Zastosowanie metody najmniejszych kwadratów do pomiaru częstotliwości średniej sygnałów o małej stromości zboczy w obecności zakłóceń
|
|
- Karol Chrzanowski
- 6 lat temu
- Przeglądów:
Transkrypt
1 Zasosowae meody ajmejszych kwadraów do pomaru częsolwośc średej sygałów o małej sromośc zboczy w obecośc zakłóceń Elgusz PAWŁOWSKI, Darusz ŚWISULSKI
2 Podsawowe meody pomaru częsolwośc Zlczae okresów w zadaym czase pomaru T P f N T P Pomar okresu T sygału f T KM 03 E. Pawłowsk, D. Śwsulsk
3 Pośred pomar częsolwośc poprzez pomar okresu T u s ( ) Uˆ s s(π f +ϕ0 f T f w N ) KM 03 E. Pawłowsk, D. Śwsulsk 3
4 Pomar okresu zaszumoego sygału susodalego u ( ) u ( ) + z( ) Uˆ s(π f + ϕ0 ) z( ) z s s + T Chwle, są zmeym losowym o odchyleu sadardowym σ KM 03 E. Pawłowsk, D. Śwsulsk 4
5 Przejśce sygału zaszumoego przez pozom zerowy σ σ z S S jes szybkoścą arasaa sygału u s (sromoścą zbocza) w pukce jego przejśca przez pozom zerowy. KM 03 E. Pawłowsk, D. Śwsulsk 5
6 KM 03 E. Pawłowsk, D. Śwsulsk 6 Odchylee sadardowe chwl przejśca sygału przez zero s s s U f f U f d du S ˆ ) cos( ˆ, 0, π ϕ π π + ) ( ˆ ~ SNR z s z s U U σ σ SNR) ( f π σ
7 Odchylee sadardowe wyzaczea okresu sygału T Odchylee sadardowe σ T okresu T wyka z epewośc wyzaczea jego począku końca σ σ ( r) T Dla zakłócea z w posac szumu bałego o eograczoym paśme oraz dla szumu o paśme ograczoym do f g możemy w prakyce przyjąć r0 0f σ σ (π f SNR) T KM 03 E. Pawłowsk, D. Śwsulsk 7
8 Błąd średokwadraowy wyzaczea okresu sygału Względy błąd średokwadraowy pomaru okresu wyese: δ σ T (π SNR) T T Dla sygałów susodalych błąd e e zależy od merzoej częsolwośc f, a jedye zależy od SNR. Przykładowo, dla SNR00 (40dB) wyese o 0,6%. KM 03 E. Pawłowsk, D. Śwsulsk 8
9 Błąd średokwadraowy średego okresu sygału Jedym ze sposobów zmejszea ego błędu jes pomar średego okresu. Warośćśreda okresu T ( )/( ) wyzaczoa a podsawe kolejych chwl,,..., przejśca sygału u z przez pozom zerowy jes obarczoa ( ) razy mejszym błędem średokwadraowym : δ AVG σ (( ) T ) (( T ) π SNR) KM 03 E. Pawłowsk, D. Śwsulsk 9
10 Ie meody pomaru częsolwośc zaszumoego sygału Cyfrowe przewarzae próbek warośc chwlowych sygału. Ierpolacja przejśca sygału przez pozom zerowy z klku sąsedch próbek. Splo sygału z fukcją Walsh a wyzaczee odchylea częsolwośc od warośc zamoowej. Korelacja z fukcjam sus/cosus dekompozycja a składowe orogoale. Wykorzysae drugej pochodej fukcj sus. Opymalzację rozwązaa rówaa różczkowego drugego rzędu. Wykorzysae FFT efeku przeceku wdma. Przemeszczae oka pomarowego FFT wzdłuż os czasu. Wyzaczee chwlowej fazy wrującego wskazu apęca. Rozwęce fukcj sus w szereg Taylora. KM 03 E. Pawłowsk, D. Śwsulsk 0
11 Częsolwość jako pochoda fazy sygału Dla susodalego sygału u s jego faza ϕ jes lową fukcją czasu przyrasającą z szybkoścą proporcjoalą do częsolwośc f, osągając warośc rówe welokroośc kąa pełego π w kolejych chwlach,,..., przejśca sygału u s przez pozom zerowy. Częsolwość f sygału u s moża węc wyzaczyć a podsawe pochodej: u s ( ) Uˆ s s(π f +ϕ0 ) dϕ a f π d π KM 03 E. Pawłowsk, D. Śwsulsk
12 Faza sygału susodalego jako lowa fukcja czasu dϕ a f π d π KM 03 E. Pawłowsk, D. Śwsulsk
13 KM 03 E. Pawłowsk, D. Śwsulsk 3 Pomar średej częsolwośc z aproksymacją fazy MNK y y y y a ) ( y
14 KM 03 E. Pawłowsk, D. Śwsulsk 4 Aproksymacją fazy sygału MNK y y π, 6 ) )( (, ) ( c k a f ) ( 6 ) ( π
15 Współczyk k c Współczyk k c są całkowe oraz jedozacze określoe ylko poprzez lczbę puków pomarowych. KM 03 E. Pawłowsk, D. Śwsulsk 5
16 Wagowe uśredae W rozparywaym przypadku MNK wymaga wagowego uśredaa kolejych warośc czasów ze współczykam c. Wymagae fukcje wagowe są płokszałe z zerową waroścą średą. Przykładowy kszał fukcj wagowej dla 7 KM 03 E. Pawłowsk, D. Śwsulsk 6
17 Wymagay układ pomarowy KM 03 E. Pawłowsk, D. Śwsulsk 7
18 KM 03 E. Pawłowsk, D. Śwsulsk 8 Właścwośc meody - względy błąd średokwadraowy 00% 00% RMS T f T f σ σ δ c k T ) ( ) ( 6 c k c k T ) Var( ) Var( ) Var(
