Wykład 3 Momenty zmiennych losowych.
|
|
- Kamila Piątkowska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Wykład 3 Momenty zmiennych losowych. Wrocław, 19 października 2016r
2 Momenty zmiennych losowych
3 Wartość oczekiwana - przypomnienie Definicja 3.1: 1 Niech X będzie daną zmienną losową. Jeżeli X jest zmienną losową dyskretną oraz i x i P(X = x i ) <, to istnieje wartość oczekiwana EX dana wzorem: EX = i x i P(X = x i )
4 Wartość oczekiwana - przypomnienie Definicja 3.1: 1 Niech X będzie daną zmienną losową. Jeżeli X jest zmienną losową dyskretną oraz i x i P(X = x i ) <, to istnieje wartość oczekiwana EX dana wzorem: EX = i x i P(X = x i ) 2 Jeżeli X jest zmienną losową z ciągłą gęstością f oraz x f (x)dx <, to istnieje wartość oczekiwana EX dana wzorem EX = xf (x)dx
5 Własności wartości oczekiwanej - przypomnienie Niech będą dane zmienne losowe X i Y oraz stała a E(a) = a E(aX ) = ae(x ) E(X Y ) = EX EY E(X + Y ) = EX + EY Jeżeli X i Y są niezależnymi zmiennymi losowymi, to: E(XY ) = EX EY
6 Momenty Definicja 3.2: Momentem rzędu n rozkładu zmiennej losowej X nazywamy: µ n = EX n Momentem centralnym rzędu n rozkładu zmiennej losowej X nazywamy: m n = E[X EX ] n
7 Momenty Definicja 3.2: Momentem rzędu n rozkładu zmiennej losowej X nazywamy: µ n = EX n Momentem centralnym rzędu n rozkładu zmiennej losowej X nazywamy: m n = E[X EX ] n Wartość oczekiwana EX jest pierwszym momentem rozkładu zmiennej losowej X
8 Momenty Szczególnym przypadkiem momentu centralnego jest wariancja zmiennej losowej, którą będziemy oznaczać Var: Definicja 3.3: Moment centralny rzędu 2 rozkładu zmiennej losowej X nazywamy wariancją: Var(X ) = E[X EX ] 2 = EX 2 (EX ) 2
9 Momenty Szczególnym przypadkiem momentu centralnego jest wariancja zmiennej losowej, którą będziemy oznaczać Var: Definicja 3.3: Moment centralny rzędu 2 rozkładu zmiennej losowej X nazywamy wariancją: Var(X ) = E[X EX ] 2 = EX 2 (EX ) 2 Wariancja zmiennej losowej (błąd średniokwadratowy) jest to miara rozproszenia wartości zmiennej wokół wartości średniej.
10 Momenty Szczególnym przypadkiem momentu centralnego jest wariancja zmiennej losowej, którą będziemy oznaczać Var: Definicja 3.3: Moment centralny rzędu 2 rozkładu zmiennej losowej X nazywamy wariancją: Var(X ) = E[X EX ] 2 = EX 2 (EX ) 2 Wariancja zmiennej losowej (błąd średniokwadratowy) jest to miara rozproszenia wartości zmiennej wokół wartości średniej. Im wariancja jest mniejsza tym bardziej wartości zmiennej skupiają się wokół średniej.
11 Momenty Twierdzenie 3.1 Jeżeli zmienna losowa X ma skończoną wariancję to dla dowolnych stałych a i b zachodzi: Var(aX + b) = a 2 Var(X ) Jeżeli zmienne losowe X i Y są niezależne i mają skończone wariancje to Var(X + Y ) = Var(X ) + Var(Y ) Dowód: na ćwiczeniach.
12 Momenty. Przykład 3.1 Wyznaczyć warość oczekiwaną i wariancję zmiennej losowej X z rozkładu wykładniczego ze średnią 1/λ.
