Układy fizyczne z więzami Wykład 2

Podobne dokumenty
Więzy i ich klasyfikacja Wykład 2

Symetrie i prawa zachowania Wykład 6

mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej

IV.3 Ruch swobodny i nieswobodny. Więzy. Reakcje więzów

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

Wstęp do równań różniczkowych

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko

Wstęp do równań różniczkowych

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

METODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

Kinematyka: opis ruchu

Kinematyka robotów mobilnych

Prawa ruchu: dynamika

MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko

MECHANIKA OGÓLNA (II)

Mechanika Analityczna

ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał.

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności

Wektor położenia. Zajęcia uzupełniające. Mgr Kamila Rudź, Podstawy Fizyki.

Modelowanie układów dynamicznych

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej

Fizyka 1 (mechanika) AF14. Wykład 9

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..)

Mechanika. Wykład 2. Paweł Staszel

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści

Podstawy robotyki wykład V. Jakobian manipulatora. Osobliwości

Rachunek całkowy - całka oznaczona

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Metody Lagrange a i Hamiltona w Mechanice

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

Opis systemów dynamicznych w przestrzeni stanu. Wojciech Kurek , Gdańsk

Podstawy robotyki wykład VI. Dynamika manipulatora

MiBM sem. III Zakres materiału wykładu z fizyki

Mechanika Analityczna

Dynamika manipulatora. Robert Muszyński Janusz Jakubiak Instytut Cybernetyki Technicznej Politechnika Wrocławska. Podstawy robotyki wykład VI

MECHANIKA II. Dynamika układu punktów materialnych

będzie momentem Twierdzenie Steinera

MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko

Definicje i przykłady

Fizyka 11. Janusz Andrzejewski

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko

Zagadnienia brzegowe dla równań eliptycznych

II. Równania autonomiczne. 1. Podstawowe pojęcia.

Elementy geometrii analitycznej w R 3

Wydział Inżynierii Środowiska; kierunek Inż. Środowiska. Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni

- Wydział Fizyki Zestaw nr 2. Krzywe stożkowe

2. Pręt skręcany o przekroju kołowym

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XXI:

Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.

Prawa ruchu: dynamika

Pole magnetyczne magnesu w kształcie kuli

1 Funkcje dwóch zmiennych podstawowe pojęcia

Kinematyka: opis ruchu

WYZNACZANIE MOMENTU BEZWŁADNOŚCI BRYŁY METODĄ DRGAŃ SKRĘTNYCH

Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice.

MECHANIKA 2. Prowadzący: dr Krzysztof Polko

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

R o z d z i a ł 2 KINEMATYKA PUNKTU MATERIALNEGO

IX. MECHANIKA (FIZYKA) KWANTOWA

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

i = [ 0] j = [ 1] k = [ 0]

Wykaz oznaczeń Przedmowa... 9

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak

Zasady dynamiki Isaak Newton (1686 r.)

Elementy rachunku różniczkowego i całkowego

Geometria Różniczkowa II wykład piąty

Zagadnienie dwóch ciał

Rozdział 2. Krzywe stożkowe. 2.1 Elipsa. Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie

VII.1 Pojęcia podstawowe.

Przykład Łuk ze ściągiem, obciążenie styczne. D A

Układy równań i nierówności liniowych

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L

22. CAŁKA KRZYWOLINIOWA SKIEROWANA

Geometria. Rozwiązania niektórych zadań z listy 2

Ekoenergetyka Matematyka 1. Wykład 6.

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH

Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań.

Opis ruchu obrotowego

Postulaty interpretacyjne mechaniki kwantowej Wykład 6

MECHANIKA 2 Wykład Nr 9 Dynamika układu punktów materialnych

Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18

Zadania z mechaniki dla nanostudentów. Seria 3. (wykład prof. J. Majewskiego)

MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu

- Wydział Fizyki Zestaw nr 2. Krzywe stożkowe

MECHANIKA II. Praca i energia punktu materialnego

PODSTAWY MECHANIKI ANALITYCZNEJ JULIUSZ GRABSKI JAROSLAW STRZALKO BOGUMIL MIANOWSKI. Nr 2170 PODSTAWY MECHANKIKI ANALITYCZNEJ ISBN

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

13 Równanie struny drgającej. Równanie przewodnictwa ciepła.

Wykład 15. Matematyka 3, semestr zimowy 2011/ listopada 2011

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 8, Radosław Chrapkiewicz, Filip Ozimek

Analiza Matematyczna. Zastosowania Całek

Transkrypt:

Układy fizyczne z więzami Wykład 2 Karol Kołodziej (przy współpracy Bartosza Dziewita) Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl Karol Kołodziej Mechanika klasyczna i relatywistyczna 1/48

Współrzędne uogólnione Wszystkie wielkości, które mogą opisywać pewien układ mechaniczny nazywamy współrzędnymi uogólnionymi. Mogą to być np. współrzędne kartezjańskie, cylindryczne, sferyczne, Karol Kołodziej Mechanika klasyczna i relatywistyczna 2/48

Współrzędne uogólnione Wszystkie wielkości, które mogą opisywać pewien układ mechaniczny nazywamy współrzędnymi uogólnionymi. Mogą to być np. współrzędne kartezjańskie, cylindryczne, sferyczne, albo ich kombinacja. Karol Kołodziej Mechanika klasyczna i relatywistyczna 2/48

Współrzędne uogólnione Wszystkie wielkości, które mogą opisywać pewien układ mechaniczny nazywamy współrzędnymi uogólnionymi. Mogą to być np. współrzędne kartezjańskie, cylindryczne, sferyczne, albo ich kombinacja. Minimalną liczbę niezależnych współrzędnych uogólnionych niezbędnych do pełnego opisu danego układu fizycznego będziemy nazywali liczbą stopni swobody układu. Karol Kołodziej Mechanika klasyczna i relatywistyczna 2/48

Współrzędne uogólnione Wszystkie wielkości, które mogą opisywać pewien układ mechaniczny nazywamy współrzędnymi uogólnionymi. Mogą to być np. współrzędne kartezjańskie, cylindryczne, sferyczne, albo ich kombinacja. Minimalną liczbę niezależnych współrzędnych uogólnionych niezbędnych do pełnego opisu danego układu fizycznego będziemy nazywali liczbą stopni swobody układu. Karol Kołodziej Mechanika klasyczna i relatywistyczna 2/48

Współrzędne uogólnione Przykładowo, punkt materialny mogący poruszać się swobodnie, tzn. bez żadnych ograniczeń geometrycznych, w trójwymiarowej przestrzeni ma 3 stopnie swobody, a jeśli może się poruszać na płaszczyźnie, to ma 2 stopnie swobody. Karol Kołodziej Mechanika klasyczna i relatywistyczna 3/48

Współrzędne uogólnione Przykładowo, punkt materialny mogący poruszać się swobodnie, tzn. bez żadnych ograniczeń geometrycznych, w trójwymiarowej przestrzeni ma 3 stopnie swobody, a jeśli może się poruszać na płaszczyźnie, to ma 2 stopnie swobody. Układ N punktów materialnych nie podlegający ograniczeniom geometrycznym ma w trójwymiarowej przestrzeni 3N stopni swobody, a na płaszczyźnie 2N stopni swobody. Karol Kołodziej Mechanika klasyczna i relatywistyczna 3/48