19 Względy błąd średokwadraowy MNK Po podsaweu zależośc a współczyk k c : σ LMS σ ( ) π f SNR ( ) Osaecze po przekszałceach: δ LMS π SNR ( ) KM 03 E. Pawłowsk, D. Śwsulsk 9
20 Skueczość MNK względem uśredaa okresów Odchyleń sadardoweśredego okresu σ AVG : σ AVG σ Zasosowae MNK zapewa węc, przy ym samym czase pomaru, dodakowe zmejszee błędów względem pomaru średego okresu w sosuku rówym: σ σ AVG LMS ( + ) 6( ) KM 03 E. Pawłowsk, D. Śwsulsk 0
21 Symulacyja weryfkacja meody Zasymulowao susodaly sygał o częsolwośc f 50Hz zakłócoy szumem o rozkładze ormalym z zerową waroścą oczekwaą, przy SNR40dB. Wygeerowao 0000 warośc czasów rówoodległych od sebe o 0ms dodao do ch zmeą losową symulującą szum o odchyleu sadardowym s,5ms (SNR40dB). Oblczoo koleje okresy T - ak zaszumoego sygału wyzaczoo ch odchylee sadardowe s T 3ms, powerdzające założoy pozom zakłóceń. Nasępe wyzaczoo warośc częsolwośc przedsawoą meodą ajmejszych kwadraów z każdych kolejych warośc czasów, (5, 0, 5,..., 50) oraz dla porówaa jako odwroość pojedyczego okresu odwroość średej okresów. Wyk przedsawoo a wykresach. KM 03 E. Pawłowsk, D. Śwsulsk
22 Wykresy - względy błąd średokwadraowy KM 03 E. Pawłowsk, D. Śwsulsk
23 Wykresy - skueczość łumea zakłóceń KM 03 E. Pawłowsk, D. Śwsulsk 3
24 Wykresy - porówae skueczość MNK uśredaa okresu KM 03 E. Pawłowsk, D. Śwsulsk 4
25 Podsumowae.W cyfrowych pomarach częsolwośc sygałów o małej sromośc zboczy w obecośc zakłóceń soym składkem błędów jes błąd wyzwalaa woszoy przez wejścowe układy kszałujące częsoścomerza..błąd e moża soe zmejszyć wyzaczając częsolwość ze współczyka kerukowego regresj lowej wyzaczoego MNK a podsawe chwl przejśca sygału przez pozom zerowy. 3.Przedsawoo ajważejsze zależośc aalycze, w ym a błąd średokwadraowy oraz przeprowadzoo badaa symulacyje powerdzające korzyse właścwośc meody. KM 03 E. Pawłowsk, D. Śwsulsk 5
26 DZIĘKUJĘ ZA UWAGĘ KM 03 E. Pawłowsk, D. Śwsulsk 6
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH. dr Michał Silarski
PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH dr Mchał larsk I Pracowa Fzycza IF UJ, 9.0.06 Pomar Pomar zacowae wartośc prawdzwej Bezpośred (welkość fzycza merzoa jest
Bardziej szczegółowoma rozkład normalny z wartością oczekiwaną EX = EY = 1, EZ = 0 i macierzą kowariancji
Zadae. Zmea losowa (, Y, Z) ma rozkład ormaly z wartoścą oczekwaą E = EY =, EZ = 0 macerzą kowaracj. Oblczyć Var(( Y ) Z). (A) 5 (B) 7 (C) 6 Zadae. Zmee losowe,, K,,K P ( = ) = P( = ) =. Nech S =. Oblcz
Bardziej szczegółowoPODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH
PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I Pracowa IF UJ Luy 03 PODRĘCZNIKI Wsęp do aalzy błędu pomarowego Joh R. Taylor Wydawcwo Naukowe PWN Warszawa 999 I Pracowa
Bardziej szczegółowoPodstawy opracowania wyników pomiarowych, analiza błędów
Podstawy opracowaa wyków pomarowych, aalza błędów I Pracowa Fzycza IF UJ Grzegorz Zuzel Lteratura I Pracowa fzycza Pod redakcją Adrzeja Magery Istytut Fzyk UJ Kraków 2006 Wstęp do aalzy błędu pomarowego
Bardziej szczegółowoW zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =
4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ. W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,
Bardziej szczegółowoW zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =
4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ ). W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,
Bardziej szczegółowoW loterii bierze udział 10 osób. Regulamin loterii faworyzuje te osoby, które w eliminacjach osiągnęły lepsze wyniki:
Zadae W loter berze udzał 0 osób. Regulam loter faworyzuje te osoby, które w elmacjach osągęły lepsze wyk: Zwycęzca elmacj, azyway graczem r. otrzymuje 0 losów, Osoba, która zajęła druge mejsce w elmacjach,
Bardziej szczegółowoPomiary parametrów napięć i prądów przemiennych
Ćwczee r 3 Pomary parametrów apęć prądów przemeych Cel ćwczea: zapozae z pomaram wartośc uteczej, średej, współczyków kształtu, szczytu, zekształceń oraz mocy czyej, berej, pozorej współczyka cosϕ w obwodach
Bardziej szczegółowoPrawdopodobieństwo i statystyka r.