13 Momenty. Przykład 3.1 Wyznaczyć warość oczekiwaną i wariancję zmiennej losowej X z rozkładu wykładniczego ze średnią 1/λ. Zmienna X ma rozkład Ex(λ), a zatem f X (x) = λe λx I (0, ) (x). Wyznaczmy EX, korzystając z całkowania przez części: EX = xλe λx dx = xe λx 0 = 0 e λx dx = 1 λ + e λx dx = 0 0
14 Momenty. Przykład c.d. Następnie dwukrotnie całkując przez części otrzymujemy EX 2 : EX 2 = x 2 λe λx dx = x 2 e λx xe λx dx = 0 0 = 2 λ 0 xλe λx dx = 2 λ 2
15 Momenty. Przykład c.d. Następnie dwukrotnie całkując przez części otrzymujemy EX 2 : EX 2 = x 2 λe λx dx = x 2 e λx xe λx dx = 0 0 Następnie: = 2 λ 0 xλe λx dx = 2 λ 2 VarX = EX 2 (EX ) 2 = 2 λ 2 1 λ 2 = 1 λ 2
16 Momenty W statystyce znaczenie mają również momenty centralne rzędów trzeciego i czwartego, za pomocą których wyznacza się znane miary statystyczne: Definicja 3.4: wskaźnik asymetrii (wskaźnik skośności) γ 1 = E[X EX ]3 [Var(X )] 3/2 = m 3 m 2/3 2 wskaźnik spłaszczenia (kurtoza, eksces) γ 2 = E[X EX ]4 [Var(X )] 2 3 = m 4 m2 2 3
17 Próba losowa. Rozkład łączny.
18 Próba losowa Definicja 3.5: Wektor zmiennych losowych X = (X 1, X 2,... X n ) nazywamy próbą losową rozmiaru n z rozkładu o gęstości f X (x) jeśli X 1, X 2,..., X n są niezależnymi zmiennymi losowymi o wspólnym rozkładzie z gęstością f (x)
19 Próba losowa Definicja 3.5: Wektor zmiennych losowych X = (X 1, X 2,... X n ) nazywamy próbą losową rozmiaru n z rozkładu o gęstości f X (x) jeśli X 1, X 2,..., X n są niezależnymi zmiennymi losowymi o wspólnym rozkładzie z gęstością f (x) Niech X 1, X 2,..., X n będą niezależnymi zmiennymi losowymi o gęstościach f (x 1 ), f (x 2 ),..., f (x n ) odpowiednio. Gęstość łączna wektora losowego X wygląda następująco: n f (x) = f (x 1, x 2,..., x n ) = f (x 1 )f (x 2 ) f (x n ) = f (x i ),
20 Próba losowa Definicja 3.5: Wektor zmiennych losowych X = (X 1, X 2,... X n ) nazywamy próbą losową rozmiaru n z rozkładu o gęstości f X (x) jeśli X 1, X 2,..., X n są niezależnymi zmiennymi losowymi o wspólnym rozkładzie z gęstością f (x) Niech X 1, X 2,..., X n będą niezależnymi zmiennymi losowymi o gęstościach f (x 1 ), f (x 2 ),..., f (x n ) odpowiednio. Gęstość łączna wektora losowego X wygląda następująco: n f (x) = f (x 1, x 2,..., x n ) = f (x 1 )f (x 2 ) f (x n ) = f (x i ), natomiast dystrybuanta łączna: F (x) = F (x 1, x 2,..., x n ) = F (x 1 )F (x 2 ) F (x n ) = n F (x i )
21 Próba losowa. Przykład 3.2 Niech X = (X 1, X 2,... X n ) będzie próbą losową z rozkładu wykładniczego z parametrem λ. Wyznaczyć gęstość łączną wektora losowego.
22 Próba losowa. Przykład 3.2 Niech X = (X 1, X 2,... X n ) będzie próbą losową z rozkładu wykładniczego z parametrem λ. Wyznaczyć gęstość łączną wektora losowego. X i Ex(λ), czyli f (x i ) = λe λx i I (0, ) (x i ) f X (x) = n f (x i ) = n λe λx i I (0, ) (x i ) = λ n exp( λ n x i )
