4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ. W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ, lecz jedye dole ograczee w erówośc Cramera Rao: Nerówość Cramera Rao Nech gˆ(,... będze estymatorem eobcążoym dla g( E gˆ(,... g(. Wówczas zachodz: ( g ( Var (( ˆ g(,... I (. (czyl Zgode z treścą zadaa: g( σ σ ( g ( σ ( σ 4 σ. Pozostaje węc wyzaczyć formację Fshera dla daego modelu. Zaczyamy od zapsaa fukcj łączej gęstośc, astępe lczymy perwszą drugą pochodą fukcj warogodośc: L( σ f (,... exp( ( σ π σ l( σ l L( σ l( π lσ σ l ( σ + 3 σ σ 3 l ( σ 4 σ σ Oblczamy formację Fshera: 3 3 3 I( σ El ( σ E( + 4 + E 4 E + 4 σ σ σ σ σ σ Zgode z treścą zadaa ~ N (0, σ, czyl E 0, Var σ. Drug momet zwykły wyzaczamy zgode ze wzorem: Var( E ( E E Var( + ( E σ + 0 σ Ostatecze formacja Fshera wyos: ( 3 3 I σ + E 4 + σ 4 σ σ σ σ σ Dole ograczee a eobcążoy estymator σ wyos: 4σ σ 4 ( g ( σ I ( σ σ 4. Obserwujemy dwe ezależe próby losowe: (,..., ( Y,... Y, przy czym wadomo, że zmee mają rozkład wykładczy o wartośc oczekwaej λ, a zmee Y rozkład wykładczy o wartośc oczekwaej 3 λ. Rozważmy estymator parametru λ postac ˆ λ + Y. Wyzacz obcążee ryzyko tego estymatora.
Obcążee: E ˆ λ E ( + Y *3 E + EY E + EY λ + λ λ Dla estymatora eobcążoego: b( λ E ˆ λ λ 0 Ryzyko: Dla estymatora eobcążoego ryzyko jest rówe waracj estymatora: ˆ R( λ Var( λ Var( + Y {Korzystamy z ezależośc obu prób od sebe; waracja sumy ezależych zmeych losowych jest rówa sume waracj} Var( + Var( Y Var( + Var( Y λ + (3 λ λ + λ λ 4 3 4 3 4 4 4 3 4.3 Nech,... /( x będze próbą prostą z rozkładu o dystrybuace F( x e, dla x > 0. a Oblcz estymator ajwększej warogodośc ˆ ezaego parametru > 0. Wyzaczmy gęstość: δ F( x f ( x e ( ( e δ x x x Fukcja warogodośc: /( x /( x L( exp( x x l( l( l x x Polczmy perwszą pochodą przyrówajmy wyk do zera w celu wyzaczea wartośc parametru maksymalzującego fukcję warogodośc: l '( 0 + x x b Wyzacz obcążee, warację błąd średokwadratowy tego estymatora. x E E E x
W celu wyzaczea wartośc oczekwaej waracj estymatora warto zacząć od wyzaczea rozkładu x. F t P t P F / ( ( < ( < ( t t F ( t t e t F/ ( t e Jak e trudo zauważyć wyzaczoy rokład to rozkład wykładczy. Exp( Γ(, x Γ(, x x E E E x Estymator jest eobcążoy, zatem obcążee wyos zero. x Var Var Var x Dla estymatora eobcążoego ryzyko jest rówe jego waracj. c Wyzacz formację Fshera w tym modelu. Czy estymator uzyskay w pukce a jest ENMW (? W celu wyzaczea formacj Fshera polczymy drugą pochodą logarytmu fukcj warogodośc. l '( l ''( x + x 3 I ( E( l ''( E( + E + x x 3 3 3 3
