B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ.

Podobne dokumenty
Wyk lad 7 Baza i wymiar przestrzeni liniowej

9 Przekształcenia liniowe

14. Przestrzenie liniowe

Przestrzenie wektorowe

3 Przestrzenie liniowe

Przestrzenie liniowe

Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011).

Kombinacje liniowe wektorów.

Wyk lad 9 Baza i wymiar przestrzeni liniowej

ALGEBRA Z GEOMETRIĄ BAZY PRZESTRZENI WEKTOROWYCH

1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór.

13 Układy równań liniowych

Analiza funkcjonalna 1.

Układy równań liniowych

R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} },

R k v = 0}. k N. V 0 = ker R k 0

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:

Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u

Wyk lad 6 Podprzestrzenie przestrzeni liniowych

Algebra liniowa z geometrią

Wykład 5. Ker(f) = {v V ; f(v) = 0}

Skończone rozszerzenia ciał

Baza w jądrze i baza obrazu ( )

Układy równań i nierówności liniowych

Grzegorz Bobiński. Wykład monograficzny Programowanie Liniowe i Całkowitoliczbowe

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem

ciałem F i oznaczamy [L : F ].

ALGEBRA Z GEOMETRIĄ LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY

Układy liniowo niezależne

1 Zbiory i działania na zbiorach.

Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań.

ALGEBRA LINIOWA Z GEOMETRIĄ, LISTA ZADAŃ NR 8

Matematyka dyskretna. Andrzej Łachwa, UJ, /10

Egzamin z logiki i teorii mnogości, rozwiązania zadań

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

Wyk lad 9 Baza i wymiar przestrzeni liniowej

O pewnych związkach teorii modeli z teorią reprezentacji

1. Zbadać liniową niezależność funkcji x, 1, x, x 2 w przestrzeni liniowej funkcji ciągłych na przedziale [ 1, ).

Programowanie liniowe

1 Podobieństwo macierzy

Rozwiązania, seria 5.

ZALICZENIE WYKŁADU: 30.I.2019

Zadania z Algebry liniowej 4 Semestr letni 2009

Aproksymacja diofantyczna

Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości.

Jak łatwo zauważyć, zbiór form symetrycznych (podobnie antysymetrycznych) stanowi podprzestrzeń przestrzeni L(V, V, K). Oznaczamy ją Sym(V ).

Informacja o przestrzeniach Hilberta

Baza i stopień rozszerzenia.

Iloczyn skalarny. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 10. wykład z algebry liniowej Warszawa, grudzień 2013

Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy

φ(x 1,..., x n ) = a i x 2 i +

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

zbiorów domkniętych i tak otrzymane zbiory domknięte ustawiamy w ciąg. Oznaczamy

Przekształcenia liniowe

Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i

Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem

DB Algebra liniowa 1 semestr letni 2018

1 Rząd macierzy. 2 Liniowa niezależność. Algebra liniowa. V. Rząd macierzy. Baza podprzestrzeni wektorowej

Przestrzeń liniowa. Algebra. Aleksander Denisiuk

Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki.

Relacje. opracował Maciej Grzesiak. 17 października 2011

1 Formy hermitowskie. GAL (Informatyka) Wykład - formy hermitowskie. Paweł Bechler

Zadania z Algebry liniowej 3 semestr zimowy 2008/2009

Wykład 12 i 13 Macierz w postaci kanonicznej Jordana , 0 A 2

Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);

4 Przekształcenia liniowe

1 Przestrzeń liniowa. α 1 x α k x k = 0

Praca domowa - seria 6

Wyk lad 10 Przestrzeń przekszta lceń liniowych

Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi

Wektory i wartości własne

Ciała skończone. 1. Ciała: podstawy

domykanie relacji, relacja równoważności, rozkłady zbiorów

Zbiory liczbowe widziane oczami topologa

Algebry skończonego typu i formy kwadratowe

Uwaga 1.2. Niech (G, ) będzie grupą, H 1, H 2 < G. Następujące warunki są równoważne:

Zestaw zadań 14: Wektory i wartości własne. ) =

Wektory i wartości własne

2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11

14. Wykład 14: Grupa Galois wielomianu. Zasadnicze twierdzenia teorii Galois. Rozszerzenia rozwiązalne, cykliczne i abelowe

Teoria miary i całki

Wyk lad 11 1 Wektory i wartości w lasne

12. Wykład 12: Algebraiczne domkniecie ciała. Wielokrotne pierwiastki wielomianów. Rózniczkowanie wielomianów. Elementy rozdzielcze.