23 Rozkłady wybranych statystyk próbkowych.
24 Statystyka Definicja 3.6: Zmienną losową będącą dowolną funkcją wyników próby losowej, tzn. dowolną funkcję nazywamy statystyką. T (X 1, X 2,... X n )
25 Statystyka Definicja 3.6: Zmienną losową będącą dowolną funkcją wyników próby losowej, tzn. dowolną funkcję nazywamy statystyką. Definicja 3.7: T (X 1, X 2,... X n ) Dowolną statystykę służącą do oszacowania nieznanej wartości parametru populacji generalnej lub nieznanego rozkładu populacji nazywamy estymatorem
26 Statystyki próbkowe Niech X = (X 1, X 2,... X n ) będzie n elementową próbą losową. Definicja 3.8: Średnią z próby nazywamy statystykę: X = 1 n X i n
27 Statystyki próbkowe Niech X = (X 1, X 2,... X n ) będzie n elementową próbą losową. Definicja 3.8: Średnią z próby nazywamy statystykę: X = 1 n X i n Definicja 3.9: Wariancją z próby nazywamy statystykę: S 2 = 1 n 1 n (X i X ) 2
28 Statystyki próbkowe Niech X = (X 1, X 2,... X n ) będzie n elementowym wektorem losowym. Wariancja nieobciążona: S 2 = 1 n 1 n (X i X ) 2 Wariancja obciążona: S0 2 = 1 n n (X i X ) 2
29 Rozkłady statystyk próbkowych Lemat 3.1: Niech X 1, X 2,... X n będzie n elementową próbą losową, a g(x), funkcją dla której E[g(x)] oraz Var[g(x)] istnieją. Wówczas: oraz ( n ) E g(x i ) = ne[g(x 1 )] ( n ) Var g(x i ) = nvar[g(x 1 )]
30 Rozkłady statystyk próbkowych Twierdzenie 3.2: Niech X 1, X 2,... X n będzie n elementową próbą losową, o średniej EX i = µ, i wariancji VarX i = σ 2 < Wówczas: 1 E X = µ 2 Var X = σ2 n 3 ES 2 = σ 2 4 VarS 2 = 2 n 1 σ4
31 Rozkłady statystyk próbkowych Dowód: Korzystając z Lematu 3.1 otrzymujemy: ( ) E X 1 n = E X i = 1 ( n ) n n E X i = 1 n nex 1 = µ co dowodzi równości (1) w Twierdzeniu 3.2.
32 Rozkłady statystyk próbkowych Dowód: Korzystając z Lematu 3.1 otrzymujemy: ( ) E X 1 n = E X i = 1 ( n ) n n E X i = 1 n nex 1 = µ co dowodzi równości (1) w Twierdzeniu 3.2. Analogicznie dowodzimy równości (2): Var X = Var ( 1 n ) n X i = 1 ( n ) n 2 Var X i = 1 n 2 nvarx 1 = σ2 n
33 Rozkłady statystyk próbkowych Dowód: Aby dowieść punktu (3) Twierdzenia, najpierw pokażemy, że zachodzi równość n n (X i X ) 2 = Xi 2 n X 2 (1)
34 Rozkłady statystyk próbkowych Dowód: Aby dowieść punktu (3) Twierdzenia, najpierw pokażemy, że zachodzi równość n n (X i X ) 2 = Xi 2 n X 2 (1) Niech a R, powyższą równość dowodzimy następująco: n (X i X n ) 2 = (X i a + a X ) 2 = = n (X i a) n (X i a)(a X ) + n = X 2 i n X 2. n (a X ) 2 = Przyjmując a = 0 otrzymujemy dowodzoną równość.
35 Rozkłady statystyk próbkowych Dowód: Zatem korzystając z równania (1) i Lematu 3.1 dostajemy: ES 2 = E ( 1 n 1 ) ( ( n 1 n )) (X i X ) 2 = E Xi 2 n X 2 = n 1 = 1 ( ( n ) ) E Xi 2 ne X 2 = n 1 ( ( )) σ n(σ 2 + µ 2 2 ) n n + µ2 = σ 2 = 1 n 1
36 Statystyki próbkowe Jeżeli X = (X 1, X 2,... X n ) jest próbą losową z rozkładu normalnego, tj X i N(µ, σ 2 ) to: X = 1 ( ) n X i N µ, σ2 n n ns 2 σ 2 χ2 (n 1) Zmienne X i S 2 są niezależnymi zmiennymi losowymi
37 Statystyki próbkowe Niech X = (X 1, X 2,... X n ) będzie n elementową próbą losową. Definicja 3.10: k tym momentem empirycznym zwykłym nazywamy statystykę: M k = 1 n n X k i
38 Statystyki próbkowe Niech X = (X 1, X 2,... X n ) będzie n elementową próbą losową. Definicja 3.10: k tym momentem empirycznym zwykłym nazywamy statystykę: M k = 1 n n X k i Definicja 3.11: k tym momentem empirycznym centralnym nazywamy statystykę: C k = 1 n (X i M 1 ) k n
39 Statystyki ekstremalne Maksimum z próby oznaczmy przez: X (n:n) = max(x 1, X 2,... X n )
40 Statystyki ekstremalne Maksimum z próby oznaczmy przez: X (n:n) = max(x 1, X 2,... X n ) Minimum z próby oznaczmy przez: X (1:n) = min(x 1, X 2,... X n )
41 Rozkłady statystyk ekstremalnych Rozkład maksimum F Xn:n (t) = P(X n:n t) = P(max(X 1, X 2,... X n ) t) = = P(X 1 t, X 2 t,... X n t) = = P(X 1 t)p(x 2 t) P(X n t) = [F X (t)] n
42 Rozkłady statystyk ekstremalnych Rozkład maksimum F Xn:n (t) = P(X n:n t) = P(max(X 1, X 2,... X n ) t) = = P(X 1 t, X 2 t,... X n t) = = P(X 1 t)p(x 2 t) P(X n t) = [F X (t)] n Rozkład minimum F X1:n (t) = P(X 1:n t) = P(min(X 1, X 2,... X n ) t) = = 1 P(min(X 1, X 2,... X n ) t) = = 1 P(X 1 t)p(x 2 t) P(X n t) = 1 (1 P(X 1 t))(1 P(X 2 t)) (1 P(X n t)) = = 1 [1 F X (t)] n