Prawdopodobeństwo statystyka 0.06.0 r. Zadae. Ura zawera kul o umerach: 0,,,,. Z ury cągemy kulę, zapsujemy umer kulę wrzucamy z powrotem do ury. Czyość tę powtarzamy, aż kula z każdym umerem zostae wycągęta
Bardziej szczegółowoTablica Galtona. Mechaniczny model rozkładu normalnego (M10)
Tablca Galtoa. Mechaczy model rozkładu ormalego (M) I. Zestaw przyrządów: Tablca Galtoa, komplet kulek sztuk. II. Wykoae pomarów.. Wykoać 8 pomarów, wrzucając kulk pojedyczo.. Uporządkować wyk pomarów,
Bardziej szczegółowowyniki serii n pomiarów ( i = 1,..., n) Stosując metodę największej wiarygodności możemy wykazać, że estymator wariancji 2 i=
ESTYMATOR WARIANCJI I DYSPERSJI Ozaczmy: µ wartość oczekwaa rozkładu gauowkego wyków pomarów (wartość prawdzwa merzoej welkośc σ dyperja rozkładu wyków pomarów wyk er pomarów (,..., Stoując metodę ajwękzej
Bardziej szczegółowoPomiary bezpośrednie i pośrednie obarczone błędem przypadkowym
Pomary bezpośrede pośrede obarczoe błędem przypadkowym I. Szacowae wartośc przyblŝoej graczego błędu przypadkowego a przykładze bezpośredego pomaru apęca elem ćwczea jest oszacowae wartośc przyblŝoej graczego
Bardziej szczegółowoRachunek prawdopodobieństwa i statystyka matematyczna. Estymacja przedziałowa parametrów strukturalnych zbiorowości generalnej
Rachek prawdopodobeńswa saysyka maemaycza Esymacja przedzałowa paramerów srkralych zborowośc geeralej Częso zachodz syacja, że koecze jes zbadae ogół poplacj pod pewym kąem p. średa oce z pewego przedmo.
Bardziej szczegółowoSygnały pojęcie i klasyfikacja, metody opisu.
Sygały pojęcie i klasyfikacja, meody opisu. Iformacja przekazywaa jes za pośredicwem sygałów, kóre przeoszą eergię. Sygał jes o fukcja czasowa dowolej wielkości o charakerze eergeyczym, w kórym moża wyróżić
Bardziej szczegółowoPODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH. I Pracownia IF UJ Marzec 2017
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I Pracowa IF UJ Marzec 07 PODRĘCZNIKI Wstęp do aalzy błędu pomarowego Joh R. Taylor Wydawctwo Naukowe PWN Warszawa 999
Bardziej szczegółowof f x f, f, f / / / METODA RÓŻNIC SKOŃCZONYCH niech N = 2 (2 równania różniczkowe zwyczajne liniowe I-rz.) lub jedno II-rzędu
METODA RÓŻIC SKOŃCZOYCH (omówee a przykładze rówań lowych) ech ( rówaa różczkowe zwyczaje lowe I-rz.) lub jedo II-rzędu f / / p( x) f / + q( x) f + r( x) a x b, f ( a) α, f ( b) β dea: a satce argumetu
Bardziej szczegółowobędą niezależnymi zmiennymi losowymi o tym samym 2 x
Prawdopodobeństwo statystyka 8.0.007 r. Zadae. Nech,,, rozkładze z gęstoścą Oblczyć m E max będą ezależym zmeym losowym o tym samym { },,, { },,, gdy x > f ( x) = x. 0 gdy x 8 8 Prawdopodobeństwo statystyka
Bardziej szczegółowo. Wtedy E V U jest równa
Prawdopodobeństwo statystyka 7.0.0r. Zadae Dwuwymarowa zmea losowa Y ma rozkład cągły o gęstośc gdy ( ) 0 y f ( y) 0 w przecwym przypadku. Nech U Y V Y. Wtedy E V U jest rówa 8 7 5 7 8 8 5 Prawdopodobeństwo
Bardziej szczegółowoWYZNACZANIE PRZERWY ENERGETYCZNEJ GERMANU
Fzyka cała stałeo WYZNACZANIE PRZERWY ENERGETYCZNEJ GERMANU 1. Ops teoretyczy do ćwczea zameszczoy jest a stroe www.wtc.wat.edu.pl w dzale DYDAKTYKA FIZYKA ĆWICZENIA LABORATORYJNE.. Ops układu pomaroweo
Bardziej szczegółowoStatystyka Opisowa 2014 część 3. Katarzyna Lubnauer
Statystyka Opsowa 014 część 3 Katarzya Lubauer Lteratura: 1. Statystyka w Zarządzau Admr D. Aczel. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucja Kowalsk. 4. Statystyka opsowa, Meczysław
Bardziej szczegółowoPodstawy analizy niepewności pomiarowych (I Pracownia Fizyki)
Podstawy aalzy epewośc pomarowych (I Pracowa Fzyk) Potr Cygak Zakład Fzyk Naostruktur Naotecholog Istytut Fzyk UJ Pok. 47 Tel. 0-663-5838 e-mal: potr.cygak@uj.edu.pl Potr Cygak 008 Co to jest błąd pomarowy?
Bardziej szczegółowoMETROLOGIA. Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki
METROLOGIA Dr ż. Elgusz PAWŁOWSKI Poltechka Lubelska Wydzał Elektrotechk Iformatyk Prezetacja do wykładu dla EINS Zjazd 4, wykład r 7, 8 Prawo autorske Nejsze materały podlegają ochroe zgode z Ustawą o
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA WYKŁAD 2 ESTYMACJA PUNKTOWA
STATYSTYKA MATEMATYCZNA WYKŁAD ESTYMACJA PUNKTOWA Nech - ezay parametr rozkładu cechy X. Wartość parametru będzemy estymować (przyblżać) a podstawe elemetowej próby. - wyberamy statystykę U o rozkładze
Bardziej szczegółowoPOPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1
POPULACJA I PRÓBA POPULACJĄ w statystyce matematyczej azywamy zbór wszystkch elemetów (zdarzeń elemetarych charakteryzujących sę badaą cechą opsywaą zmeą losową. Zbadae całej populacj (przeprowadzee tzw.