Współrzędne uogólnione Przykładowo, punkt materialny mogący poruszać się swobodnie, tzn. bez żadnych ograniczeń geometrycznych, w trójwymiarowej przestrzeni ma 3 stopnie swobody, a jeśli może się poruszać na płaszczyźnie, to ma 2 stopnie swobody. Układ N punktów materialnych nie podlegający ograniczeniom geometrycznym ma w trójwymiarowej przestrzeni 3N stopni swobody, a na płaszczyźnie 2N stopni swobody. Swobodna bryła sztywna ma w trójwymiarowej przestrzeni 6 stopni swobody, Karol Kołodziej Mechanika klasyczna i relatywistyczna 3/48

Współrzędne uogólnione Przykładowo, punkt materialny mogący poruszać się swobodnie, tzn. bez żadnych ograniczeń geometrycznych, w trójwymiarowej przestrzeni ma 3 stopnie swobody, a jeśli może się poruszać na płaszczyźnie, to ma 2 stopnie swobody. Układ N punktów materialnych nie podlegający ograniczeniom geometrycznym ma w trójwymiarowej przestrzeni 3N stopni swobody, a na płaszczyźnie 2N stopni swobody. Swobodna bryła sztywna ma w trójwymiarowej przestrzeni 6 stopni swobody, gdyż dodatkowo do swobody ruchu postępowego w 3 kierunkach, możemy ją obrócić na 3 różne sposoby. Karol Kołodziej Mechanika klasyczna i relatywistyczna 3/48

Współrzędne uogólnione Przykładowo, punkt materialny mogący poruszać się swobodnie, tzn. bez żadnych ograniczeń geometrycznych, w trójwymiarowej przestrzeni ma 3 stopnie swobody, a jeśli może się poruszać na płaszczyźnie, to ma 2 stopnie swobody. Układ N punktów materialnych nie podlegający ograniczeniom geometrycznym ma w trójwymiarowej przestrzeni 3N stopni swobody, a na płaszczyźnie 2N stopni swobody. Swobodna bryła sztywna ma w trójwymiarowej przestrzeni 6 stopni swobody, gdyż dodatkowo do swobody ruchu postępowego w 3 kierunkach, możemy ją obrócić na 3 różne sposoby. Karol Kołodziej Mechanika klasyczna i relatywistyczna 3/48

Współrzędne uogólnione Liczbę stopni swobody układu będziemy oznaczać literą n, a odpowiedniewspółrzędneuogólnionesymbolamiq 1,q 2,...,q n. Karol Kołodziej Mechanika klasyczna i relatywistyczna 4/48

Współrzędne uogólnione Liczbę stopni swobody układu będziemy oznaczać literą n, a odpowiedniewspółrzędneuogólnionesymbolamiq 1,q 2,...,q n. Wygodnie jest określić związki pomiędzy współrzędnymi uogólnionymiawspółrzędnymikartezjańskimix 1,x 2,...,x n. Karol Kołodziej Mechanika klasyczna i relatywistyczna 4/48

Współrzędne uogólnione Liczbę stopni swobody układu będziemy oznaczać literą n, a odpowiedniewspółrzędneuogólnionesymbolamiq 1,q 2,...,q n. Wygodnie jest określić związki pomiędzy współrzędnymi uogólnionymiawspółrzędnymikartezjańskimix 1,x 2,...,x n. Dla N swobodych punktów materialnych w trójwymiarowej przestrzeni (n = 3N) związki te mają postać x i =x i (q 1,q 2,...,q 3N,t), i =1,2,...,3N, Karol Kołodziej Mechanika klasyczna i relatywistyczna 4/48

Współrzędne uogólnione Liczbę stopni swobody układu będziemy oznaczać literą n, a odpowiedniewspółrzędneuogólnionesymbolamiq 1,q 2,...,q n. Wygodnie jest określić związki pomiędzy współrzędnymi uogólnionymiawspółrzędnymikartezjańskimix 1,x 2,...,x n. Dla N swobodych punktów materialnych w trójwymiarowej przestrzeni (n = 3N) związki te mają postać x i =x i (q 1,q 2,...,q 3N,t), i =1,2,...,3N, gdziewspółrzędnekartezjańskie (x 1,y 1,z 1 )pierwszegopunktu ponumerowaliśmy (x 1,x 2,x 3 ), Karol Kołodziej Mechanika klasyczna i relatywistyczna 4/48

Współrzędne uogólnione Liczbę stopni swobody układu będziemy oznaczać literą n, a odpowiedniewspółrzędneuogólnionesymbolamiq 1,q 2,...,q n. Wygodnie jest określić związki pomiędzy współrzędnymi uogólnionymiawspółrzędnymikartezjańskimix 1,x 2,...,x n. Dla N swobodych punktów materialnych w trójwymiarowej przestrzeni (n = 3N) związki te mają postać x i =x i (q 1,q 2,...,q 3N,t), i =1,2,...,3N, gdziewspółrzędnekartezjańskie (x 1,y 1,z 1 )pierwszegopunktu ponumerowaliśmy (x 1,x 2,x 3 ),współrzędnekartezjańskie (x 2,y 2,z 2 ) drugiegopunktuponumerowaliśmy (x 4,x 5,x 6 ), Karol Kołodziej Mechanika klasyczna i relatywistyczna 4/48

Współrzędne uogólnione Liczbę stopni swobody układu będziemy oznaczać literą n, a odpowiedniewspółrzędneuogólnionesymbolamiq 1,q 2,...,q n. Wygodnie jest określić związki pomiędzy współrzędnymi uogólnionymiawspółrzędnymikartezjańskimix 1,x 2,...,x n. Dla N swobodych punktów materialnych w trójwymiarowej przestrzeni (n = 3N) związki te mają postać x i =x i (q 1,q 2,...,q 3N,t), i =1,2,...,3N, gdziewspółrzędnekartezjańskie (x 1,y 1,z 1 )pierwszegopunktu ponumerowaliśmy (x 1,x 2,x 3 ),współrzędnekartezjańskie (x 2,y 2,z 2 ) drugiegopunktuponumerowaliśmy (x 4,x 5,x 6 ),itd. Karol Kołodziej Mechanika klasyczna i relatywistyczna 4/48

Współrzędne uogólnione Liczbę stopni swobody układu będziemy oznaczać literą n, a odpowiedniewspółrzędneuogólnionesymbolamiq 1,q 2,...,q n. Wygodnie jest określić związki pomiędzy współrzędnymi uogólnionymiawspółrzędnymikartezjańskimix 1,x 2,...,x n. Dla N swobodych punktów materialnych w trójwymiarowej przestrzeni (n = 3N) związki te mają postać x i =x i (q 1,q 2,...,q 3N,t), i =1,2,...,3N, gdziewspółrzędnekartezjańskie (x 1,y 1,z 1 )pierwszegopunktu ponumerowaliśmy (x 1,x 2,x 3 ),współrzędnekartezjańskie (x 2,y 2,z 2 ) drugiegopunktuponumerowaliśmy (x 4,x 5,x 6 ),itd. Związki te możemy zapisać wektorowo r i = r i (q 1,q 2,...,q 3N,t), i =1,2,...,N. Karol Kołodziej Mechanika klasyczna i relatywistyczna 4/48

Współrzędne uogólnione Liczbę stopni swobody układu będziemy oznaczać literą n, a odpowiedniewspółrzędneuogólnionesymbolamiq 1,q 2,...,q n. Wygodnie jest określić związki pomiędzy współrzędnymi uogólnionymiawspółrzędnymikartezjańskimix 1,x 2,...,x n. Dla N swobodych punktów materialnych w trójwymiarowej przestrzeni (n = 3N) związki te mają postać x i =x i (q 1,q 2,...,q 3N,t), i =1,2,...,3N, gdziewspółrzędnekartezjańskie (x 1,y 1,z 1 )pierwszegopunktu ponumerowaliśmy (x 1,x 2,x 3 ),współrzędnekartezjańskie (x 2,y 2,z 2 ) drugiegopunktuponumerowaliśmy (x 4,x 5,x 6 ),itd. Związki te możemy zapisać wektorowo r i = r i (q 1,q 2,...,q 3N,t), i =1,2,...,N. Karol Kołodziej Mechanika klasyczna i relatywistyczna 4/48