Pochodne wyższych rzędów definicja i przykłady

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j =

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ. 1. Ciała

Rozdział 6. Ciągłość. 6.1 Granica funkcji

2.7 Przestrzenie unormowane skończenie wymiarowe

wszystkich kombinacji liniowych wektorów układu, nazywa się powłoką liniową uk ładu wektorów

Indukcja matematyczna

Indukcja matematyczna. Zasada minimum. Zastosowania.

Topologia - Zadanie do opracowania. Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski

n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = :

Przykładowe zadania z teorii liczb

Układy równań liniowych

Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH

Twierdzenie spektralne

Zadania z analizy i algebry. (wykład prof.prof. J. Wojtkiewicza i K. Napiórkowskiego) ALGEBRA, przestrzenie wektorowe

Transkrypt:

8 Baza i wymiar Definicja 8.1. Bazą przestrzeni liniowej nazywamy liniowo niezależny układ jej wektorów, który generuję tę przestrzeń. Innymi słowy, układ B = (v i ) i I wektorów z przestrzeni V jest bazą tej przestrzeni, gdy (B1) (B2) B jest liniowo niezależny V = lin (B) Przykład 8.2. 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. 2. Jeżeli v θ, to układ (v) jest bazą przestrzeni lin (v). 3. ( Jeżeli )(v i ) i I jest bazą przestrzeni V, zaś σ : I I bijekcją, to układ vσ(i) jest bazą przestrzeni V. i I 4. Układ (e 1,..., e n ) jest bazą przestrzeni F n. Nazywamy ją bazą kanoniczną przestrzeni F n. 5. Układ (1, x, x 2, x 3,...) jest bazą przestrzeni F [x], a układ (1, x, x 2,..., x n ) jest bazą przestrzeni F [x] n. 6. Układ (1, i) jest bazą przestrzeni C R. Stwierdzenie 8.3. Układ B wektorów przestrzeni liniowej V jest jej bazą wtedy i tylko wtedy, gdy każdy wektor przestrzeni V można jednoznacznie przedstawić jako kombinację liniową układu B. Dowód: ) Założmy, że układ B = (v i ) i I jest bazą przestrzeni liniowej V F. Wówczas na mocy (B2) każdy wektor v V jest kombinacją liniową wektorów z B. Dla dowodu jednoznaczności przypuśćmy, że v = i I a i v i = i I b i v i, przy czym a i, b i F dla i I oraz zbiory J = {i I ; a i 0}, K = {i I ; b i 0} są skończone. Dla i I \ (J K) mamy a i = b i = 0, a z równości skończonych kombinacji liniowych po zbiorze J K wynika, że (a i b i ) v i = θ. i J K Układ (v i ) i I jest na zgodnie z warunkiem (B1) liniowo niezależny, a jego podukład (v i ) i J K na mocy stwierdzenia 7.5(1) jest liniowo niezależny. Zatem także a i = b i dla i J K, co kończy dowód jednoznaczności. ) Jeżeli układ każdy wektor można jednoznacznie przedstawić w postaci kombinacji liniowej układu B = (v i ) i I, to spełniony jest warunek (B2). Jeżeli a i v i = θ, i I 1

