się m.in. do obszarów relacji Banku z Klientem. Klient banku przed

Bardziej szczegółowo

Paulina Drozda WARTOŚĆ PIENIĄDZA W CZASIE

Paulina Drozda WARTOŚĆ PIENIĄDZA W CZASIE Paulina Drozda WARTOŚĆ PIENIĄDZA W CZASIE Zmianą wartości pieniądza w czasie zajmują się FINANSE. Finanse to nie to samo co rachunkowość. Rachunkowość to opowiadanie JAK BYŁO i JAK JEST Finanse zajmują

Bardziej szczegółowo

Matematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.

Matematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Zajęcia 1. Pojęcia: - Kapitalizacja powiększenie kapitału o odsetki, które zostały przez ten kapitał wygenerowane

Zajęcia 1. Pojęcia: - Kapitalizacja powiększenie kapitału o odsetki, które zostały przez ten kapitał wygenerowane Zajęcia 1 Pojęcia: - Procent setna część całości; w matematyce finansowej korzyści płynące z użytkowania kapitału (pojęcie używane zamiennie z terminem: odsetki) - Kapitalizacja powiększenie kapitału o

Bardziej szczegółowo

Tabela oprocentowania dla konsumentów

Tabela oprocentowania dla konsumentów KONTA Konto Osobiste Oprocentowanie konta 0,10% Brak kwoty minimalnej. zmienne obowiązuje od 18.05.2015 r. Miesięczna kapitalizacja odsetek. Odsetki za niedozwolone saldo debetowe dwukrotność odsetek ustawowych,

Bardziej szczegółowo

1940, 17 = K 4 = K 2 (1, 05)(1 + x 200 )3. Stąd, po wstawieniu K 2 dostaję:

1940, 17 = K 4 = K 2 (1, 05)(1 + x 200 )3. Stąd, po wstawieniu K 2 dostaję: Poniższe rozwiązania są jedynie przykładowe. Każde z tych zadań da się rozwiązać na wiele sposobów, ale te na pewno są dobre (i prawdopodobnie najprostsze). Komentarze (poza odpowiedziami) są zbędne -

Bardziej szczegółowo

Tabela oprocentowania dla konsumentów

Tabela oprocentowania dla konsumentów KONTA Konto Osobiste Oprocentowanie konta 0,10% Brak kwoty minimalnej. zmienne obowiązuje od 18.05.2015 r. Miesięczna kapitalizacja odsetek. Odsetki za niedozwolone saldo debetowe dwukrotność odsetek ustawowych,

Bardziej szczegółowo

INDEKS FINANSISTY. Monika Skrzydłowska. PWSZ w Chełmie. wrzesień Projekt dofinansowała Fundacja mbanku

INDEKS FINANSISTY. Monika Skrzydłowska. PWSZ w Chełmie. wrzesień Projekt dofinansowała Fundacja mbanku INDEKS FINANSISTY Monika Skrzydłowska PWSZ w Chełmie wrzesień 2017 Projekt dofinansowała Fundacja mbanku Monika Skrzydłowska (PWSZ w Chełmie) INDEKS FINANSISTY wrzesień 2017 1 / 40 Spis treści 1 Wprowadzenie

Bardziej szczegółowo

Informacja obowiązująca od 01.07.2015

Informacja obowiązująca od 01.07.2015 SPÓŁDZIELCZA KASA OSZCZĘDNOŚCIOWO-KREDYTOWA JAWORZNO Informacja dla rachunków lokat terminowych i rachunków oszczędnościowo-rozliczeniowych wycofanych z bieżącej oferty SKOK "Jaworzno". (Produkty obsługiwane

Bardziej szczegółowo

Zadanie 1. Oblicz: 65 % liczby 80, 28 % liczby 12,4, 4,6 % liczby 32 3

Zadanie 1. Oblicz: 65 % liczby 80, 28 % liczby 12,4, 4,6 % liczby 32 3 Zadanie 1. Oblicz: 65 % liczby 80, 28 % liczby 12,4, 4,6 % liczby 32 3 2. Odp.: 52; 3,472; 1 377/450 Zadanie 2. Oblicz: 40 % z 28 % liczby 38, 24,6 % z 15 % liczby 27,4. Odp.: 4,256; 1,01106 Zadanie 3.