Współrzędne uogólnione Ograniczmy się do jednego punktu materialnego (N = 1) i napiszmy związki w przypadku układu sferycznego: x i =x i (q 1,q 2,q 3,t), i =1,2,3, x 1 = rsinθcosϕ, x 2 = rsinθsinϕ, x 3 = rcosθ, Karol Kołodziej Mechanika klasyczna i relatywistyczna 5/48

Współrzędne uogólnione Ograniczmy się do jednego punktu materialnego (N = 1) i napiszmy związki w przypadku układu x i =x i (q 1,q 2,q 3,t), i =1,2,3, sferycznego: cylindrycznego: x 1 = rsinθcosϕ, x 2 = rsinθsinϕ, x 1 = rcosϕ, x 2 = rsinϕ, x 3 = rcosθ, x 3 = z, gdziezmienner =r(t),θ=θ(t),ϕ =ϕ(t)iz=z(t)są funkcjami czasu, a jawna zależność od czasu nie występuje. Karol Kołodziej Mechanika klasyczna i relatywistyczna 5/48

Współrzędne uogólnione Ograniczmy się do jednego punktu materialnego (N = 1) i napiszmy związki w przypadku układu x i =x i (q 1,q 2,q 3,t), i =1,2,3, sferycznego: cylindrycznego: x 1 = rsinθcosϕ, x 2 = rsinθsinϕ, x 1 = rcosϕ, x 2 = rsinϕ, x 3 = rcosθ, x 3 = z, gdziezmienner =r(t),θ=θ(t),ϕ =ϕ(t)iz=z(t)są funkcjami czasu, a jawna zależność od czasu nie występuje. Karol Kołodziej Mechanika klasyczna i relatywistyczna 5/48

Więzy i ich klasyfikacja W wielu zagadnieniach występują geometryczne ograniczenia ruchu, które nazywamy więzami. Więzy, mimo że ograniczają liczbę stopni swobody układu, to na ogół utrudniają rozwiązanie zagadnienia ruchu. Karol Kołodziej Mechanika klasyczna i relatywistyczna 6/48

Więzy i ich klasyfikacja W wielu zagadnieniach występują geometryczne ograniczenia ruchu, które nazywamy więzami. Więzy, mimo że ograniczają liczbę stopni swobody układu, to na ogół utrudniają rozwiązanie zagadnienia ruchu. Wynika to z konieczności uwzględnienia dodatkowych sił. Karol Kołodziej Mechanika klasyczna i relatywistyczna 6/48

Więzy i ich klasyfikacja W wielu zagadnieniach występują geometryczne ograniczenia ruchu, które nazywamy więzami. Więzy, mimo że ograniczają liczbę stopni swobody układu, to na ogół utrudniają rozwiązanie zagadnienia ruchu. Wynika to z konieczności uwzględnienia dodatkowych sił. Więzy holonomiczne to więzy opisane równaniami f i (q 1,q 2,...,q 3N,t) =0, i =1,2,...,k. Karol Kołodziej Mechanika klasyczna i relatywistyczna 6/48

Więzy i ich klasyfikacja W wielu zagadnieniach występują geometryczne ograniczenia ruchu, które nazywamy więzami. Więzy, mimo że ograniczają liczbę stopni swobody układu, to na ogół utrudniają rozwiązanie zagadnienia ruchu. Wynika to z konieczności uwzględnienia dodatkowych sił. Więzy holonomiczne to więzy opisane równaniami f i (q 1,q 2,...,q 3N,t) =0, i =1,2,...,k. k niezależnych równań więzów holonomicznych redukuje liczbę stopni swobody układu N punktów materialnych do 3N k. Karol Kołodziej Mechanika klasyczna i relatywistyczna 6/48

Więzy i ich klasyfikacja W wielu zagadnieniach występują geometryczne ograniczenia ruchu, które nazywamy więzami. Więzy, mimo że ograniczają liczbę stopni swobody układu, to na ogół utrudniają rozwiązanie zagadnienia ruchu. Wynika to z konieczności uwzględnienia dodatkowych sił. Więzy holonomiczne to więzy opisane równaniami f i (q 1,q 2,...,q 3N,t) =0, i =1,2,...,k. k niezależnych równań więzów holonomicznych redukuje liczbę stopni swobody układu N punktów materialnych do 3N k. Więzy nieholonomiczne to więzy, których nie można opisać zwykłymi(algebraicznymi) równaniami. Karol Kołodziej Mechanika klasyczna i relatywistyczna 6/48

Więzy i ich klasyfikacja W wielu zagadnieniach występują geometryczne ograniczenia ruchu, które nazywamy więzami. Więzy, mimo że ograniczają liczbę stopni swobody układu, to na ogół utrudniają rozwiązanie zagadnienia ruchu. Wynika to z konieczności uwzględnienia dodatkowych sił. Więzy holonomiczne to więzy opisane równaniami f i (q 1,q 2,...,q 3N,t) =0, i =1,2,...,k. k niezależnych równań więzów holonomicznych redukuje liczbę stopni swobody układu N punktów materialnych do 3N k. Więzy nieholonomiczne to więzy, których nie można opisać zwykłymi(algebraicznymi) równaniami. Karol Kołodziej Mechanika klasyczna i relatywistyczna 6/48

Więzy holonomiczne przykłady Przykład1.Krążekopromieniurtoczysiębezpoślizguna płaszczyźnie po prostej nachylonej do osi Ox kartezjańskiego układu współrzędnych pod kątem α. Prosta ta spełnia rolę więzów. Karol Kołodziej Mechanika klasyczna i relatywistyczna 7/48

Więzy holonomiczne przykłady Przykład1.Krążekopromieniurtoczysiębezpoślizguna płaszczyźnie po prostej nachylonej do osi Ox kartezjańskiego układu współrzędnych pod kątem α. Prosta ta spełnia rolę więzów. Bez więzów do opisu ruchu krążka na płaszczyźnie potrzebowalibyśmy 3 współrzędnych, Karol Kołodziej Mechanika klasyczna i relatywistyczna 7/48

Więzy holonomiczne przykłady Przykład1.Krążekopromieniurtoczysiębezpoślizguna płaszczyźnie po prostej nachylonej do osi Ox kartezjańskiego układu współrzędnych pod kątem α. Prosta ta spełnia rolę więzów. Bez więzów do opisu ruchu krążka na płaszczyźnie potrzebowalibyśmy 3 współrzędnych, np. współrzędnych środkakrążka (x,y)ikątaazymutalnego ϕ opisującego możliwy ruch obrotowy krążka, Karol Kołodziej Mechanika klasyczna i relatywistyczna 7/48

Więzy holonomiczne przykłady Przykład1.Krążekopromieniurtoczysiębezpoślizguna płaszczyźnie po prostej nachylonej do osi Ox kartezjańskiego układu współrzędnych pod kątem α. Prosta ta spełnia rolę więzów. Bez więzów do opisu ruchu krążka na płaszczyźnie potrzebowalibyśmy 3 współrzędnych, np. współrzędnych środkakrążka (x,y)ikątaazymutalnego ϕ opisującego możliwy ruch obrotowy krążka, ale krążek może poruszać się tylko wzdłuż prostej. Karol Kołodziej Mechanika klasyczna i relatywistyczna 7/48