to z jednoznaczności przedstawienia wektora zerowego i oczywistej równości 0 v i = θ i I wynika zerowanie się wszystkich współczynników, czyli warunek (B1). Wniosek 8.4. Układ (v 1,..., v n ) jest bazą przestrzeni liniowej V wtedy i tylko wtedy, gdy V = lin (v 1 )... lin (v n ). Definicja 8.5. Niech B = (v i ) i I będzie bazą przestrzeni liniowej V nad ciałem F. Funkcję przypisującą każdemu wektorowi v V układ (a i ) i I skalarów z ciała F takich, że v = i I a i v i, nazywamy układem współrzędnych w przestrzeni V względem bazy B, zaś układ C B (v) = (a i ) i I współrzędnymi wektora v w bazie B. Przykład 8.6. 1. Wektor (x 1,..., x n ) F n ma w bazie kanonicznej (e 1,..., e n ) współrzędne (x 1,..., x n ). 2. Wielomian a 0 + a 1 x + a 2 x 2... a n x n F [x] n ma w bazie (1, x, x 2,..., x n ) współrzędne (a 0, a 1, a 2,..., a n ). Stwierdzenie 8.7. Układ B w przestrzeni liniowej jest jej bazą wtedy i tylko wtedy, gdy B jest maksymalnym układem liniowo niezależnym (to znaczy takim układem liniowo niezależnym, którego dowolny właściwy nadukład jest liniowo zależny). Dowód: ) Jeżeli układ B jest bazą przestrzeni liniowej V, to zgodnie z (B1) jest liniowo niezależny. Warunek (B2) gwarantuje, że dowolny wektor v V jest kombinacją liniową układu B, czyli układ B uzupełniony wektorem v (a tym bardziej stw. 7.5(2) każdy nadukład układu B) jest liniowo zależny. ) Jeżeli układ B jest maksymalnym układem liniowo niezależnym, to spełnia warunek (B1). Gdyby pewien wektor v V nie był kombinacją liniową układu B, to układ B uzupełniony wektorem v byłby liniowo niezależny, co przeczyłoby maksymalności układu B. Zatem układ B spełnia także warunek (B2). Twierdzenie 8.8. Każda przestrzeń liniowa posiada bazę. Dowód: Ustalmy przestrzeń liniową V. Opieramy się na książce K. Kuratowskiego Wstęp do teorii mnogości i topologii, gdzie lemat Kuratowskiego Zorna jest wnioskiem 2 w VIII.8, a definicje porządków podane są w VII.1. Niech X będzie zbiorem, którego każdy element jest zbiorem wektorów pewnego układu liniowo niezależnego w przestrzeni V. Zbiór X porządkujemy relacją inkluzji. Niech Y będzie liniowo uporządkowanym podzbiorem zbioru X. Połóżmy h(y ) = A. A Y 2

Pokażemy, że zbiór h(y ) składa się z elementów układu liniowo niezależnego. Z definicji kombinacji liniowej wystarczy pokazać, że każdy skończony podzbiór zbioru h(y ) jest liniowo niezależny. Niech {v 1,..., v k } h(y ). Istnieją wówczas zbiory A i Y takie, że v i A i dla i = 1,..., k. Zbiór {A 1,..., A k } jest uporządkowany liniowo jako podzbiór zbioru Y, więc z przechodniości i ekstensjonalności otrzymujemy, że istnieje j = 1,..., k takie, że zbiór A j zawiera wszystkie pozostałe ze zbiorów A 1,..., A k. To oznacza zaś, że układ (v 1,..., v k ) jest liniowo niezależny jako podukład układu liniowo niezależneo złożonego z elementów zbioru A j. Zatem h(y ) X oraz dla A Y spełniony jest warunek A h(y ). Z lematu Kuratowskiego Zorna wynika, że w zbiorze X istnieje element maksymalny B. Wektory zbioru B tworzą maksymalny układ liniowo niezależny w przestrzeni V, a ten na mocy stw. 8.7 jest bazą przestrzeni V. Przykład 8.9. 1. Każdą bazę przestrzeni R Q nazywamy bazą Hamela. 2. Można wskazać różne układy liniowo niezależne, ale nie sposób jawnie wypisać bazę przestrzeni C(I), a tym bardziej F(I; R). Definicja 8.10. Mówimy, że przestrzeń liniowa jest skończonego wymiaru, jeżeli posiada bazę będącą układem skończonym. Twierdzenie 8.11. Każde dwie bazy przestrzeni liniowej skończonego wymiaru mają tę samą liczbę elementów (to znaczy zbiory ich indeksów są równoliczne). Dowód: Załóżmy, że przestrzeń V ma wymiar skończony i tym samym posiada pewną bazę B złożoną z n wektorów, gdzie n N {0}. Jeżeli n = 0, to V = {θ} i każdy inny układ generujący przestrzeń też musi być pusty, czyli zawierać 0 elementów. Niech B = (v 1,..., v n ). Przypuśćmy że inny układ skończony C = (w 1,..., w m ) jest także bazą przestrzeni V oraz że n > m 1. Wektor v 1 lin (C), bo C spełnia warunek (B2). Ponadto z faktu, że B spełnia warunek (B1) wynika, że v 1 θ, jest więc kombinacją liniową układu C o przynajmniej jednym współczynniku różnym od zera. Permutacja bazy jest bazą (przykł. 8.2(2)), więc możemy założyć, że ten niezerowy współczynnik występuje przy wektorze w 1 : Stąd v 1 = a 1 w 1 + a 2 w 2 +... + a m w m oraz a 1 0. w 1 = 1 v 1 + a 2 w 2 +... + a m w m, a 1 a 1 a 1 czyli układ C 1 = (v 1, w 2,..., w m ) generuje przestrzeń V, bo zawiera wszystkie kombinacje liniowe układu C. Prowadząc rozumowanie indukcyjne załóżmy, że dla pewnego k 1 układ C k = (v 1,..., v k, w k+1,..., w m ) generuje przestrzeń V. Wówczas θ v k+1 = b 1 v 1 +... + b k v k + w k+1 +... + c m w w. Z liniowej niezależności układu B wynika, że v k+1 nie może być kombinacją liniową wektorów v 1,..., v k, więc pewien współczynnik spośród,..., c m jest różny od zera. Permutując układ C k możemy założyć, że 0. Wówczas w k+1 = 1 v k+1 + b 1 v 1 +... + b k v k + c k+2 3 w k+2 +... + c m w m,