Bardziej szczegółowo

SPÓŁDZIELCZA KASA OSZCZĘDNOŚCIOWO-KREDYTOWA JAWORZNO

SPÓŁDZIELCZA KASA OSZCZĘDNOŚCIOWO-KREDYTOWA JAWORZNO SPÓŁDZIELCZA KASA OSZCZĘDNOŚCIOWO-KREDYTOWA JAWORZNO Informacja dla rachunków lokat terminowych i rachunków oszczędnościowo-rozliczeniowych wycofanych z bieżącej oferty SKOK "Jaworzno". (Produkty obsługiwane

Bardziej szczegółowo

ZESTAW ZADAŃ Konkurs Finanse w matematyce

ZESTAW ZADAŃ Konkurs Finanse w matematyce ZESTAW ZADAŃ Konkurs Finanse w matematyce 1. 2. 3. 4. 5. 6. 7. 8. 9. Cena wymurowania pierwszego metra komina to 540zł. Każdy następny metr jest droższy o 90zł. Zatem wybudowanie komina o wysokości 20m

Bardziej szczegółowo

LOKATY RENTIERSKIE min. kwota 500 zł oprocentowanie zmienne

LOKATY RENTIERSKIE min. kwota 500 zł oprocentowanie zmienne oszczędzania TABELE OPROCENTOWAŃ LOKAT LOKATY TERMINOWE kwota min. 500 zł oprocentowanie zmienne oprocentowanie stałe Lokata PRIMA 7 dni - 0,50 % 1 m-c 1,00 % 1,00 % 2 m-ce 1,00 % - 3 m-ce 1,25 % 1,25

Bardziej szczegółowo

SPÓŁDZIELCZA KASA OSZCZĘDNOŚCIOWO-KREDYTOWA JAWORZNO

SPÓŁDZIELCZA KASA OSZCZĘDNOŚCIOWO-KREDYTOWA JAWORZNO SPÓŁDZIELCZA KASA OSZCZĘDNOŚCIOWO-KREDYTOWA JAWORZNO Informacja dla rachunków lokat terminowych i rachunków oszczędnościowo-rozliczeniowych wycofanych z bieżącej oferty SKOK "Jaworzno". (Produkty obsługiwane

Bardziej szczegółowo

6SPÓŁDZIELCZA KASA OSZCZĘDNOŚCIOWO-KREDYTOWA JAWORZNO

6SPÓŁDZIELCZA KASA OSZCZĘDNOŚCIOWO-KREDYTOWA JAWORZNO 6SPÓŁDZIELCZA KASA OSZCZĘDNOŚCIOWO-KREDYTOWA JAWORZNO Informacja dla rachunków lokat terminowych i rachunków oszczędnościowo-rozliczeniowych wycofanych z bieżącej oferty SKOK "Jaworzno". (Produkty obsługiwane

Bardziej szczegółowo

METODY OCENY PROJEKTÓW INWESTYCYJNYCH WPROWADZENIE WARTOŚĆ PIENIĄDZA W CZASIE. Ćwiczenia nr 1 i 2

METODY OCENY PROJEKTÓW INWESTYCYJNYCH WPROWADZENIE WARTOŚĆ PIENIĄDZA W CZASIE. Ćwiczenia nr 1 i 2 METODY OCENY PROJEKTÓW INWESTYCYJNYCH WPROWADZENIE WARTOŚĆ PIENIĄDZA W CZASIE Ćwiczenia nr 1 i 2 - Cel ćwiczeń - Komunikacja email: i.ratuszniak@efficon.pl, w temacie - mopi - Konsultacje: pokój: 428,

Bardziej szczegółowo

5. Strumienie płatności: renty

5. Strumienie płatności: renty 5. Strumienie płatności: renty Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie Matematyka finansowa rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka

Bardziej szczegółowo

2 n, dlannieparzystego. 2, dla n parzystego

2 n, dlannieparzystego. 2, dla n parzystego 1. a) Podaj pięć wyrazów ciągu: a n = n 2 +n, b n = { 1 2 n, dlannieparzystego 2, dla n parzystego b)którezwyrazówciągu b n =(n 2 1)(n 2 5n+6) sąrównezero? c)danyjestciąg a n =n 2 6n. Którewyrazyciągusąmniejszeod10?