Bardziej szczegółowoma rozkład normalny z nieznaną wartością oczekiwaną m
Zadae Każda ze zmeych losowych,, 9 ma rozkład ormaly z ezaą wartoścą oczekwaą m waracją, a każda ze zmeych losowych Y, Y,, Y9 rozkład ormaly z ezaą wartoścą oczekwaą m waracją 4 Założoo, że wszystke zmee
Bardziej szczegółowoWyrażanie niepewności pomiaru. Andrzej Kubiaczyk Wydział Fizyki, Politechnika Warszawska
Wyrażae epewośc pomaru Adrzej Kubaczyk Wydzał Fzyk, Poltechka Warszawska Warszawa, 0 Iformacje wstępe Każdy pomar welkośc fzyczej dokoyway jest ze skończoą dokładoścą, co ozacza, że wyk tego pomaru dokoyway
Bardziej szczegółowoL.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5
L.Kowalsk zadaa ze statystyk opsowej-zestaw 5 Zadae 5. X cea (zł, Y popyt (tys. szt.. Mając dae ZADANIA Zestaw 5 x,5,5 3 3,5 4 4,5 5 y 44 43 43 37 36 34 35 35 Oblcz współczyk korelacj Pearsoa. Oblcz współczyk
Bardziej szczegółowoPrawdopodobieństwo i statystyka r.
Zadae. W ure zajduje sę 5 kul, z których 5 jest bałych czarych. Losujemy bez zwracaa kolejo po jedej kul. Kończymy losowae w momece, kedy wycągęte zostaą wszystke czare kule. Oblcz wartość oczekwaą lczby
Bardziej szczegółowoWyznaczanie oporu naczyniowego kapilary w przepływie laminarnym.
Wyzaczae oporu aczyowego kaplary w przepływe lamarym. I. Przebeg ćwczea. 1. Zamkąć zawór odcający przewody elastycze a astępe otworzyć zawór otwerający dopływ wody do przewodu kaplarego. 2. Ustawć zawór
Bardziej szczegółowoPRZEGLĄD NAJPROSTSZYCH METOD OPRACOWANIA WYNIKÓW POMIARÓW. dr Michał Januszczyk Zakład Fizyki Medycznej, Wydział Fizyki UAM
PRZEGLĄD NAJPROTZYCH METOD OPRACOWANIA WYNIKÓW POMIARÓW. dr Mchał Jauszczyk Zakład Fzyk Medyczej, Wydzał Fzyk UAM. Każdy zbór cał lub zjawsk fzyczych ma wele cech merzalych mogących staowć zasadę klasyfkacj..
Bardziej szczegółowoSchrödingera. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok
Wykła 0: Rówae Schrögera Dr ż. Zbgew Szklarsk Kaera lekrok paw. C- pok.3 szkla@agh.eu.pl hp://layer.uc.agh.eu.pl/z.szklarsk/ 0.06.07 Wyzał Iforayk lekrok Telekoukacj - Teleforayka Rówae Schrögera jeo z
Bardziej szczegółowoStanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8
Stasław Cchock Natala Nehreecka Zajęca 7-8 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartość oczekwaa eocążoość estymatora Waracja
Bardziej szczegółowoWyrażanie niepewności pomiaru
Wyrażae epewośc pomaru Adrzej Kubaczyk Wydzał Fzyk, Poltechka Warszawska Warszawa, 05 Iformacje wstępe Każdy pomar welkośc fzyczej dokoyway jest ze skończoą dokładoścą, co ozacza, że wyk tego pomaru dokoyway
Bardziej szczegółowoKALIBRACJA NIE ZAWSZE PROSTA
KALIBRACJA NIE ZAWSZE PROSTA Potr Koeczka Katedra Chem Aaltyczej Wydzał Chemczy Poltechka Gdańska S w S C -? C w Sygał - astępstwo kosekwecja przeprowadzoego pomaru główy obekt zateresowań aaltyka. Cel
Bardziej szczegółowoXI Konferencja Naukowa WZEE Rzeszów - Czarna, wrzesień 2013 r.
XI Konferencja Naukowa WZEE 203 Rzeszów - Czarna, 27-30 wrzeseń 203 r. XI Konferencja Naukowa WZEE 203 Rzeszów - Czarna, 27-30 wrzeseń 203 r. CYFROWE PRZEWARZANIE IMPULSOWEGO SYGNAŁU CZĘSOLIWOŚCIOWEGO
Bardziej szczegółowoINSTRUKCJA LABORATORIUM Metrologia techniczna i systemy pomiarowe.