czyli układ C k+1 = (v 1,..., v k, v k+1, w k+2,..., w m ) generuje przestrzeń V. Na mocy zasady indukcji matematycznej otrzymujemy V = lin (v 1,..., v m ), czyli także v m+1 jest kombinacją liniową układu (v 1,..., v m ), co przeczy liniowej niezależności układu B. Sprzeczność dowodzi nierówności n m, a analogiczne rozumowanie daje nierówność m n, co razem wskazuje na równoliczność układów B i C. Gdyby baza C była układem nieskończonym, to stosując wymianę elementów bazy B na elementy bazy C wykazalibyśmy liniową zależność układu C, więc taka ewentualność nie zachodzi. Definicja 8.12. Wymiarem przestrzeni liniowej nazywamy liczbę elementów jej bazy, o ile przestrzeń jest wymiaru skończonego. Wymiar przestrzeni V oznaczamy przez dim V. Mówimy, że przestrzeń V jest nieskończenie wymiarowa, gdy nie jest wymiaru skończonego i piszemy wówczas dim V =. Przykład 8.13. 1. dim{θ} = 0 2. dim F n = n, dim F [x] n = n + 1 3. dim F [x] = dim F = dim C(I) = Stwierdzenie 8.14. Każdy układ liniowo niezależny w przestrzeni liniowej można rozszerzyć do bazy tej przestrzeni, to znaczy dla każdego układu liniowo niezależnego istnieje jego nadukład będący bazą. Dowód: Zauważmy, że jeżeli C = (w j ) j J jest bazą przestrzeni V oraz θ v V, przy czym v = j J a j w j oraz a k 0dla pewnego k J, to układ C zawierający wektory w j, j J \ {k} oraz wektor v jest bazą przestrzeni V. Istotnie, przy tych założeniach w k lin C, skąd V = lin C. Gdyby układ C miał być liniowo zależny, to na mocy liniowej niezależności układu (w j ) j J\{k} mielibyśmy istnienie liniowej kombinacji układu C równej θ o współczynniku różnym od zera przy v. To jednak przeczyłoby jednoznaczności przedstawienia wektora v w bazie C. Dowód przeprowadzimy dla układu skończonego. Niech B = (v 1,..., v n ) będzie układem liniowo niezależnycm w przestrzeni V. Wektor v 1 jest niezerowy więc istnieje takie k 1 J, że układ D 1 złożony z wektorów v j, j J \ {k 1 } oraz wektora v 1 jest bazą przestrzeni V. Załóżmy, że dla pewnego l 1 istnieją takie indeksy k 1,..., k l, że układ D l złożony z wektorów v j, j J \ {k 1,..., k l } oraz wektorów v 1,..., v l jest bazą przestrzeni V. Wektor v l+1 jest kombinacją liniową układu D l. Z liniowej niezależności układu B wynika, że istnieje takie k l+1, że w tej kombinacji współczynnik przy w kl+1 jest różny od zera. Wówczas układ D l+1 złożony z wektorów v j, j J \ {k 1,..., k l, k l+1 } oraz wektorów v 1,..., v l, v l+1 jest bazą przestrzeni V. 4