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy. XXXII Egzamin dla Aktuariuszy z 7 czerwca 2004 r. Część I. Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy. XXXII Egzamin dla Aktuariuszy z 7 czerwca 2004 r. Część I. Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XXXII Egzamin dla Aktuariuszy z 7 czerwca 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Trzy osoby biorą

Bardziej szczegółowo

Obowiązuje od 01.02.2016 r.

Obowiązuje od 01.02.2016 r. KONTA Konto osobiste konta 0,10% Brak kwoty minimalnej. zmienne obowiązuje od 18.05.2015 r. Miesięczna kapitalizacja odsetek. Odsetki za niedozwolone saldo debetowe oraz odsetki za przekroczenie limitu

Bardziej szczegółowo

Tabela oprocentowania dla konsumentów

Tabela oprocentowania dla konsumentów KONTA Konto osobiste konta 0,10% Brak kwoty minimalnej. zmienne obowiązuje od 18.05.2015 r. Miesięczna kapitalizacja odsetek. Odsetki za niedozwolone saldo debetowe - 4-krotność stopy kredytu lombardowego

Bardziej szczegółowo

Wartość pieniądza w czasie (time value of money)

Wartość pieniądza w czasie (time value of money) Opracował Marcin Reszka Doradca Inwestycyjny nr 335 marcin@reszka.edu.pl Zeszyt I Wartość pieniądza w czasie (time value of money) Wszystkie prawa zastrzeżone. Nie zezwala się na kopiowania bez pisemnej

Bardziej szczegółowo

Lokata specjalna. Lokata specjalna

Lokata specjalna. Lokata specjalna Spółdzielczym w złotych na dzień 25.12.2015r. dla lokat terminowych zakładanych od 25.12.2015 r. 3m-ce 1,50 1,50 1,40 6 m-cy 1,60 1,60 1,50 12 m-cy 1,50 1,55 1,60 [1]) R - % stopy redyskonta weksli ustalonej

Bardziej szczegółowo

SPÓŁDZIELCZA KASA OSZCZĘDNOŚCIOWO-KREDYTOWA JAWORZNO

SPÓŁDZIELCZA KASA OSZCZĘDNOŚCIOWO-KREDYTOWA JAWORZNO SPÓŁDZIELCZA KASA OSZCZĘDNOŚCIOWO-KREDYTOWA JAWORZNO Informacja dla rachunków lokat terminowych i rachunków oszczędnościowo-rozliczeniowych wycofanych z bieżącej oferty SKOK "Jaworzno". (Produkty obsługiwane

Bardziej szczegółowo

Finansowanie inwestycji rzeczowych w gospodarce rynkowej Sporządzanie planu spłaty kredytu wykład 5. dla 5. roku HM zaoczne.

Finansowanie inwestycji rzeczowych w gospodarce rynkowej Sporządzanie planu spłaty kredytu wykład 5. dla 5. roku HM zaoczne. Finansowanie inwestycji rzeczowych w gospodarce rynkowej Sporządzanie planu spłaty kredytu wykład 5. dla 5. roku HM zaoczne dr Adam Salomon Finansowanie inwestycji rzeczowych w gospodarce rynkowej Podręcznik

Bardziej szczegółowo

SPÓŁDZIELCZA KASA OSZCZĘDNOŚCIOWO-KREDYTOWA JAWORZNO

SPÓŁDZIELCZA KASA OSZCZĘDNOŚCIOWO-KREDYTOWA JAWORZNO SPÓŁDZIELCZA KASA OSZCZĘDNOŚCIOWO-KREDYTOWA JAWORZNO Informacja dla rachunków lokat terminowych i rachunków oszczędnościowo-rozliczeniowych wycofanych z bieżącej oferty SKOK "Jaworzno". (Produkty obsługiwane

Bardziej szczegółowo

LOKATY RENTIERSKIE min. kwota 500 zł oprocentowanie zmienne

LOKATY RENTIERSKIE min. kwota 500 zł oprocentowanie zmienne Okres oszczędzania TABELE OPROCENTOWAŃ LOKAT LOKATY TERMINOWE kwota min. 500 zł oprocentowanie zmienne oprocentowanie stałe Lokata PRIMA 7 dni - 0,50 % 1 m-c 1,00 % 1,00 % 2 m-ce 1,00 % - 3 m-ce 1,00 %