INSTRUKCJA LABORATORIUM Metrologa techcza sstem pomarowe. MTSP pomar MTSP 00 Autor: dr ż. Potr Wcślok Stroa / 5 Cel Celem ćwczea jest wkorzstae w praktce pojęć: mezurad, estmata, błąd pomaru, wk pomaru,
Bardziej szczegółowoOBLICZANIE NIEPEWNOŚCI METODĄ TYPU B
OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B W przypadku gdy e występuje statystyczy rozrzut wyków (wszystke pomary dają te sam wyk epewość pomaru wyzaczamy w y sposób. Główą przyczyą epewośc pomaru jest epewość
Bardziej szczegółowoPODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I PRACOWNIA FIZYCZNA INSTYTUT FIZYKI UJ BIOLOGIA 2016
PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I PRACOWNIA FIZYCZNA INTYTUT FIZYKI UJ BIOLOGIA 06 CEL ĆWICZEŃ. Obserwacja zjawsk efektów fzyczych. Doskoalee umejętośc
Bardziej szczegółowoMatematyka II. x 3 jest funkcja
Maemayka II WYKLD. Całka eozaczoa. Rachuek całkowy. Twerdzea o całkach eozaczoych. Całkowae wybraych klas fukcj. Całkowae fukcj wymerych. Całkowae fukcj rygoomeryczych.. Defcja fukcj perwoej. Fukcję F
Bardziej szczegółowoStatystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych
dr Ewa Wycka Wyższa Szkoła Bakowa w Gdańsku Wtold Komorowsk, Rafał Gatowsk TZ SKOK S.A. Statystycza aalza mesęczych zma współczyka szkodowośc kredytów hpoteczych Wskaźk szkodowośc jest marą obcążea kwoty/lczby
Bardziej szczegółowoStanisław Cichocki. Natalia Nehrebecka. Zajęcia 5
Stasław Cchock Natala Nehreecka Zajęca 5 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartośd oczekwaa eocążoośd estymatora Waracja
Bardziej szczegółowoPolaryzacja i ośrodki dwójłomne. Częśd II
Polaryzacja ośrodk dwójłome Częśd II Dwójłomość wymuszoa Dwójłomośd wymuszoa zjawsko powstawaa lub zmay dwójłomośc ośrodka zotropowego lub azotropowego pod wpływem zewętrzych czyków fzyczych. Czyk zewętrze:
Bardziej szczegółowo( X, Y ) będzie dwuwymiarową zmienną losową o funkcji gęstości
Zadae. Nech Nech (, Y będze dwuwymarową zmeą losową o fukcj gęstośc 4 x + xy gdy x ( 0, y ( 0, f ( x, y = 0 w przecwym przypadku. S = + Y V Y E V S =. =. Wyzacz ( (A 0 (B (C (D (E 8 8 7 7 Zadae. Załóżmy,
Bardziej szczegółowoopisać wielowymiarową funkcją rozkładu gęstości prawdopodobieństwa f(x 1 , x xn
ROZKŁAD PRAWDOPODBIEŃSTWA WIELU ZMIENNYCH LOSOWYCH W przpadku gd mam do czea z zmem losowm możem prawdopodobeństwo, ż przjmą oe wartośc,,, opsać welowmarową fukcją rozkładu gęstośc prawdopodobeństwa f(,,,.
Bardziej szczegółowoMIKROPROCESROWE PRZETWORNIKI NAPIĘCIE-CZĘSTOTLIWOŚĆ I CZĘSTOTLIWOŚĆ-NAPIĘCIE
XX Mędzyarodowe Sympozjm Merologów MSM 205 Rzeszów Iwocz Zdrój, 2-24 wrzeseń 205 MIKROPROCESROWE PRZETWORNIKI NAPIĘCIE-CZĘSTOTLIWOŚĆ I CZĘSTOTLIWOŚĆ-NAPIĘCIE Elgsz PAWŁOWSKI Darsz ŚWISULSKI Pla prezeacj
Bardziej szczegółowo21. CAŁKA KRZYWOLINIOWA NIESKIEROWANA. x = x(t), y = y(t), a < t < b,
CAŁA RZYWOLINIOWA NIESIEROWANA rzywą o rówaiach parameryczych: = (), y = y(), a < < b, azywamy łukiem regularym (gładkim), gdy spełioe są asępujące waruki: a) fukcje () i y() mają ciągłe pochode, kóre
Bardziej szczegółowoL.Kowalski PODSTAWOWE TESTY STATYSTYCZNE WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH
L.Kowalsk PODSTAWOWE TESTY STATYSTYCZNE TESTY STATYSTYCZNE poteza statystycza to dowole przypuszczee dotyczące rozkładu cechy X. potezy statystycze: -parametrycze dotyczą ezaego parametru, -parametrycze
Bardziej szczegółowoROZKŁADY ZMIENNYCH LOSOWYCH
ROZKŁADY ZMIENNYCH LOSOWYCH ZMIENNA LOSOWA Defcja. Zmeą losową jest fukcja: X: E -> R która każdemu zdarzeu elemetaremu E przypsuje lczbę rzeczywstą e X ( e) R DYSTRYBUANTA Dystrybuatą zmeej losowej X
Bardziej szczegółowobędą niezależnymi zmiennymi losowymi z rozkładu o gęstości
Prawdopodobeństwo statystyka 4.0.00 r. Zadae Nech... będą ezależym zmeym losowym z rozkładu o gęstośc θ f ( x) = θ xe gdy x > 0. Estymujemy dodat parametr θ wykorzystując estymator ajwększej warogodośc
Bardziej szczegółowoTeoria Sygnałów. II rok Geofizyki III rok Informatyki Stosowanej. Wykład 4. iωα. Własności przekształcenia Fouriera. α α
ora Sygałów rok Gozyk rok ormatyk Stosowaj Wykład 4 Własośc przkształca ourra własość. Przkształc ourra jst low [ β g ] βg dowód: rywaly całkowa jst opracją lową. własość. wrdz o podobństw [ ] dowód :
Bardziej szczegółowoRóżniczkowanie funkcji rzeczywistych wielu zmiennych. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski
Różczkowae fukcj rzeczywstych welu zmeych rzeczywstych Matematyka Studum doktoracke KAE SGH Semestr let 8/9 R. Łochowsk Pochoda fukcj jedej zmeej e spojrzee Nech f : ( α, β ) R, α, β R, α < β Fukcja f
Bardziej szczegółowoPrąd sinusoidalny. najogólniejszy prąd sinusoidalny ma postać. gdzie: wartości i(t) zmieniają się w czasie sinusoidalnie
Opracował: mgr nż. Marcn Weczorek www.marwe.ne.pl Prąd snsodalny najogólnejszy prąd snsodalny ma posać ( ) m sn(2π α) gdze: warość chwlowa, m warość maksymalna (amplda), T okres, α ką fazowy. T m α m T
Bardziej szczegółowoRegresja REGRESJA