Zauważmy, że waracja estymatora jest rówa odwrotośc formacj Fsher a, tz: waracja osąga dole ograczee wyzaczoe przez erówość Cramer a Rao. Estymator poadto jest eobcążoy, zatem jest ENMW (. 4.4 Sprawdzć, czy ENW jest estymatorem eobcążoym o mmalej waracj parametru, jeśl,... jest próbą prostą z rozkładu N(,. Na ćwczea pokazalśmy, że estymatorem MNW wartośc oczekwaej w rozkładze ormalym jest średa arytmetycza polczoa a podstawe próby prostej wylosowaej z tego rozkładu. E E Estymator MNW jest eobcążoy. Czy mam mmalą warację? σ Var Var Var U as waracja pojedyczej realzacj zmeej losowej wyos. Var Dole ograczee waracj estymatora uzyskamy lcząc formację Fsher a dla rozkładu ormalego. Np. tak: I ( I( δ log f ( x I( E(, f ( x e δ π ( x Powyższy wzór a gęstość uwzględa fakt, że waracja tego rozkładu jest rówa jede. 4
f x x x x δ log f ( x ( x δ δ log f ( x δ ( ( ( ( δ log f ( x I ( I E δ l ( l π ( l π ( + Var wdać, że waracja estymatora jest odwrotoścą formacj Fsher a, czyl ma mmalą warację! 4.5 Nech,... będze próbą prostą z rozkładu N(,. Wyzacz obcążee estymatora T (,..., ( parametru. Nech,... będze próbą prostą z rozkładu N ( µ, σ. σ Zauważmy, że N( µ, (wyprowadzee tego, faktu pojawło sę a zajęcach Skorzystajmy z tożsamośc: σ Var E ( E E Var + ( E + µ U as: µ σ, ET (,..., E( + Obcążee wyzaczymy z defcj: b( ET (,..., + 4. Zmee,..., mają rozkład o tej samej wartośc średej µ. Wykazać, że statystyka a a postac T jest eobcążoym estymatorem parametru µ. a a a a ET E E( a a ( a E a E a a a a a a ( a a µ ( a a a a a a µ µ µ Przy rozwązau skorzystalśmy z lowośc wartośc oczekwaej: 5
E( + Y E + EY E( cy cey 4.7* Nech,... będze próbą prostą z rozkładu ormalego N ( µ, σ. Wyzaczyć a tak, żeby estymator T (,..., a był estymatorem eobcążoym dla parametru σ. Wskazówka: Jak rozkład, dla ustaloego, ma? ( (...... ( j j N ( µ, σ ( N j N j ( µ, σ ( µ, σ ( j σ + σ σ j Y N(0, N(0, Dla każdego deksu rozkład jest tak sam, taka sama jest wartość oczekwaa waracja. ET(,..., ae ae ae Y Dla uproszczea zapsu podstawmy υ σ 0 y υ y υ E Y y e dy πυ y e dy πυ Skorzystalśmy z symetryczośc rozkładu ormalego. Polczmy całkę stosując podstawee: y t ydy dt y y t t υ υ υ υ 0 πυ 0 πυ 0 πυ πυ 0 E Y e ydy e ydy e dt e dt
t e υ υ 0 υ dt {Fukcja podcałkowa to gęstość rozkładu wykładczego z πυ parametrem υ } υ υ σ π π π ET (,..., ae Y a a a? ( π π σ π σ σ ( 4.8* Nech R( b( ozaczają odpowedo ryzyko obcążee estymatora ˆ. Pokazać, że R( Var( ˆ + b(. R( E( ˆ E( ˆ E( ˆ + E( ˆ E(( ˆ E( ˆ + ( ˆ E( ˆ ( E( ˆ + ( E( ˆ ˆ ˆ ˆ ˆ ˆ ˆ E( E( + E( E( ( E( + E( E( Zauważmy, że: ˆ ˆ ˆ E( E( Var( E( ˆ E( ˆ ( E( ˆ ( E( ˆ E( ˆ E( ˆ ( E( ˆ ( E ˆ EE( ˆ ( E( ˆ ( E ˆ E( ˆ 0 bo ( E( ˆ jest elosowe moglśmy je wyłączy przed zak wartośc oczekwaej. ˆ ˆ E( E( ( E( b( bo ( E( ˆ jest elosowe (stała, a wartość oczekwaa stałej jest rówa tej stałej. Podsumowując: R Var ˆ b ( ( + (. 7