43 Statystyki pozycyjne Niech X = (X 1, X 2,..., X n ) - próbą losową o wartościach x = (x 1, x 2,..., x n ).
44 Statystyki pozycyjne Niech X = (X 1, X 2,..., X n ) - próbą losową o wartościach x = (x 1, x 2,..., x n ). Uporządkowując wartości wektora w kolejności rosnącej otrzymujemy: x 1:n x 2:n x n:n.
45 Statystyki pozycyjne Niech X = (X 1, X 2,..., X n ) - próbą losową o wartościach x = (x 1, x 2,..., x n ). Uporządkowując wartości wektora w kolejności rosnącej otrzymujemy: x 1:n x 2:n x n:n. Wektor statystyk pozycyjnych: (X 1:n, X 2:n,..., X n:n )
46 Statystyki pozycyjne Twierdzenie 3.3 Niech X = (X 1, X 2,..., X n ) - próbą losową z rozkładu o dystrybuancie F. Statystyka pozycyjna X i:n ma rozkład o dystrybuancie: F i:n = n! F (x) t i 1 (1 t) n i dt (i 1)!(n i)! 0
47 Literatura: Bartoszewicz J.,Wykłady ze statystyki matematycznej, PWN, Warszawa Gajek L., Kałuszka M.,Wnioskowanie statystyczne, WNT, Warszawa 2000, wyd. IV. Krysicki W., Bartos J., Dyczka W., Krówlikowska K., Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, część II, PWN, 2012 Magiera M, Modele i metody statystyki matematycznej, część II, wnioskowanie statystyczne, Wrocław, 2007
Wykład 3 Momenty zmiennych losowych.
Wykład 3 Momenty zmiennych losowych. Wrocław, 18 października 2017r Momenty zmiennych losowych Wartość oczekiwana - przypomnienie Definicja 3.1: 1 Niech X będzie daną zmienną losową. Jeżeli X jest zmienną
Wykład 5 Estymatory nieobciążone z jednostajnie minimalną war
Wykład 5 Estymatory nieobciążone z jednostajnie minimalną wariancją Wrocław, 25 października 2017r Statystyki próbkowe - Przypomnienie Niech X = (X 1, X 2,... X n ) będzie n elementowym wektorem losowym.
Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału
Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału Magdalena Frąszczak Wrocław, 22.02.2017r Zasady oceniania Ćwiczenia 2 kolokwia (20 punktów każde) 05.04.2017 oraz 31.05.2017 2 kartkówki
Statystyka. Wykład 2. Krzysztof Topolski. Wrocław, 11 października 2012
Wykład 2 Wrocław, 11 października 2012 Próba losowa Definicja. Zmienne losowe X 1, X 2,..., X n nazywamy próba losową rozmiaru n z rozkładu o gęstości f (x) (o dystrybuancie F (x)) jeśli X 1, X 2,...,
Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014
Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe
Wykład 6 Estymatory efektywne. Własności asymptotyczne estym. estymatorów
Wykład 6 Estymatory efektywne. Własności asymptotyczne estymatorów Wrocław, 30 listopada 2016r Powtórzenie z rachunku prawdopodobieństwa Zbieżność Definicja 6.1 Niech ciąg {X } n ma rozkład o dystrybuancie
Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015
Zmienne losowe, statystyki próbkowe Wrocław, 2 marca 2015 Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20 punktów) aktywność Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20
Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap
Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap Magdalena Frąszczak Wrocław, 21.02.2018r Tematyka Wykładów: Próba i populacja. Estymacja parametrów z wykorzystaniem metody
Wykład 2 Zmienne losowe i ich rozkłady
Wykład 2 Zmienne losowe i ich rozkłady Magdalena Frąszczak Wrocław, 11.10.2017r Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe Doświadczenie
Wykład 7 Testowanie zgodności z rozkładem normalnym
Wykład 7 Testowanie zgodności z rozkładem normalnym Wrocław, 05 kwietnia 2017 Rozkład normalny Niech X = (X 1, X 2,..., X n ) będzie próbą z populacji o rozkładzie normalnym określonym przez dystrybuantę
WSTĘP. Tematy: Regresja liniowa: model regresji liniowej, estymacja nieznanych parametrów. Wykład:30godz., ćwiczenia:15godz., laboratorium:30godz.