Regresja 39. REGRESJA.. Regresja perwszego rodzaju Nech (, będze dwuwyarową zeą losową, dla które steje kowaracja. Nech E( y ozacza warukową wartość oczekwaą zdefowaą dla przypadku zeych losowych typu
Bardziej szczegółowoPOMIAR WSPÓŁCZYNNIKA POCHŁANIANIA PROMIENIOWANIA γ
Ćwczee 56 POMIAR WSPÓŁCZYNNIKA POCHŁANIANIA PROMIENIOWANIA γ 56.. Wadomośc ogóle Rozpatrzmy wąską skolmowaą wązkę prome γ o atężeu I 0, padającą a płytkę substacj o grubośc x (rys. 56.). Natężee promeowaa
Bardziej szczegółowoZadanie 1. ), gdzie 1. Zmienna losowa X ma rozkład logarytmiczno-normalny LN (, . EX (A) 0,91 (B) 0,86 (C) 1,82 (D) 1,95 (E) 0,84
Zadae. Zmea losowa X ma rozkład logarytmczo-ormaly LN (, ), gdze E ( X e X e) 4. Wyzacz. EX (A) 0,9 (B) 0,86 (C),8 (D),95 (E) 0,84 Zadae. Nech X, X,, X0, Y, Y,, Y0 będą ezależym zmeym losowym. Zmee X,
Bardziej szczegółowoStatystyka. Analiza zależności. Rodzaje zależności między zmiennymi występujące w praktyce: Funkcyjna
Aalza zależośc Rodzaje zależośc mędzy zmeym występujące w praktyce: Fukcyja wraz ze zmaą wartośc jedej zmeej astępuje ścśle określoa zmaa wartośc drugej zmeej (p. w fzyce: spadek swobody gt s ) tochastycza
Bardziej szczegółowoWSPOMAGANE KOMPUTEROWO POMIARY CZĘSTOTLIWOŚCI CHWILOWEJ SYGNAŁÓW IMPULSOWYCH
Metrologa Wspomagana Komputerowo - Zegrze, 9-22 05.997 WSPOMAGANE KOMPUTEROWO POMIARY CZĘSTOTLIWOŚCI CHWILOWEJ SYGNAŁÓW IMPULSOWYCH dr nż. Jan Ryszard Jask, dr nż. Elgusz Pawłowsk POLITECHNIKA lubelska
Bardziej szczegółowoMatematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n
Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam
Bardziej szczegółowoStatystyka i Opracowanie Danych. W7. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407
Statystyka i Opracowaie Daych W7. Estymacja i estymatory Dr Aa ADRIAN Paw B5, pok407 ada@agh.edu.pl Estymacja parametrycza Podstawowym arzędziem szacowaia iezaego parametru jest estymator obliczoy a podstawie
Bardziej szczegółowoTESTY NORMALNOŚCI. ( Cecha X populacji ma rozkład normalny). Hipoteza alternatywna H1( Cecha X populacji nie ma rozkładu normalnego).
TESTY NORMALNOŚCI Test zgodośc Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład ormaly). Hpoteza alteratywa H1( Cecha X populacj e ma rozkładu ormalego). Weryfkacja powyższych hpotez za pomocą tzw. testu
Bardziej szczegółowot - kwantyl rozkładu t-studenta rzędu p o f stopniach swobody
ZJAZD ANALIZA DANYCH CIĄGŁYCH ramach zajęć będą badae próbki pochodzące z poplacji w kórych badaa cecha ma rozkład ormaly N(μ σ). Na zajęciach będą: - wyzaczae przedziały fości dla warości średiej i wariacji
Bardziej szczegółowoFUNKCJE DWÓCH ZMIENNYCH
FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam
Bardziej szczegółowoN ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.
3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy
Bardziej szczegółowoNiezawodność. systemów nienaprawialnych. 1. Analiza systemów w nienaprawialnych. 2. System nienaprawialny przykładowe
Nezawoość sysemów eaprawalych. Aalza sysemów w eaprawalych. Sysemy eaprawale - przykłaowe srukury ezawooścowe 3. Sysemy eaprawale - przykłay aalzy. Aalza sysemów w eaprawalych Sysem eaprawaly jes o sysem
Bardziej szczegółowoWYZNACZANIE WSPÓŁCZYNNIKA POCHŁANIANIA PROMIENIOWANIA W CIALACH STAŁYCH
Fzyka jądra, aomu cała sałego WYZNACZANIE WSPÓŁCZYNNIKA POCHŁANIANIA PROMIENIOWANIA W CIALACH STAŁYCH 1. Ops eoreyczy do ćwczea zameszczoy jes a sroe www.wc.wa.edu.pl w dzale DYDAKTYKA FIZYKA ĆWICZENIA
Bardziej szczegółowoTRANZYSTORY POLOWE JFET I MOSFET
POLTECHNKA RZEZOWKA Kaedra Podsaw Elekroiki srukcja Nr5 F 00/003 sem. lei TRANZYTORY POLOWE JFET MOFET Cel ćwiczeia: Pomiar podsawowych charakerysyk i wyzaczeie paramerów określających właściwości razysora
Bardziej szczegółowoAKADEMIA MORSKA W SZCZECINIE
AKADEMIA MORSKA W SZCZECINIE Istytut Iżyer Ruchu Morskego Zakład Urządzeń Nawgacyjych Istrukcja r 0 Wzory do oblczeń statystyczych w ćwczeach z radoawgacj Szczec 006 Istrukcja r 0: Wzory do oblczeń statystyczych
Bardziej szczegółowoVI. TWIERDZENIA GRANICZNE
VI. TWIERDZENIA GRANICZNE 6.. Wprowadzee Twerdzea gracze dotyczą własośc graczych cągów zmeych losowych dzelą sę a:! twerdzea lokale opsują zbeżośc cągu fukcj prawdopodobeństwa w przypadku cągu {X } zmeych
Bardziej szczegółowoMIANO ROZTWORU TITRANTA. Analiza statystyczna wyników oznaczeń
MIANO ROZTWORU TITRANTA Aaliza saysycza wyików ozaczeń Esymaory pukowe Średia arymeycza x jes o suma wyików w serii podzieloa przez ich liczbę: gdzie: x i - wyik poszczególego ozaczeia - liczba pomiarów
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA WYKŁAD 1. Wiadomości wstępne
TATYTYKA MATEMATYCZNA WYKŁAD Wadomośc wstępe tatystyka to dyscypla aukowa, której zadaem jest wykrywae, aalza ops prawdłowośc występujących w procesach masowych. Populacja to zborowość podlegająca badau
Bardziej szczegółowoD:\materialy\Matematyka na GISIP I rok DOC\07 Pochodne\8A.DOC 2004-wrz-15, 17: Obliczanie granic funkcji w punkcie przy pomocy wzoru Taylora.