Więzy holonomiczne przykłady Przykład1.Krążekopromieniurtoczysiębezpoślizguna płaszczyźnie po prostej nachylonej do osi Ox kartezjańskiego układu współrzędnych pod kątem α. Prosta ta spełnia rolę więzów. Bez więzów do opisu ruchu krążka na płaszczyźnie potrzebowalibyśmy 3 współrzędnych, np. współrzędnych środkakrążka (x,y)ikątaazymutalnego ϕ opisującego możliwy ruch obrotowy krążka, ale krążek może poruszać się tylko wzdłuż prostej. Karol Kołodziej Mechanika klasyczna i relatywistyczna 7/48

Więzy holonomiczne przykłady Fakt ten możemy zapisać równaniami określającymi współrzędne (x A,y A )punktua,wktórymkrążekstykasięzprostą.załóżmy,że w chwili początkowej punkt A znajduje się w początku układu współrzędnych. Karol Kołodziej Mechanika klasyczna i relatywistyczna 8/48

Więzy holonomiczne przykłady Fakt ten możemy zapisać równaniami określającymi współrzędne (x A,y A )punktua,wktórymkrążekstykasięzprostą.załóżmy,że w chwili początkowej punkt A znajduje się w początku układu współrzędnych. Odległość punktu A od początku układu jest równa długości łuku opartej na kącie ϕ, Karol Kołodziej Mechanika klasyczna i relatywistyczna 8/48

Więzy holonomiczne przykłady Fakt ten możemy zapisać równaniami określającymi współrzędne (x A,y A )punktua,wktórymkrążekstykasięzprostą.załóżmy,że w chwili początkowej punkt A znajduje się w początku układu współrzędnych. Odległość punktu A od początku układu jest równa długości łuku opartej na kącie ϕ, a więc otrzymujemy równania x A =rϕcosα, y A =rϕsinα, Karol Kołodziej Mechanika klasyczna i relatywistyczna 8/48

Więzy holonomiczne przykłady Fakt ten możemy zapisać równaniami określającymi współrzędne (x A,y A )punktua,wktórymkrążekstykasięzprostą.załóżmy,że w chwili początkowej punkt A znajduje się w początku układu współrzędnych. Odległość punktu A od początku układu jest równa długości łuku opartej na kącie ϕ, a więc otrzymujemy równania x A =rϕcosα, y A =rϕsinα, które łatwo sprowadzić do postaci x A rϕcosα =0, y A rϕsinα =0. Karol Kołodziej Mechanika klasyczna i relatywistyczna 8/48

Więzy holonomiczne przykłady Fakt ten możemy zapisać równaniami określającymi współrzędne (x A,y A )punktua,wktórymkrążekstykasięzprostą.załóżmy,że w chwili początkowej punkt A znajduje się w początku układu współrzędnych. Odległość punktu A od początku układu jest równa długości łuku opartej na kącie ϕ, a więc otrzymujemy równania x A =rϕcosα, y A =rϕsinα, które łatwo sprowadzić do postaci x A rϕcosα =0, y A rϕsinα =0. Liczbastopniswobodyjestzatemrównan =3 2 =1. Karol Kołodziej Mechanika klasyczna i relatywistyczna 8/48

Więzy holonomiczne przykłady Fakt ten możemy zapisać równaniami określającymi współrzędne (x A,y A )punktua,wktórymkrążekstykasięzprostą.załóżmy,że w chwili początkowej punkt A znajduje się w początku układu współrzędnych. Odległość punktu A od początku układu jest równa długości łuku opartej na kącie ϕ, a więc otrzymujemy równania x A =rϕcosα, y A =rϕsinα, które łatwo sprowadzić do postaci x A rϕcosα =0, y A rϕsinα =0. Liczbastopniswobodyjestzatemrównan =3 2 =1. Karol Kołodziej Mechanika klasyczna i relatywistyczna 8/48

Więzy holonomiczne przykłady Przykład 2. Koralik poruszający się po parabolicznym drucie obracającym się ze stała prędkością kątową ω względem osi symetrii paraboli. Umieśćmy wierzchołek paraboli w początku kartezjańskiego układu współrzędnych. Karol Kołodziej Mechanika klasyczna i relatywistyczna 9/48

Więzy holonomiczne przykłady Przykład 2. Koralik poruszający się po parabolicznym drucie obracającym się ze stała prędkością kątową ω względem osi symetrii paraboli. Umieśćmy wierzchołek paraboli w początku kartezjańskiego układu współrzędnych. Bez więzów do opisu ruchu koralika w przestrzeni potrzebowalibyśmy 3 współrzędnych. Karol Kołodziej Mechanika klasyczna i relatywistyczna 9/48

Więzy holonomiczne przykłady Przykład 2. Koralik poruszający się po parabolicznym drucie obracającym się ze stała prędkością kątową ω względem osi symetrii paraboli. Umieśćmy wierzchołek paraboli w początku kartezjańskiego układu współrzędnych. Bez więzów do opisu ruchu koralika w przestrzeni potrzebowalibyśmy 3 współrzędnych. Ze względu na symetrię zagadnienia wybieramy współrzędne cylindryczne, Karol Kołodziej Mechanika klasyczna i relatywistyczna 9/48

Więzy holonomiczne przykłady Przykład 2. Koralik poruszający się po parabolicznym drucie obracającym się ze stała prędkością kątową ω względem osi symetrii paraboli. Umieśćmy wierzchołek paraboli w początku kartezjańskiego układu współrzędnych. Bez więzów do opisu ruchu koralika w przestrzeni potrzebowalibyśmy 3 współrzędnych. Ze względu na symetrię zagadnienia wybieramy współrzędne cylindryczne, w których równania więzów mają postać: Karol Kołodziej Mechanika klasyczna i relatywistyczna 9/48

Więzy holonomiczne przykłady Przykład 2. Koralik poruszający się po parabolicznym drucie obracającym się ze stała prędkością kątową ω względem osi symetrii paraboli. Umieśćmy wierzchołek paraboli w początku kartezjańskiego układu współrzędnych. Bez więzów do opisu ruchu koralika w przestrzeni potrzebowalibyśmy 3 współrzędnych. Ze względu na symetrię zagadnienia wybieramy współrzędne cylindryczne, w których równania więzów mają postać: ϕ =ωt, z =ar 2. Karol Kołodziej Mechanika klasyczna i relatywistyczna 9/48

Więzy holonomiczne przykłady Przykład 2. Koralik poruszający się po parabolicznym drucie obracającym się ze stała prędkością kątową ω względem osi symetrii paraboli. Umieśćmy wierzchołek paraboli w początku kartezjańskiego układu współrzędnych. Bez więzów do opisu ruchu koralika w przestrzeni potrzebowalibyśmy 3 współrzędnych. Ze względu na symetrię zagadnienia wybieramy współrzędne cylindryczne, w których równania więzów mają postać: ϕ =ωt, z =ar 2. Karol Kołodziej Mechanika klasyczna i relatywistyczna 9/48

Więzy holonomiczne przykłady Równanieϕ =ωtokreślawartośćkąta,októryobrócisię płaszczyzna paraboli w czasie t, jeśli w chwili początkowej pokrywałasięonazpłaszczyznąxoy,arównaniez=ar 2 jest równaniem paraboli o zadanym współczynniku a. Karol Kołodziej Mechanika klasyczna i relatywistyczna 10/48