Tematy: WSTĘP 1. Wprowadzenie do przedmiotu. Próbkowe odpowiedniki wielkości populacyjnych. Modele statystyczne i przykładowe zadania wnioskowania statystycznego. Statystyki i ich rozkłady. 2. Estymacja
PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA
PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA 1. Trójkę (Ω, F, P ), gdzie Ω, F jest σ-ciałem podzbiorów Ω, a P jest prawdopodobieństwem określonym na F, nazywamy przestrzenią probabilistyczną. 2. Rodzinę F
Metoda momentów i kwantyli próbkowych. Wrocław, 7 listopada 2014
Metoda momentów i kwantyli próbkowych Wrocław, 7 listopada 2014 Metoda momentów Momenty zmiennych losowych X 1, X 2,..., X n - próba losowa. Momenty zmiennych losowych X 1, X 2,..., X n - próba losowa.
WYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki
WYKŁAD 6 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Własności Wariancji Przypomnijmy, że VarX = E(X EX) 2 = EX 2 (EX) 2. Własności
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem
Rachunek prawdopodobieństwa i statystyka
Rachunek prawdopodobieństwa i statystyka Momenty Zmienna losowa jest wystarczająco dokładnie opisana przez jej rozkład prawdopodobieństwa. Względy praktyczne dyktują jednak potrzebę znalezienia charakterystyk
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 4 / 9 Przekształcenia zmiennej losowej X
Wykład 12 Testowanie hipotez dla współczynnika korelacji
Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 23 maja 2018 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem
Wykład 12 Testowanie hipotez dla współczynnika korelacji
Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 24 maja 2017 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem
Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład
Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 3 1 / 8 ZADANIE z rachunku
Statystyka matematyczna. Wykład III. Estymacja przedziałowa
Statystyka matematyczna. Wykład III. e-mail:e.kozlovski@pollub.pl Spis treści Rozkłady zmiennych losowych 1 Rozkłady zmiennych losowych Rozkład χ 2 Rozkład t-studenta Rozkład Fischera 2 Przedziały ufności
Definicja 1 Statystyką nazywamy (mierzalną) funkcję obserwowalnego wektora losowego
Rozdział 1 Statystyki Definicja 1 Statystyką nazywamy (mierzalną) funkcję obserwowalnego wektora losowego X = (X 1,..., X n ). Uwaga 1 Statystyka jako funkcja wektora zmiennych losowych jest zmienną losową
Wykład 10 Testy jednorodności rozkładów
Wykład 10 Testy jednorodności rozkładów Wrocław, 16 maja 2018 Test Znaków test jednorodności rozkładów nieparametryczny odpowiednik testu t-studenta dla prób zależnych brak normalności rozkładów Test Znaków
5 Przegląd najważniejszych rozkładów
5 Przegląd najważniejszych rozkładów 5. Rozkład Bernoulliego W niezmieniających się warunkach wykonujemy n razy pewne doświadczenie. W wyniku każdego doświadczenia może nastąpić zdarzenie A lub A. Zakładamy,
Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/
Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, bud. CIW, p. 221 e-mail: zdzislaw.otachel@up.lublin.pl
Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa
Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący
Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu.
Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu. A Teoria Definicja A.1. Niech (Ω, F, P) będzie przestrzenią probabilistyczną. Zmienną losową określoną na przestrzeni Ω nazywamy dowolną
Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne
Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne 5.2. Momenty rozkładów łącznych. Katarzyna Rybarczyk-Krzywdzińska rozkładów wielowymiarowych Przypomnienie Jeśli X jest zmienną losową o rozkładzie
Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast
Prawdopodobieństwo i statystyka
Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej
Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014
Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu
METODY ESTYMACJI PUNKTOWEJ. nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie
METODY ESTYMACJI PUNKTOWEJ X 1,..., X n - próbka z rozkładu P θ, θ Θ, θ jest nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie P θ. Definicja. Estymatorem
1 Podstawy rachunku prawdopodobieństwa
1 Podstawy rachunku prawdopodobieństwa Dystrybuantą zmiennej losowej X nazywamy prawdopodobieństwo przyjęcia przez zmienną losową X wartości mniejszej od x, tzn. F (x) = P [X < x]. 1. dla zmiennej losowej
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 7 i 8 1 / 9 EFEKTYWNOŚĆ ESTYMATORÓW, próba
Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.