D:\maerialy\Maemayka a GISIP I rok DOC\7 Pochode\8ADOC -wrz-5, 7: 89 Obliczaie graic fukcji w pukcie przy pomocy wzoru Taylora Wróćmy do wierdzeia Taylora (wzory (-( Tw Szczególie waża dla dalszych R rozważań
Bardziej szczegółowoStatystyka opisowa. () Statystyka opisowa 24 maja / 8
Część I Statystyka opisowa () Statystyka opisowa 24 maja 2010 1 / 8 Niech x 1, x 2,..., x będą wyikami pomiarów, p. temperatury, ciśieia, poziomu rzeki, wielkości ploów itp. Przykład 1: wyiki pomiarów
Bardziej szczegółowoKodowanie rónicowe. Plan 1. Zasada 2. Podstawowy algorytm 3. Kodowanie adaptacyjne 4. Zastosowania
Kodowae rócowe Pla 1. Zasada. Podstawowy algorytm 3. Kodowae adaptacyje 4. Zastosowaa Kodowae rócowe zasada Jako kwatyzacj szeroko przedzału waracja, rozpto daych Obrazy, dwk korelacja w daych Wykorzystae
Bardziej szczegółowo1. Element nienaprawialny, badania niezawodności. Model matematyczny elementu - dodatnia zmienna losowa T, określająca czas życia elementu
Badaia iezawodościowe i saysycza aaliza ich wyików. Eleme ieaprawialy, badaia iezawodości Model maemayczy elemeu - dodaia zmiea losowa T, określająca czas życia elemeu Opis zmieej losowej - rozkład, lub
Bardziej szczegółowoPORÓWNYWANIE CZĘSTOTLIWOŚCI WZORCOWYCH W ŚRODOWISKU LABVIEW
II Sympozjum Naukowe APM 2013 Gdańsk, 15 września 2013 r. PORÓWNYWANIE CZĘSTOTLIWOŚCI WZORCOWYCH W ŚRODOWISKU LABVIEW Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Plan
Bardziej szczegółowoZakłócenia w układach elektroenergetycznych LABORATORIUM 3
Zakłócenia w układach elektroenergetycznych LABORATORIUM 3 Przekształcenie 0-1- Dane są napięcia w trzech fazach (symetryczne): U = V U A = U max sin(ωt + 11. ) U B = U max sin(ωt + 11. ) U C = U max sin(ωt
Bardziej szczegółowoWyznaczyć prędkości punktów A i B
Wyzaczaie prędkości i przyspieszeia puku ciała w ruchu płaskim (a) Wyzaczyć prędkości puków i Dae: rad/s; ε 0; 5 cm; 5 cm 48 mechaika echicza kiemayka 3 Wyzaczaie prędkości i przyspieszeia puku ciała w
Bardziej szczegółowoSymulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych
XXXVIII MIĘDZYUCZELNIANIA KONFERENCJA METROLOGÓW MKM 06 Warszawa Białobrzegi, 4-6 września 2006 r. Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych Eligiusz PAWŁOWSKI Politechnika
Bardziej szczegółowoEKONOMETRIA. Liniowy model ekonometryczny (regresji) z jedną zmienną objaśniającą
EKONOMETRIA Tema wykładu: Liiowy model ekoomeryczy (regresji z jedą zmieą objaśiającą Prowadzący: dr iż. Zbigiew TARAPATA e-mail: Zbigiew.Tarapaa Tarapaa@isi.wa..wa.edu.pl hp:// zbigiew.arapaa.akcja.pl/p_ekoomeria/
Bardziej szczegółowoSystem finansowy gospodarki
System fasowy gospodark Zajęca r 6 Matematyka fasowa c.d. Rachuek retowy (autetowy) Maem rachuku retowego określa sę regulare płatośc w stałych odstępach czasu przy założeu stałej stopy procetowej. Przykłady
Bardziej szczegółowoWykład 19. Matematyka 3, semestr zimowy 2011/ grudnia 2011
Wykład 9 Matematyka 3, semestr zimowy 0/0 3 grudia 0 Zajmiemy się teraz rozwiięciem fukcji holomorficzej w szereg Taylora. Przypomijmy podstawowe fakty związae z szeregami potęgowymi o wyrazach rzeczywistych.