Na mocy zasady indukcji matematycznej stwierdzamy, że układ D n złożony z wektorów v j, j J \ {k 1,..., k n } oraz wektorów v 1,..., v n jest bazą przestrzeni V, czyli układ B można uzupełnić do bazy D n. Wniosek 8.15. Wymiar podprzestrzeni liniowej danej przestrzeni liniowej nie przekracza wymiaru tej przestrzeni. Dowód: Baza podprzestrzeni jest układem liniowo niezależnym w całej przestrzeni i zgodnie ze stw. 8.14 można bazę podprzestrzeni rozszerzyć do bazy przestrzeni. Wniosek 8.16. Jeżeli U jest podprzestrzenią liniową przestrzeni liniowej V i wymiar V jest skończony, to następujące warunki są równoważne: 1. U = V 2. dim U = dim V Dowód: Jeżeli dim U = dim V = n, to baza B podprzestrzeni U ma n elementów i jest układem liniowo niezależnym w przestrzeni V. Układu tego nie można już uzupełnić do bazy przestrzeni V żadnym wektorem, bo każda baza przestrzeni V ma również n elementów (tw. 8.11). Zatem baza podprzestrzeni U jest maksymalnym układem liniowo niezależnym w V, czyli na mocy stw. 8.7 bazą przestrzeni V. Wówczas oczywiście V = lin (B) = U. Stwierdzenie 8.17. Jeżeli przestrzeń liniowa V ma skończony wymiar, a V 1, V 2 są jej podprzestrzeniami liniowymi, to dim(v 1 + V 2 ) = dim V 1 + dim V 2 dim(v 1 V 2 ). Dowód: Niech k = dim(v 1 V 2 ), n = dim V 1, m = dim V 2 oraz niech A = (u 1,..., u k ) będzie bazą podprzestrzeni V 1 V 2. Uzupełnijmy tę bazę do bazy B = (u 1,..., u k, v 1,..., v n k ) podprzestrzeni V 1 oraz do bazy C = (u 1,..., u k, w 1,..., w m k ) podprzestrzeni V 2. Wystarczy pokazać, że bazą przestrzeni V 1 + V 2 jest układ D = (u 1,..., u k, v 1,..., v n k, w 1,..., w m k ) gdyż będzie to oznaczać, że dim(v 1 + V 2 ) = k + n k + m k = n + m k. Ponieważ układ D jest nadukładem zarówno dla B jak i dla C, więc każdy wektor v V 1 + V 2 = lin (B) + lin (C) należy do lin (D), bo zbiór ten zawiera zarówno lin (B) jak i lin (C). Aby pokazać liniową niezależność układu D przypuśćmy, że pewna jego kombinacja liniowa a 1 u 1 +... + a n k u k + b 1 v 1 +... + b n k v n k + c 1 w 1 +... + c m k w m k = θ. Wówczas wektor v = a 1 u 1 +... + a n k u k + b 1 v 1 +... + b n k v n k = c 1 w 1... c m k w m k 5

należy zarówno do V 1 (jako kombinacja układu B) jak również do V 2 (jako kombinacja podukładu układu C). Stąd v V 1 V 2 = lin (A). Mamy więc v = d 1 u 1 +... + d n k u k = c 1 w 1... c m k w m k, co wraz z liniową niezależnością układu C daje d 1 =... = d k = 0 = c 1 =... = c m k, a więc także v = θ. Teraz możemy skorzystać z liniowej niezależności układu B, która implikuje a 1 =... = a k = 0 = b 1 =... = b n k dając ostatecznie liniową niezależność układu D. Wniosek 8.18. Wymiar sumy prostej jest sumą wymiarów jej składników. Dowód: Jeżeli V = V 1 V 2, to V 1 V 2 jest przestrzenią trywialną (wymiaru 0) i zgodnie ze stw. 8.17 mamy dim(v 1 + V 2 ) = dim V 1 + dim V 2. Dla sumy prostej większej liczby składników analogiczny wniosek otrzymujemy przez indukcję. 6