Więzy holonomiczne przykłady Równanieϕ =ωtokreślawartośćkąta,októryobrócisię płaszczyzna paraboli w czasie t, jeśli w chwili początkowej pokrywałasięonazpłaszczyznąxoy,arównaniez=ar 2 jest równaniem paraboli o zadanym współczynniku a. Przypomnijmy, że równanie paraboli o wierzchołku w początku układuwspółrzędnychmapostaćy =ax 2.Wtymprzypadkurolę zmiennejxspełniar,arolęzmiennejyspełniaz. Karol Kołodziej Mechanika klasyczna i relatywistyczna 10/48

Więzy holonomiczne przykłady Równanieϕ =ωtokreślawartośćkąta,októryobrócisię płaszczyzna paraboli w czasie t, jeśli w chwili początkowej pokrywałasięonazpłaszczyznąxoy,arównaniez=ar 2 jest równaniem paraboli o zadanym współczynniku a. Przypomnijmy, że równanie paraboli o wierzchołku w początku układuwspółrzędnychmapostaćy =ax 2.Wtymprzypadkurolę zmiennejxspełniar,arolęzmiennejyspełniaz. Równania więzów łatwo sprowadzić do postaci ϕ ωt =0, z ar 2 =0. Karol Kołodziej Mechanika klasyczna i relatywistyczna 10/48

Więzy holonomiczne przykłady Równanieϕ =ωtokreślawartośćkąta,októryobrócisię płaszczyzna paraboli w czasie t, jeśli w chwili początkowej pokrywałasięonazpłaszczyznąxoy,arównaniez=ar 2 jest równaniem paraboli o zadanym współczynniku a. Przypomnijmy, że równanie paraboli o wierzchołku w początku układuwspółrzędnychmapostaćy =ax 2.Wtymprzypadkurolę zmiennejxspełniar,arolęzmiennejyspełniaz. Równania więzów łatwo sprowadzić do postaci ϕ ωt =0, z ar 2 =0. Również tym razem liczba stopni swobody jest równa n =3 2 =1. Karol Kołodziej Mechanika klasyczna i relatywistyczna 10/48

Więzy holonomiczne przykłady Równanieϕ =ωtokreślawartośćkąta,októryobrócisię płaszczyzna paraboli w czasie t, jeśli w chwili początkowej pokrywałasięonazpłaszczyznąxoy,arównaniez=ar 2 jest równaniem paraboli o zadanym współczynniku a. Przypomnijmy, że równanie paraboli o wierzchołku w początku układuwspółrzędnychmapostaćy =ax 2.Wtymprzypadkurolę zmiennejxspełniar,arolęzmiennejyspełniaz. Równania więzów łatwo sprowadzić do postaci ϕ ωt =0, z ar 2 =0. Również tym razem liczba stopni swobody jest równa n =3 2 =1. Karol Kołodziej Mechanika klasyczna i relatywistyczna 10/48

Więzy nieholonomiczne przykłady Przykład 3. Punkt materialny zsuwa się po powierzchni kuli o promieniu R. Położenie punktu opisujemy wektorem r. Karol Kołodziej Mechanika klasyczna i relatywistyczna 11/48

Więzy nieholonomiczne przykłady Przykład 3. Punkt materialny zsuwa się po powierzchni kuli o promieniu R. Położenie punktu opisujemy wektorem r. Jeśli prędkość punktu będzie mała, to będzie on pozostawał na powierzchni kuli, jeśli natomiast prędkość punktu będzie odpowiednio duża, to oderwie się on od powierzchni. Karol Kołodziej Mechanika klasyczna i relatywistyczna 11/48

Więzy nieholonomiczne przykłady Przykład 3. Punkt materialny zsuwa się po powierzchni kuli o promieniu R. Położenie punktu opisujemy wektorem r. Jeśli prędkość punktu będzie mała, to będzie on pozostawał na powierzchni kuli, jeśli natomiast prędkość punktu będzie odpowiednio duża, to oderwie się on od powierzchni. Obie możliwości możemy uwzględnić pisząc nierówność dla wektora położenia punktu r = r(t) r 2 R 2 r 2 R 2 0, Karol Kołodziej Mechanika klasyczna i relatywistyczna 11/48

Więzy nieholonomiczne przykłady Przykład 3. Punkt materialny zsuwa się po powierzchni kuli o promieniu R. Położenie punktu opisujemy wektorem r. Jeśli prędkość punktu będzie mała, to będzie on pozostawał na powierzchni kuli, jeśli natomiast prędkość punktu będzie odpowiednio duża, to oderwie się on od powierzchni. Obie możliwości możemy uwzględnić pisząc nierówność dla wektora położenia punktu r = r(t) r 2 R 2 r 2 R 2 0, która oczywiście nie jest równaniem. Karol Kołodziej Mechanika klasyczna i relatywistyczna 11/48

Więzy nieholonomiczne przykłady Przykład 3. Punkt materialny zsuwa się po powierzchni kuli o promieniu R. Położenie punktu opisujemy wektorem r. Jeśli prędkość punktu będzie mała, to będzie on pozostawał na powierzchni kuli, jeśli natomiast prędkość punktu będzie odpowiednio duża, to oderwie się on od powierzchni. Obie możliwości możemy uwzględnić pisząc nierówność dla wektora położenia punktu r = r(t) r 2 R 2 r 2 R 2 0, która oczywiście nie jest równaniem. Karol Kołodziej Mechanika klasyczna i relatywistyczna 11/48

Więzy nieholonomiczne przykłady Ważną klasę więzów nieholonomicznych tworzą więzy różniczkowe niecałkowalne. Przykład 4. Moneta toczy się bez poślizgu swoją boczną stroną po blacie stołu. Karol Kołodziej Mechanika klasyczna i relatywistyczna 12/48

Więzy nieholonomiczne przykłady Ważną klasę więzów nieholonomicznych tworzą więzy różniczkowe niecałkowalne. Przykład 4. Moneta toczy się bez poślizgu swoją boczną stroną po blacie stołu. Położenie monety możemy opisać podając 5 współrzędnych, które możemy wybrać następująco x A,y A współrzędnepunktua,wktórymmonetastykasięz blatem, Karol Kołodziej Mechanika klasyczna i relatywistyczna 12/48

Więzy nieholonomiczne przykłady Ważną klasę więzów nieholonomicznych tworzą więzy różniczkowe niecałkowalne. Przykład 4. Moneta toczy się bez poślizgu swoją boczną stroną po blacie stołu. Położenie monety możemy opisać podając 5 współrzędnych, które możemy wybrać następująco x A,y A współrzędnepunktua,wktórymmonetastykasięz blatem, Karol Kołodziej Mechanika klasyczna i relatywistyczna 12/48

Więzy nieholonomiczne przykłady ϕ kąt,którytworzychwilowykierunekruchumonetyzosią Ox, θ kąt nachylenia płaszczyzny monety do blatu, ψ kątobrotowymonety. W każdej chwili moneta toczy się w kierunku prostej, wzdłuż której płaszczyzna monety przecina się z blatem. Karol Kołodziej Mechanika klasyczna i relatywistyczna 13/48

Więzy nieholonomiczne przykłady ϕ kąt,którytworzychwilowykierunekruchumonetyzosią Ox, θ kąt nachylenia płaszczyzny monety do blatu, ψ kątobrotowymonety. W każdej chwili moneta toczy się w kierunku prostej, wzdłuż której płaszczyzna monety przecina się z blatem. Przy obrocie o nieskończenie mały kąt dψ kierunek ruchu, a więc kąt ϕ, pozostaje w przybliżeniu stały. Karol Kołodziej Mechanika klasyczna i relatywistyczna 13/48