Rachunek prawdopodobieństwa MAT1332 Wydział Matematyki, Matematyka Stosowana Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Warunkowa
Zmienne losowe. dr Mariusz Grządziel Wykład 12; 20 maja 2014
Zmienne losowe dr Mariusz Grządziel Wykład 2; 20 maja 204 Definicja. Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 2 i 3 1 / 19 Zmienna losowa Definicja Dana jest przestrzeń probabilistyczna
... i statystyka testowa przyjmuje wartość..., zatem ODRZUCAMY /NIE MA POD- STAW DO ODRZUCENIA HIPOTEZY H 0 (właściwe podkreślić).
Egzamin ze Statystyki Matematycznej, WNE UW, wrzesień 016, zestaw B Odpowiedzi i szkice rozwiązań 1. Zbadano koszt 7 noclegów dla 4-osobowej rodziny (kwatery) nad morzem w sezonie letnim 014 i 015. Wylosowano
Zmienne losowe. dr Mariusz Grzadziel. rok akademicki 2016/2017 semestr letni. Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu
Zmienne losowe dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu rok akademicki 2016/2017 semestr letni Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór
Prawdopodobieństwo i statystyka
Wykład VIII: Przestrzenie statystyczne. Estymatory 1 grudnia 2014 Wprowadzenie Przykład: pomiar z błędem Współczynnik korelacji r(x, Z) = 0, 986 Wprowadzenie Przykład: pomiar z błędem Współczynnik korelacji
STATYSTYKA MATEMATYCZNA WYKŁAD października 2009
STATYSTYKA MATEMATYCZNA WYKŁAD 4 26 października 2009 Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ (X µ) 2 { (x µ) 2 exp 1 ( ) } x µ 2 dx 2 σ Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ
Statystyczna analiza danych
Statystyczna analiza danych Marek Ptak 21 października 2013 Marek Ptak Statystyka 21 października 2013 1 / 70 Część I Wstęp Marek Ptak Statystyka 21 października 2013 2 / 70 LITERATURA A. Łomnicki, Wprowadzenie
Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.
Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.
Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.
Rachunek prawdopodobieństwa MAP1181 Wydział PPT, MS, rok akad. 213/14, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.
Wykład 9 Testy rangowe w problemie dwóch prób
Wykład 9 Testy rangowe w problemie dwóch prób Wrocław, 18 kwietnia 2018 Test rangowy Testem rangowym nazywamy test, w którym statystyka testowa jest konstruowana w oparciu o rangi współrzędnych wektora
Testowanie hipotez statystycznych.
Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie
1 Gaussowskie zmienne losowe
Gaussowskie zmienne losowe W tej serii rozwiążemy zadania dotyczące zmiennych o rozkładzie normalny. Wymagana jest wiedza na temat własności rozkładu normalnego, CTG oraz warunkowych wartości oczekiwanych..
Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru
STATYSTYKA MATEMATYCZNA WYKŁAD grudnia 2009
STATYSTYKA MATEMATYCZNA WYKŁAD 10 14 grudnia 2009 PARAMETRY POŁOŻENIA Przypomnienie: Model statystyczny pomiaru: wynik pomiaru X = µ + ε 1. ε jest zmienną losową 2. E(ε) = 0 pomiar nieobciążony, pomiar
Ważne rozkłady i twierdzenia c.d.
Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby
Metody probabilistyczne
Metody probabilistyczne 13. Elementy statystki matematycznej I Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 17.01.2019 1 / 30 Zagadnienia statystki Przeprowadzamy
Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu
Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotności, p-wartość i moc testu Wrocław, 01.03.2017r Przykład 2.1 Właściciel firmy produkującej telefony komórkowe twierdzi, że wśród jego produktów
Statystyka i eksploracja danych
Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,
Szkice do zajęć z Przedmiotu Wyrównawczego
Szkice do zajęć z Przedmiotu Wyrównawczego Matematyka Finansowa sem. letni 2011/2012 Spis treści Zajęcia 1 3 1.1 Przestrzeń probabilistyczna................................. 3 1.2 Prawdopodobieństwo warunkowe..............................
Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.
Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 6 Wrocław, 7 listopada 2011 Temat. Weryfikacja hipotez statystycznych dotyczących proporcji. Test dla proporcji. Niech X 1,..., X n będzie próbą statystyczną z 0-1. Oznaczmy odpowiednio
O ŚREDNIEJ STATYSTYCZNEJ
Od średniej w modelu gaussowskim do kwantyli w podstawowym modelu nieparametrycznym IMPAN 1.X.2009 Rozszerzona wersja wykładu: O ŚREDNIEJ STATYSTYCZNEJ Ryszard Zieliński XII Międzynarodowe Warsztaty dla
Prawdopodobieństwo i statystyka
Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja
Komputerowa Analiza Danych Doświadczalnych
Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek, 10-11, środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 4 1 / 23 ZAGADNIENIE ESTYMACJI Zagadnienie
Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych
Statystyka matematyczna. Wykład IV. e-mail:e.kozlovski@pollub.pl Spis treści 1 2 3 Definicja 1 Hipoteza statystyczna jest to przypuszczenie dotyczące rozkładu (wielkości parametru lub rodzaju) zmiennej
Statystyka matematyczna
Statystyka matematyczna Wykład 6 Magdalena Alama-Bućko 8 kwietnia 019 Magdalena Alama-Bućko Statystyka matematyczna 8 kwietnia 019 1 / 1 Rozkłady ciagłe Magdalena Alama-Bućko Statystyka matematyczna 8
O ŚREDNIEJ STATYSTYCZNEJ
O ŚREDNIEJ STATYSTYCZNEJ Ryszard Zieliński XII Międzynarodowe Warsztaty dla Młodych Matematyków Rachunek Prawdopodobieństwa i Statystyka Kraków, 20 26 IX 2009 r. WYNIKI OBSERWACJI X 1, X 2,..., X n WYNIKI
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 9 i 10 1 / 30 TESTOWANIE HIPOTEZ STATYSTYCZNYCH
Zmienne losowe. Powtórzenie. Dariusz Uciński. Wykład 1. Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski
Powtórzenie Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 1 Podręcznik podstawowy Jacek Koronacki, Jan Mielniczuk: Statystyka dla studentów kierunków technicznych i przyrodnicznych,
1.1 Wstęp Literatura... 1
Spis treści Spis treści 1 Wstęp 1 1.1 Wstęp................................ 1 1.2 Literatura.............................. 1 2 Elementy rachunku prawdopodobieństwa 2 2.1 Podstawy..............................
1 Warunkowe wartości oczekiwane
Warunkowe wartości oczekiwane W tej serii zadań rozwiążemy różne zadania związane z problemem warunkowania.. (Eg 48/) Załóżmy, że X, X, X 3, X 4 są niezależnymi zmiennymi losowymi o jednakowym rozkładzie
Wykład 11 Testowanie jednorodności
Wykład 11 Testowanie jednorodności Wrocław, 17 maja 2018 Test χ 2 jednorodności Niech X i, i = 1, 2,..., k będą niezależnymi zmiennymi losowymi typu dyskretnego przyjmującymi wartości z 1, z 2,..., z l,
Statystyka Matematyczna Anna Janicka
Statystyka Matematyczna Anna Janicka wykład X, 9.05.206 TESTOWANIE HIPOTEZ STATYSTYCZNYCH II: PORÓWNYWANIE TESTÓW Plan na dzisiaj 0. Przypomnienie potrzebnych definicji. Porównywanie testów 2. Test jednostajnie
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 11 i 12 - Weryfikacja hipotez statystycznych
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 11 i 12 - Weryfikacja hipotez statystycznych Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 11 i 12 1 / 41 TESTOWANIE HIPOTEZ - PORÓWNANIE
Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe
Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.4. Momenty zmiennych losowych Katarzyna Rybarczyk-Krzywdzińska Wprowadzenie Przykład 1 Rzucamy raz kostką Ile wynosi średnia liczba oczek, jaka
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
Rozkłady prawdopodobieństwa zmiennych losowych
Rozkłady prawdopodobieństwa zmiennych losowych Rozkład dwumianowy Rozkład normalny Marta Zalewska Zmienna losowa dyskretna (skokowa) jest to zmienna, której zbór wartości jest skończony lub przeliczalny.