Bardziej szczegółowo

Zadania do wykładu Matematyka bankowa 2

Zadania do wykładu Matematyka bankowa 2 Zadania do wykładu Matematyka bankowa 2 Dorota Klim Instytut Matematyki i Informatyki, PWSZ w Płocku E-mail address: klimdr@math.uni.ldz.pl http://math.uni.lodz.pl/ klimdr/ Bibliografia [1] M. Podgórska,

Bardziej szczegółowo

LOKATY RENTIERSKIE min. kwota 500 zł oprocentowanie zmienne

LOKATY RENTIERSKIE min. kwota 500 zł oprocentowanie zmienne Okres oszczędzania TABELE OPROCENTOWAŃ LOKAT LOKATY TERMINOWE kwota min. 500 zł oprocentowanie zmienne oprocentowanie stałe Lokata PRIMA 7 dni - 0,25 % 1 m-c 0,75 % 0,75 % 2 m-ce 0,75 % - 3 m-ce 0,75 %

Bardziej szczegółowo

Ekonomiczny Uniwersytet Dziecięcy

Ekonomiczny Uniwersytet Dziecięcy Ekonomiczny Uniwersytet Dziecięcy Bank zaufanie na całe życie Czy warto powierzać pieniądze bankom? nna Chmielewska Miasto Bełchatów 24 listopada 2010 r. EKONOMICZNY UNIWERSYTET DZIECIĘCY Uniwersytet Dziecięcy,

Bardziej szczegółowo

LOKATY RENTIERSKIE min. kwota 500 zł oprocentowanie zmienne

LOKATY RENTIERSKIE min. kwota 500 zł oprocentowanie zmienne Okres oszczędzania TABELE OPROCENTOWAŃ LOKAT LOKATY TERMINOWE kwota min. 500 zł oprocentowanie zmienne oprocentowanie stałe Lokata PRIMA 7 dni - 0,50 % 1 m-c 1,00 % 1,00 % 2 m-ce 1,00 % - 3 m-ce 1,00 %

Bardziej szczegółowo

Temat: Obliczenia w bankowości

Temat: Obliczenia w bankowości Spotkanie 13 Temat: Obliczenia w bankowości Plan zajęć 1. Burza mózgów. Uczniowie wypisują pojęcia, które kojarzą im się z bankiem i zastanawiają się nad tym, co one oznaczają. 2. Ze wszystkich wypisanych

Bardziej szczegółowo

Tabela oprocentowania dla konsumentów

Tabela oprocentowania dla konsumentów KONTA Konto osobiste Tabela oprocentowania dla konsumentów konta 0,10% Brak kwoty minimalnej. zmienne obowiązuje od 18.05.2015 r. Miesięczna kapitalizacja odsetek. Odsetki za niedozwolone saldo debetowe

Bardziej szczegółowo

LOKATY RENTIERSKIE min. kwota 500 zł oprocentowanie zmienne

LOKATY RENTIERSKIE min. kwota 500 zł oprocentowanie zmienne oszczędzania TABELE OPROCENTOWAŃ LOKAT LOKATY TERMINOWE kwota min. 500 zł oprocentowanie zmienne oprocentowanie stałe Lokata PRIMA 7 dni - 0,50 % 1 m-c 1,00 % 1,00 % 2 m-ce 1,00 % - 3 m-ce 1,25 % 1,25

Bardziej szczegółowo

Zajęcia 8 - Równoważność warunków oprocentowania

Zajęcia 8 - Równoważność warunków oprocentowania Zajęcia 8 - Równoważność warunków oprocentowania Zadanie 1 Mając roczną stopę oprocentowania prostego 18% wyznaczyć równoważną stopę: 1. miesięczną. 2. tygodniową. 3. 2-letnią. Uzasadnić wyniki. Czy czas

Bardziej szczegółowo

Ekonomiczny Uniwersytet Dziecięcy

Ekonomiczny Uniwersytet Dziecięcy Dziecięcy FINANSE DLA SPRYTNYCH Szkoła Główna Handlowa w Warszawie 21 października 2014 r. Pieniądz to tylko miernik bogactwa Bogactwo może być gromadzone w różnych formach np. akcje, obligacje, nieruchomości,

Bardziej szczegółowo

Tabela oprocentowania produktów bankowych Banku Spółdzielczego w Starachowicach Starachowice, czerwiec 2017 r.