Więzy nieholonomiczne przykłady ϕ kąt,którytworzychwilowykierunekruchumonetyzosią Ox, θ kąt nachylenia płaszczyzny monety do blatu, ψ kątobrotowymonety. W każdej chwili moneta toczy się w kierunku prostej, wzdłuż której płaszczyzna monety przecina się z blatem. Przy obrocie o nieskończenie mały kąt dψ kierunek ruchu, a więc kąt ϕ, pozostaje w przybliżeniu stały. RzutypokonanejprzytakimobrociedrogirdψnaosieOxiOy dane są odpowiednio równaniami dx A = rdψcosϕ, dy A = rdψsinϕ. Karol Kołodziej Mechanika klasyczna i relatywistyczna 13/48

Więzy nieholonomiczne przykłady ϕ kąt,którytworzychwilowykierunekruchumonetyzosią Ox, θ kąt nachylenia płaszczyzny monety do blatu, ψ kątobrotowymonety. W każdej chwili moneta toczy się w kierunku prostej, wzdłuż której płaszczyzna monety przecina się z blatem. Przy obrocie o nieskończenie mały kąt dψ kierunek ruchu, a więc kąt ϕ, pozostaje w przybliżeniu stały. RzutypokonanejprzytakimobrociedrogirdψnaosieOxiOy dane są odpowiednio równaniami dx A = rdψcosϕ, dy A = rdψsinϕ. Karol Kołodziej Mechanika klasyczna i relatywistyczna 13/48

Więzy nieholonomiczne przykłady Znak po prawej stronie odzwierciedla fakt, że zgodnie z rysunkiemprzyrostywspółrzędnychx A iy A sąujemne. Przenosząc wszystko na lewą stronę i zmieniając kolejność otrzymamy dx A +rcosϕdψ = 0, dy A +rsinϕdψ = 0. Karol Kołodziej Mechanika klasyczna i relatywistyczna 14/48

Więzy nieholonomiczne przykłady Znak po prawej stronie odzwierciedla fakt, że zgodnie z rysunkiemprzyrostywspółrzędnychx A iy A sąujemne. Przenosząc wszystko na lewą stronę i zmieniając kolejność otrzymamy dx A +rcosϕdψ = 0, dy A +rsinϕdψ = 0. Jest to układ równań różniczkowych. Karol Kołodziej Mechanika klasyczna i relatywistyczna 14/48

Więzy nieholonomiczne przykłady Znak po prawej stronie odzwierciedla fakt, że zgodnie z rysunkiemprzyrostywspółrzędnychx A iy A sąujemne. Przenosząc wszystko na lewą stronę i zmieniając kolejność otrzymamy dx A +rcosϕdψ = 0, dy A +rsinϕdψ = 0. Jest to układ równań różniczkowych. Za chwilę pokażemy, że układtenniejestcałkowalny,azatemniemożnagozapisaćw postaci układu równań algebraicznych. Karol Kołodziej Mechanika klasyczna i relatywistyczna 14/48

Więzy nieholonomiczne przykłady Znak po prawej stronie odzwierciedla fakt, że zgodnie z rysunkiemprzyrostywspółrzędnychx A iy A sąujemne. Przenosząc wszystko na lewą stronę i zmieniając kolejność otrzymamy dx A +rcosϕdψ = 0, dy A +rsinϕdψ = 0. Jest to układ równań różniczkowych. Za chwilę pokażemy, że układtenniejestcałkowalny,azatemniemożnagozapisaćw postaci układu równań algebraicznych. Jak sprawdzić czy układ równań różniczkowych jest całkowalny lub nie? Karol Kołodziej Mechanika klasyczna i relatywistyczna 14/48

Więzy nieholonomiczne przykłady Znak po prawej stronie odzwierciedla fakt, że zgodnie z rysunkiemprzyrostywspółrzędnychx A iy A sąujemne. Przenosząc wszystko na lewą stronę i zmieniając kolejność otrzymamy dx A +rcosϕdψ = 0, dy A +rsinϕdψ = 0. Jest to układ równań różniczkowych. Za chwilę pokażemy, że układtenniejestcałkowalny,azatemniemożnagozapisaćw postaci układu równań algebraicznych. Jak sprawdzić czy układ równań różniczkowych jest całkowalny lub nie? Karol Kołodziej Mechanika klasyczna i relatywistyczna 14/48

Więzy różniczkowe Rozważmy ogólną postać k równań więzów różniczkowych nałożonych na układ N punktów materialnych w trójwymiarowej przestrzeni. 3N j=1 a ij dq j +a it dt =0, i =1,2,...,k, gdziewspółczynnikia ij ia it mogązależećodwszystkich współrzędnych uogólnionych i czasu, ale nie zależą od prędkości ( a ij =a ij q1,q 2,...,q }{{ 3N,t ) a } ij (q,t), q ( a it =a it q1,q 2,...,q }{{ 3N,t ) a } it (q,t). q Karol Kołodziej Mechanika klasyczna i relatywistyczna 15/48

Więzy różniczkowe Rozważmy ogólną postać k równań więzów różniczkowych nałożonych na układ N punktów materialnych w trójwymiarowej przestrzeni. 3N j=1 a ij dq j +a it dt =0, i =1,2,...,k, gdziewspółczynnikia ij ia it mogązależećodwszystkich współrzędnych uogólnionych i czasu, ale nie zależą od prędkości ( a ij =a ij q1,q 2,...,q }{{ 3N,t ) a } ij (q,t), q ( a it =a it q1,q 2,...,q }{{ 3N,t ) a } it (q,t). q Karol Kołodziej Mechanika klasyczna i relatywistyczna 15/48

Więzy różniczkowe Wprowadziliśmy tu skrótową notację, w której zależność od wszystkichwspółrzędnychuogólnionychq 1,q 2,...,q 3N oznaczyliśmy literą q. Tej skrótowej notacji będziemy często używać. Układ równań 3N j=1 a ij dq j +a it dt =0, i =1,2,...,k, jest z pewnością całkowalny, jeśli istnieje zbiór funkcji różniczkowalnychf i (q,t),i =1,2,...,k,dlaktórychpowyższe równania są różniczkami zupełnymi. Karol Kołodziej Mechanika klasyczna i relatywistyczna 16/48

Więzy różniczkowe Wprowadziliśmy tu skrótową notację, w której zależność od wszystkichwspółrzędnychuogólnionychq 1,q 2,...,q 3N oznaczyliśmy literą q. Tej skrótowej notacji będziemy często używać. Układ równań 3N j=1 a ij dq j +a it dt =0, i =1,2,...,k, jest z pewnością całkowalny, jeśli istnieje zbiór funkcji różniczkowalnychf i (q,t),i =1,2,...,k,dlaktórychpowyższe równania są różniczkami zupełnymi. Karol Kołodziej Mechanika klasyczna i relatywistyczna 16/48

Więzy różniczkowe Obliczmyróżniczkęzupełnąfunkcjif i (q,t)iprzyrównajmyjądo lewej strony i-tego równania więzów df i = 3N j=1 f i dq j + f 3N i q j t dt a ij dq j +a it dt. Równość zachodzi tylko pod warunkiem równości współczynników przyniezależnychprzyrostachzmiennychdq j idt j=1 f i q j =a ij i f i t =a it, Karol Kołodziej Mechanika klasyczna i relatywistyczna 17/48