Spis treści 3 SPIS TREŚCI
Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe
Rozkłady i ich dystrybuanty 16 marca F X (t) = P (X < t) 0, gdy t 0, F X (t) = 1, gdy t > c, 0, gdy t x 1, 1, gdy t > x 2,
Wykład 4. Rozkłady i ich dystrybuanty 6 marca 2007 Jak opisać cały rozkład jedną funkcją? Aby znać rozkład zmiennej X, musimy umieć obliczyć P (a < X < b) dla dowolnych a < b. W tym celu wystarczy znać
Testowanie hipotez dla proporcji. Wrocław, 13 kwietnia 2015
Testowanie hipotez dla proporcji Wrocław, 13 kwietnia 2015 Powtórka z rachunku prawdopodobieństwa Centralne Twierdzenie Graniczne Niech X = (X 1, X 2,..., X n ) oznacza próbę z rozkładu o średniej µ i
Testowanie hipotez dla frakcji. Wrocław, 29 marca 2017
Testowanie hipotez dla frakcji Wrocław, 29 marca 2017 Powtórzenie z rachunku prawdopodobieństwa Centralne Twierdzenie Graniczne Niech X = (X 1, X 2,..., X n ) oznacza próbę z rozkładu o średniej µ i skończonej
WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady
WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena
Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) =
Zestaw : Zmienne losowe. Które z poniższych funkcji są dystrybuantami? Odpowiedź uzasadnij. Wskazówka: naszkicuj wykres. 0, x 0,, x 0, F (x) = x, F (x) = x, 0 x
Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.
Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.
LABORATORIUM Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz.
LABORATORIUM 4 1. Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz. I) WNIOSKOWANIE STATYSTYCZNE (STATISTICAL INFERENCE) Populacja
Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu
Wykład 11-12 Centralne twierdzenie graniczne Statystyka matematyczna: Estymacja parametrów rozkładu Centralne twierdzenie graniczne (CTG) (Central Limit Theorem - CLT) Centralne twierdzenie graniczne (Lindenberga-Levy'ego)
Statystyka opisowa. Robert Pietrzykowski.
Statystyka opisowa Robert Pietrzykowski email: robert_pietrzykowski@sggw.pl www.ekonometria.info 2 Na dziś Sprawy bieżące Przypominam, że 14.11.2015 pierwszy sprawdzian Konsultacje Sobota 9:00 10:00 pok.
MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ
MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści
Biostatystyka, # 3 /Weterynaria I/
Biostatystyka, # 3 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, p. 221 bud. CIW, e-mail: zdzislaw.otachel@up.lublin.pl
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich
PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek
PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Piotr Wiącek ROZKŁAD PRAWDOPODOBIEŃSTWA Jest to miara probabilistyczna określona na σ-ciele podzbiorów borelowskich pewnej przestrzeni metrycznej. σ-ciało podzbiorów
Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa
Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Marek Kubiak Instytut Informatyki Politechnika Poznańska Plan wykładu Podstawowe pojęcia rachunku prawdopodobieństwa Rozkład
Wykład 3 Jednowymiarowe zmienne losowe
Wykład 3 Jednowymiarowe zmienne losowe Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną Definicja 1 Jednowymiarowa zmienna losowa (o wartościach rzeczywistych), określoną na przestrzeni probabilistycznej
Centralne twierdzenie graniczne
Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 4 Ważne uzupełnienie Dwuwymiarowy rozkład normalny N (µ X, µ Y, σ X, σ Y, ρ): f XY (x, y) = 1 2πσ X σ Y 1 ρ 2 { [ (x ) 1
zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych
zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:
O ŚREDNIEJ ARYTMETYCZNEJ I MEDIANIE
Ryszard Zieliński, IMPAN Warszawa O ŚREDNIEJ ARYTMETYCZNEJ I MEDIANIE XXXIX Ogólnopolska Konferencja Zastosowań Matematyki Zakopane-Kościelisko 7-14 września 2010 r Model statystyczny pomiaru: wynik pomiaru
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 13 i 14 1 / 15 MODEL BAYESOWSKI, przykład wstępny Statystyka
4,5. Dyskretne zmienne losowe (17.03; 31.03)
4,5. Dyskretne zmienne losowe (17.03; 31.03) Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje wszystkie
Wnioskowanie statystyczne. Statystyka w 5
Wnioskowanie statystyczne tatystyka w 5 Rozkłady statystyk z próby Próba losowa pobrana z populacji stanowi realizacje zmiennej losowej jak ciąg zmiennych losowych (X, X,... X ) niezależnych i mających
Dyskretne zmienne losowe
Dyskretne zmienne losowe dr Mariusz Grządziel 16 marca 2009 Definicja 1. Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która
Rozkłady statystyk z próby
Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny
WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO
Zał. nr 4 do ZW WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Nazwa w języku polskim STATYSTYKA STOSOWANA Nazwa w języku angielskim APPLIED STATISTICS Kierunek studiów (jeśli dotyczy): Specjalność
Matematyka z el. statystyki, # 3 /Geodezja i kartografia II/
Matematyka z el. statystyki, # 3 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a bud. Agro II, e-mail: zdzislaw.otachel@up.lublin.pl