Tabela oprocentowania produktów bankowych Banku Spółdzielczego w Starachowicach Starachowice, czerwiec 2017 r. Załącznik nr 1 do Uchwały nr /2017 Zarządu Banku Spółdzielczego w Starachowicach z dnia 09 czerwca 2017 r. Tabela oprocentowania produktów bankowych Banku Spółdzielczego w Starachowicach Starachowice,

Bardziej szczegółowo

Tabela oprocentowania dla konsumentów

Tabela oprocentowania dla konsumentów konta Konto osobiste konta 0,50% Brak kwoty minimalnej. zmienne obowiązuje od 12.08.2013 r. Miesięczna kapitalizacja odsetek. Odsetki za niedozwolone saldo debetowe - 4-krotność stopy kredytu lombardowego

Bardziej szczegółowo

Tabela oprocentowania dla konsumentów

Tabela oprocentowania dla konsumentów KONTA Konto Osobiste Oprocentowanie konta 0,10% Brak kwoty minimalnej. zmienne obowiązuje od 18.05.2015 r. Miesięczna kapitalizacja odsetek. Odsetki za niedozwolone saldo debetowe dwukrotność odsetek ustawowych,

Bardziej szczegółowo

Tabela oprocentowania dla konsumentów

Tabela oprocentowania dla konsumentów KONTA Konto osobiste konta 0,25% Brak kwoty minimalnej. zmienne obowiązuje od 16.12.2014 r. Miesięczna kapitalizacja odsetek. Odsetki za niedozwolone saldo debetowe - 4-krotność stopy kredytu lombardowego

Bardziej szczegółowo

LOKATY RENTIERSKIE min. kwota 500 zł oprocentowanie zmienne

LOKATY RENTIERSKIE min. kwota 500 zł oprocentowanie zmienne oszczędzania TABELE OPROCENTOWAŃ LOKAT LOKATY TERMINOWE kwota min. 500 zł oprocentowanie zmienne oprocentowanie stałe Lokata PRIMA 7 dni - 0,25 % 1 m-c 0,50 % 0,50 % 2 m-ce 0,50 % - 3 m-ce 0,50 % 0,50

Bardziej szczegółowo

newss.pl Raport tygodniowy Inwestycje.pl: Superlokaty odchodzą do lamusa

newss.pl Raport tygodniowy Inwestycje.pl: Superlokaty odchodzą do lamusa Banki reagują na trzecią obniżkę stóp procentowych przez RPP. Dwucyfrowe zyski z lokat są już tylko wspomnieniem. Poszukujący sensownego zysku mogą rozważyć inwestycję w struktury. Co w ciągu minionego

Bardziej szczegółowo

Gwarantowany zysk. Porównanie lokat bankowych - marzec 2009r.

Gwarantowany zysk. Porównanie lokat bankowych - marzec 2009r. Znalezienie bardzo korzystnej lokaty jest coraz bardziej trudne. Stopy procentowe spadają, spada więc oprocentowanie lokat bankowych. Oprocentowanie lokat w niektórych bankach stopniało od grudnia 2008r.

Bardziej szczegółowo

Akademia Młodego Ekonomisty

Akademia Młodego Ekonomisty Akademia Młodego Ekonomisty Matematyka finansowa wokół nas Michał Trzęsiok Uniwersytet Ekonomiczny w Katowicach 6 listopada 2017 r. Czym jest pieniądz? Pieniądz - dobro, które jest powszechnie akceptowane

Bardziej szczegółowo

LOKATA INWESTYCYJNA PRZEZNACZONA JEST DLA OSÓB FIZYCZNYCH POSIADAJĄCYCH PEŁNĄ ZDOLNOŚĆ DO CZYNNOŚCI PRAWNYCH:

LOKATA INWESTYCYJNA PRZEZNACZONA JEST DLA OSÓB FIZYCZNYCH POSIADAJĄCYCH PEŁNĄ ZDOLNOŚĆ DO CZYNNOŚCI PRAWNYCH: LOKATA INWESTYCYJNA PRZEZNACZONA JEST DLA OSÓB FIZYCZNYCH POSIADAJĄCYCH PEŁNĄ ZDOLNOŚĆ DO CZYNNOŚCI PRAWNYCH: Oczekujących stopy zwrotu wyższej od oprocentowania lokat terminowych Dysponujących doświadczeniem