Więzy różniczkowe Obliczmyróżniczkęzupełnąfunkcjif i (q,t)iprzyrównajmyjądo lewej strony i-tego równania więzów df i = 3N j=1 f i dq j + f 3N i q j t dt a ij dq j +a it dt. Równość zachodzi tylko pod warunkiem równości współczynników przyniezależnychprzyrostachzmiennychdq j idt j=1 f i q j =a ij i f i t =a it, Karol Kołodziej Mechanika klasyczna i relatywistyczna 17/48

Więzy różniczkowe alewarunkiemwystarczającymnatoabyfunkcjaf i (q,t)była różniczkowalna jest istnienie wszystkich drugich pochodnych i równość odpowiednich pochodnych mieszanych. Skąd otrzymujemy warunki 2 f i q j q l = a ij q l = 2 f i q l q j = a il q j, 2 f i q j t = a ij t = 2 f i t q j = a it q j, Karol Kołodziej Mechanika klasyczna i relatywistyczna 18/48

Więzy różniczkowe alewarunkiemwystarczającymnatoabyfunkcjaf i (q,t)była różniczkowalna jest istnienie wszystkich drugich pochodnych i równość odpowiednich pochodnych mieszanych. Skąd otrzymujemy warunki 2 f i q j q l = a ij q l = 2 f i q l q j = a il q j, 2 f i q j t = a ij t = 2 f i t q j = a it q j, awięc a ij q l = a il q j, a ij t = a it q j, dlawszystkichwartościindeksówi,jtakich,żei j. Karol Kołodziej Mechanika klasyczna i relatywistyczna 18/48

Więzy różniczkowe alewarunkiemwystarczającymnatoabyfunkcjaf i (q,t)była różniczkowalna jest istnienie wszystkich drugich pochodnych i równość odpowiednich pochodnych mieszanych. Skąd otrzymujemy warunki 2 f i q j q l = a ij q l = 2 f i q l q j = a il q j, 2 f i q j t = a ij t = 2 f i t q j = a it q j, awięc a ij q l = a il q j, a ij t = a it q j, dlawszystkichwartościindeksówi,jtakich,żei j. Karol Kołodziej Mechanika klasyczna i relatywistyczna 18/48

Więzy różniczkowe Otrzymaliśmy w ten sposób następujący warunek. Więzy różniczkowe 3N j=1 a ij dq j +a it dt =0, i =1,2,...,k, są całkowalne, jeśli niezależne od prędkości uogólnionych współczynnikia ij (q,t)ia it (q,t)spełniająwarunki a ij q l = a il q j, a ij t = a it q j, dlawszystkichwartościindeksówi,jtakich,żei j. Karol Kołodziej Mechanika klasyczna i relatywistyczna 19/48

Więzy różniczkowe Otrzymaliśmy w ten sposób następujący warunek. Więzy różniczkowe 3N j=1 a ij dq j +a it dt =0, i =1,2,...,k, są całkowalne, jeśli niezależne od prędkości uogólnionych współczynnikia ij (q,t)ia it (q,t)spełniająwarunki a ij q l = a il q j, a ij t = a it q j, dlawszystkichwartościindeksówi,jtakich,żei j. Karol Kołodziej Mechanika klasyczna i relatywistyczna 19/48

Więzy różniczkowe Uwaga. Warunki te można w rzeczywistości osłabić do żądania abyformaróżniczkowa 3N j=1 a ij dq j +a it dtmiałatzw.czynnik całkujący, co można sprowadzić do warunku ( ail a ik a ) ( ij aik +a ij a ) ( il aij +a il a ) ik =0. q j q l q l q k q k q j Karol Kołodziej Mechanika klasyczna i relatywistyczna 20/48

Więzy różniczkowe Uwaga. Warunki te można w rzeczywistości osłabić do żądania abyformaróżniczkowa 3N j=1 a ij dq j +a it dtmiałatzw.czynnik całkujący, co można sprowadzić do warunku ( ail a ik a ) ( ij aik +a ij a ) ( il aij +a il a ) ik =0. q j q l q l q k q k q j Wyprowadzenie tego warunku można znaleźć np. w podręczniku G. Białkowskiego Mechanika klasyczna. Karol Kołodziej Mechanika klasyczna i relatywistyczna 20/48

Więzy różniczkowe Uwaga. Warunki te można w rzeczywistości osłabić do żądania abyformaróżniczkowa 3N j=1 a ij dq j +a it dtmiałatzw.czynnik całkujący, co można sprowadzić do warunku ( ail a ik a ) ( ij aik +a ij a ) ( il aij +a il a ) ik =0. q j q l q l q k q k q j Wyprowadzenie tego warunku można znaleźć np. w podręczniku G. Białkowskiego Mechanika klasyczna. Karol Kołodziej Mechanika klasyczna i relatywistyczna 20/48

Więzy różniczkowe przykłady Zadanie 1. Udowodnić, że więzy w przykładzie z monetą toczącą się po blacie stołu dane równaniami różniczkowymi dx A +rcosϕdψ = 0, dy A +rsinϕdψ = 0. nie są całkowalne. Rozwiązanie. Przeprowadzimy dowód nie wprost, tzn. pokażemy, że założenie całkowalności układu prowadzi do sprzeczności. Karol Kołodziej Mechanika klasyczna i relatywistyczna 21/48

Więzy różniczkowe przykłady Zadanie 1. Udowodnić, że więzy w przykładzie z monetą toczącą się po blacie stołu dane równaniami różniczkowymi dx A +rcosϕdψ = 0, dy A +rsinϕdψ = 0. nie są całkowalne. Rozwiązanie. Przeprowadzimy dowód nie wprost, tzn. pokażemy, że założenie całkowalności układu prowadzi do sprzeczności. Powyższy układ równań jest całkowalny jeśli istnieją dwie funkcje pięciuzmiennychf i (x A,y A,ϕ,θ,ψ),i =1,2,dlaktórychrównania układu są różniczkami zupełnymi. Karol Kołodziej Mechanika klasyczna i relatywistyczna 21/48

Więzy różniczkowe przykłady Zadanie 1. Udowodnić, że więzy w przykładzie z monetą toczącą się po blacie stołu dane równaniami różniczkowymi dx A +rcosϕdψ = 0, dy A +rsinϕdψ = 0. nie są całkowalne. Rozwiązanie. Przeprowadzimy dowód nie wprost, tzn. pokażemy, że założenie całkowalności układu prowadzi do sprzeczności. Powyższy układ równań jest całkowalny jeśli istnieją dwie funkcje pięciuzmiennychf i (x A,y A,ϕ,θ,ψ),i =1,2,dlaktórychrównania układu są różniczkami zupełnymi. Karol Kołodziej Mechanika klasyczna i relatywistyczna 21/48

Więzy różniczkowe przykłady Obliczmyróżniczkizupełnefunkcjif i (x A,y A,ϕ,θ,ψ),i =1,2,i przyrównajmy do lewej strony równań więzów f 1 dx A + f 1 dy A + f 1 x A y A ϕ dϕ+ f 1 θ dθ + f 1 ψ dψ = dx A +rcosϕdψ, f 2 dx A + f 2 dy A + f 2 x A y A ϕ dϕ+ f 2 θ dθ + f 2 ψ dψ = dy A +rsinϕdψ. Karol Kołodziej Mechanika klasyczna i relatywistyczna 22/48