Bardziej szczegółowoRys.1. Podstawowa klasyfikacja sygnałów
Kaedra Podsaw Sysemów echnicznych - Podsawy merologii - Ćwiczenie 1. Podsawowe rodzaje i ocena sygnałów Srona: 1 1. CEL ĆWICZENIA Celem ćwiczenia jes zapoznanie się z podsawowymi rodzajami sygnałów, ich
Bardziej szczegółowoLinie regresji II-go rodzaju
Lam regresj II-go rodzaju zmeej () względem () azwam zadae krzwe g(;,, ) oraz h(;,, ) gd spełają oe odpowedo waruk: E E Le regresj II-go rodzaju ( ( )) ( ) ( ) ( ) ( ) g ;,,... g ;,,... f, dd m,,... (
Bardziej szczegółowoLiniowe relacje między zmiennymi
Lowe relacje mędzy zmeym Marta Zalewska Zakład Proflaktyk ZagrożeńŚrodowskowych Alergolog Ocea lowych relacj mędzy zmeym Metoda korelacj - określee rodzaju sły zależośc mędzy cecham. Metoda regresj 1 Uwaga
Bardziej szczegółowoWYZNACZENIE CHARAKTERYSTYK STATYCZNYCH PRZETWORNIKÓW POMIAROWYCH
Zakład Metrologii i Systemów Pomiarowych P o l i t e c h i k a P o z ańska ul. Jaa Pawła II 4 60-96 POZNAŃ (budyek Cetrum Mechatroiki, Biomechaiki i Naoiżerii) www.zmisp.mt.put.poza.pl tel. +48 6 66 3
Bardziej szczegółowoMatematyka ubezpieczeń majątkowych r. t warunkowo niezależne i mają (brzegowe) rozkłady Poissona:
Zadae. W kolejych okresach czasu t =, ubezpeczoy, charakteryzujący sę parametrem ryzyka Λ, geeruje N t szkód. Dla daego Λ = λ zmee N, N są warukowo ezależe mają (brzegowe) rozkłady Possoa: k λ Pr( N t
Bardziej szczegółowoWykład FIZYKA I. 2. Kinematyka punktu materialnego. Dr hab. inż. Władysław Artur Woźniak
Dr hab. iż. Władysław Arur Woźiak Wykład FIZYKA I. Kiemayka puku maerialego Dr hab. iż. Władysław Arur Woźiak Isyu Fizyki Poliechiki Wrocławskiej hp://www.if.pwr.wroc.pl/~woziak/fizyka1.hml Dr hab. iż.
Bardziej szczegółowoZastosowanie informatyki w chemii
Projekt p. Wzmocee potecjału dydaktyczego UMK w Toruu w dzedzach matematyczo-przyrodczych realzoway w ramach Poddzałaa 4.. Programu Operacyjego Kaptał Ludzk Zastosowae formatyk w chem Potr Szczepańsk UMK
Bardziej szczegółowoĆwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny
TEMATYKA: Regresja liiowa dla prostej i płaszczyzy Ćwiczeia r 5 DEFINICJE: Regresja: metoda statystycza pozwalająca a badaie związku pomiędzy wielkościami daych i przewidywaie a tej podstawie iezaych wartości
Bardziej szczegółowoMateriały do wykładu 7 ze Statystyki
Materał do wkładu 7 ze Statstk Aalza ZALEŻNOŚCI pomędz CECHAMI (Aalza KORELACJI REGRESJI) korelacj wkres rozrzutu (korelogram) rodzaje zależośc (brak, elowa, lowa) pomar sł zależośc lowej (współczk korelacj
Bardziej szczegółowoMiary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej
Podstawy Mary położea wskazują mejsce wartośc ajlepej reprezetującej wszystke welkośc daej zmeej. Mówą o przecętym pozome aalzowaej cechy. Średa arytmetycza suma wartośc zmeej wszystkch jedostek badaej
Bardziej szczegółowoSzeregi czasowe, modele DL i ADL, przyczynowość, integracja
Szereg czasowe, modele DL ADL, rzyczyowość, egracja Szereg czasowy, o cąg realzacj zmeej losowej, owedzmy y, w kolejych okresach czasu: { y } T, co rówoważe możemy zasać: = 1 y = { y1, y,..., y T }. Najogólej
Bardziej szczegółowoCentralna Izba Pomiarów Telekomunikacyjnych (P-12) Komputerowe stanowisko do wzorcowania generatorów podstawy czasu w częstościomierzach cyfrowych
Cetrala Izba Pomarów Telekomukacyjych (P-1) Komputerowe staowsko do wzorcowaa geeratorów podstawy czasu w częstoścomerzach cyrowych Praca r 1300045 Warszawa, grudzeń 005 Komputerowe staowsko do wzorcowaa
Bardziej szczegółowoTARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA
Ćwczee 8 TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA 8.. Cel ćwczea Celem ćwczea jest wyzaczee statyczego współczyka tarca pomędzy walcową powerzchą cała a opasującą je lą. Poadto a drodze eksperymetalej
Bardziej szczegółowoNiepewności pomiarów. DR Andrzej Bąk
Nepewośc pomarów DR Adrzej Bąk Defcje Błąd pomar - różca mędz wkem pomar a wartoścą merzoej welkośc fzczej. Bwa też azwa błędem bezwzględm pomar. Poeważ wartość welkośc merzoej wartość prawdzwa jest w
Bardziej szczegółowoPolitechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania MODELOWANIE I PODSTAWY IDENTYFIKACJI
Poltechka Gdańska Wydzał Elektrotechk Automatyk Katedra Iżyer Systemów Sterowaa MODELOWANIE I PODSAWY IDENYFIKACI Wybrae zagadea z optymalzacj. Materały pomoccze do zajęć ćwczeowych 5 Opracowae: Kazmerz
Bardziej szczegółowoEKSTREMA FUNKCJI EKSTREMA FUNKCJI JEDNEJ ZMIENNEJ. Tw. Weierstrassa Każda funkcja ciągła na przedziale domkniętym ma wartość najmniejszą i największą.
Joaa Ceślak, aula Bawej ESTREA FUNCJI ESTREA FUNCJI JEDNEJ ZIENNEJ Otoczeem puktu R jest każdy przedzał postac,+, gdze >. Sąsedztwem puktu jest każdy zbór postac,,+, gdze >. Nech R, : R oraz ech. De. ówmy,
Bardziej szczegółowoŚrednia arytmetyczna Klasyczne Średnia harmoniczna Średnia geometryczna Miary położenia inne
Mary położea Średa arytmetycza Klasycze Średa harmocza Średa geometrycza Mary położea e Modala Kwartyl perwszy Pozycyje Medaa (kwartyl drug) Kwatyle Kwartyl trzec Decyle Średa arytmetycza = + +... + 2
Bardziej szczegółowoψ przedstawia zależność
Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi
Bardziej szczegółowo