Bardziej szczegółowo

LOKATA INWESTYCYJNA PRZEZNACZONA JEST DLA OSÓB FIZYCZNYCH POSIADAJĄCYCH PEŁNĄ ZDOLNOŚĆ DO CZYNNOŚCI PRAWNYCH:

LOKATA INWESTYCYJNA PRZEZNACZONA JEST DLA OSÓB FIZYCZNYCH POSIADAJĄCYCH PEŁNĄ ZDOLNOŚĆ DO CZYNNOŚCI PRAWNYCH: LOKATA INWESTYCYJNA PRZEZNACZONA JEST DLA OSÓB FIZYCZNYCH POSIADAJĄCYCH PEŁNĄ ZDOLNOŚĆ DO CZYNNOŚCI PRAWNYCH: Oczekujących stopy zwrotu wyższej od oprocentowania lokat terminowych Dysponujących doświadczeniem

Bardziej szczegółowo

1. Co to jest lokata? 2. Rodzaje lokat bankowych 3. Lokata denominowana 4. Lokata inwestycyjna 5. Lokata negocjowana 6. Lokata nocna (overnight) 7.

1. Co to jest lokata? 2. Rodzaje lokat bankowych 3. Lokata denominowana 4. Lokata inwestycyjna 5. Lokata negocjowana 6. Lokata nocna (overnight) 7. Lokaty 1. Co to jest lokata? Spis treści 2. Rodzaje lokat bankowych 3. Lokata denominowana 4. Lokata inwestycyjna 5. Lokata negocjowana 6. Lokata nocna (overnight) 7. Lokata progresywna 8. Lokata rentierska

Bardziej szczegółowo

Tabela oprocentowania produktów bankowych Banku Spółdzielczego w Starachowicach Starachowice, styczeń 2016 r.

Tabela oprocentowania produktów bankowych Banku Spółdzielczego w Starachowicach Starachowice, styczeń 2016 r. Załącznik nr 6 do Uchwały nr 60/2015 Zarządu Banku Spółdzielczego w Starachowicach z dnia 31 grudnia 2015 r. Tabela oprocentowania produktów bankowych Banku Spółdzielczego w Starachowicach Starachowice,

Bardziej szczegółowo

Matematyka Finansowa

Matematyka Finansowa Matematyka Finansowa MATERIAŁY DO WYKŁADU Procent to jedna setna. 1% = 0,01. Promil to jedna tysięczna. 1 = 0,001 = 0,1%. -procent od wartości to 0,01. Na przykład dwadzieścia trzy procent i cztery promile

Bardziej szczegółowo

Oprocentowanie konta 0,10% Oprocentowanie konta 0,00% Oprocentowanie konta 0,00%

Oprocentowanie konta 0,10% Oprocentowanie konta 0,00% Oprocentowanie konta 0,00% KONTA Konto osobiste konta 0,10% Brak kwoty minimalnej. zmienne obowiązuje od 18.05.2015 r. Miesięczna kapitalizacja odsetek. Odsetki za niedozwolone saldo debetowe oraz odsetki za przekroczenie limitu

Bardziej szczegółowo

III. OBLICZENIA PROCENTOWE.

III. OBLICZENIA PROCENTOWE. III. OBLICZENIA PROCENTOWE. PROCENTY I UŁAMKI: 00% pitagoras.d.pl Jeden procent (%) pewnej wielkości, to setna część tej wielkości: % (czyli na 00). 00 Aby zamienić liczbę na procent, należy pomnożyć tę

Bardziej szczegółowo

Ekonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 03 MSTiL (II stopień)

Ekonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 03 MSTiL (II stopień) dr Adam Salomon Ekonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 03 MSTiL (II stopień) EiLwPTM program wykładu 03. Kredyt. Plan spłaty kredytu metodą tradycyjną i za pomocą współczynnika

Bardziej szczegółowo

Tabela oprocentowania produktów bankowych Banku Spółdzielczego w Starym Sączu

Tabela oprocentowania produktów bankowych Banku Spółdzielczego w Starym Sączu Załącznik do Uchwały nr 08/04/O/19 Zarządu Banku Spółdzielczego w Starym Sączu z dnia 29.04.2019 r. Banku Spółdzielczego w Starym Sączu obowiązuje od 1 lipca 2019 r. Spis treści A. KLIENCI INDYWIDUALNI...

Bardziej szczegółowo