Więzy różniczkowe przykłady Obliczmyróżniczkizupełnefunkcjif i (x A,y A,ϕ,θ,ψ),i =1,2,i przyrównajmy do lewej strony równań więzów f 1 dx A + f 1 dy A + f 1 x A y A ϕ dϕ+ f 1 θ dθ + f 1 ψ dψ = dx A +rcosϕdψ, f 2 dx A + f 2 dy A + f 2 x A y A ϕ dϕ+ f 2 θ dθ + f 2 ψ dψ = dy A +rsinϕdψ. Porównajmywspółczynnikiprzydx A,dy A,dϕ,dθidψ f 1 =1, x A f 2 =0, x A f 1 =0, y A f 2 =1, y A f 1 ϕ =0, f 1 θ =0, f 1 ψ =rcosϕ, f 2 ϕ =0, f 2 θ =0, f 2 ψ =rsinϕ. Karol Kołodziej Mechanika klasyczna i relatywistyczna 22/48

Więzy różniczkowe przykłady Obliczmyróżniczkizupełnefunkcjif i (x A,y A,ϕ,θ,ψ),i =1,2,i przyrównajmy do lewej strony równań więzów f 1 dx A + f 1 dy A + f 1 x A y A ϕ dϕ+ f 1 θ dθ + f 1 ψ dψ = dx A +rcosϕdψ, f 2 dx A + f 2 dy A + f 2 x A y A ϕ dϕ+ f 2 θ dθ + f 2 ψ dψ = dy A +rsinϕdψ. Porównajmywspółczynnikiprzydx A,dy A,dϕ,dθidψ f 1 =1, x A f 2 =0, x A f 1 =0, y A f 2 =1, y A f 1 ϕ =0, f 1 θ =0, f 1 ψ =rcosϕ, f 2 ϕ =0, f 2 θ =0, f 2 ψ =rsinϕ. Karol Kołodziej Mechanika klasyczna i relatywistyczna 22/48

Więzy różniczkowe przykłady Skoncentrujmy się na równaniach w kolorze niebieskim f 1 ϕ =0, f 1 ψ =rcosϕ, f 2 ϕ =0, f 2 ψ =rsinϕ. Zróżniczkujmy równania w pierwszej kolumnie po zmiennej ψ, a równania w drugiej kolumnie po zmiennej ϕ Karol Kołodziej Mechanika klasyczna i relatywistyczna 23/48

Więzy różniczkowe przykłady Skoncentrujmy się na równaniach w kolorze niebieskim f 1 ϕ =0, f 1 ψ =rcosϕ, f 2 ϕ =0, f 2 ψ =rsinϕ. Zróżniczkujmy równania w pierwszej kolumnie po zmiennej ψ, a równania w drugiej kolumnie po zmiennej ϕ 2 f 1 ϕ ψ =0 2 f 1 ψ ϕ = rsinϕ, Karol Kołodziej Mechanika klasyczna i relatywistyczna 23/48

Więzy różniczkowe przykłady Skoncentrujmy się na równaniach w kolorze niebieskim f 1 ϕ =0, f 1 ψ =rcosϕ, f 2 ϕ =0, f 2 ψ =rsinϕ. Zróżniczkujmy równania w pierwszej kolumnie po zmiennej ψ, a równania w drugiej kolumnie po zmiennej ϕ 2 f 1 ϕ ψ =0 2 f 1 ψ ϕ = rsinϕ, 2 f 2 ϕ ψ =0 2 f 2 ψ ϕ =rcosϕ, Karol Kołodziej Mechanika klasyczna i relatywistyczna 23/48

Więzy różniczkowe przykłady Skoncentrujmy się na równaniach w kolorze niebieskim f 1 ϕ =0, f 1 ψ =rcosϕ, f 2 ϕ =0, f 2 ψ =rsinϕ. Zróżniczkujmy równania w pierwszej kolumnie po zmiennej ψ, a równania w drugiej kolumnie po zmiennej ϕ 2 f 1 ϕ ψ =0 2 f 1 ψ ϕ = rsinϕ, 2 f 2 ϕ ψ =0 2 f 2 ψ ϕ =rcosϕ, a zatem układ równań nie jest całkowalny. Karol Kołodziej Mechanika klasyczna i relatywistyczna 23/48

Więzy różniczkowe przykłady Skoncentrujmy się na równaniach w kolorze niebieskim f 1 ϕ =0, f 1 ψ =rcosϕ, f 2 ϕ =0, f 2 ψ =rsinϕ. Zróżniczkujmy równania w pierwszej kolumnie po zmiennej ψ, a równania w drugiej kolumnie po zmiennej ϕ 2 f 1 ϕ ψ =0 2 f 1 ψ ϕ = rsinϕ, 2 f 2 ϕ ψ =0 2 f 2 ψ ϕ =rcosϕ, a zatem układ równań nie jest całkowalny. Karol Kołodziej Mechanika klasyczna i relatywistyczna 23/48

Więzy różniczkowe przykłady Uwaga. Właściwie dla wyprowadzenia powyższej konkluzji należałoby pokazać, że nie istnieje czynnik całkujący. Karol Kołodziej Mechanika klasyczna i relatywistyczna 24/48

Dalsza klasyfikacja więzów Więzy możemy również sklasyfikować ze względu na zależność od czasu dzieląc je na więzy skleronomiczne, które nie zawierają jawnej zależności od czasu,jaknp.więzyx A rϕcosα =0,y A rϕsinα =0,z przykładu krążka toczącego się po prostej, więzy reonomiczne, które zależą jawnie od czasu, jak np. więzyϕ =ωt,z=ar 2,wprzypadkukoralikaporuszającego się po obracającej się paraboli. Karol Kołodziej Mechanika klasyczna i relatywistyczna 25/48

Dalsza klasyfikacja więzów Więzy możemy również sklasyfikować ze względu na zależność od czasu dzieląc je na więzy skleronomiczne, które nie zawierają jawnej zależności od czasu,jaknp.więzyx A rϕcosα =0,y A rϕsinα =0,z przykładu krążka toczącego się po prostej, więzy reonomiczne, które zależą jawnie od czasu, jak np. więzyϕ =ωt,z=ar 2,wprzypadkukoralikaporuszającego się po obracającej się paraboli. Karol Kołodziej Mechanika klasyczna i relatywistyczna 25/48

Rozważmy teraz układ N punktów materialnych, na który nałożono więzy holonomiczne opisane równaniami f i (q 1,q 2,...,q 3N,t) =0, i =1,2,...,k, zktórychmożemywyeliminowaćkwspółrzędnychuogólnionychq j. Karol Kołodziej Mechanika klasyczna i relatywistyczna 26/48

Rozważmy teraz układ N punktów materialnych, na który nałożono więzy holonomiczne opisane równaniami f i (q 1,q 2,...,q 3N,t) =0, i =1,2,...,k, zktórychmożemywyeliminowaćkwspółrzędnychuogólnionychq j. Nie zmniejszając ogólności rozważań możemy przyjąć, że wyeliminowaliśmy k ostatnich współrzędnych q 3N k+1,q 3N k+2,...,q 3N Karol Kołodziej Mechanika klasyczna i relatywistyczna 26/48

Rozważmy teraz układ N punktów materialnych, na który nałożono więzy holonomiczne opisane równaniami f i (q 1,q 2,...,q 3N,t) =0, i =1,2,...,k, zktórychmożemywyeliminowaćkwspółrzędnychuogólnionychq j. Nie zmniejszając ogólności rozważań możemy przyjąć, że wyeliminowaliśmy k ostatnich współrzędnych q 3N k+1,q 3N k+2,...,q 3N tak, że wektory położenia poszczególnych punktów układu będą powiązane z pozostałymi 3N k niezależnymi współrzędnymi uogólnionymi równaniami r i = r i (q 1,q 2,...,q 3N k,t), i =1,2,...,N. Karol Kołodziej Mechanika klasyczna i relatywistyczna 26/48

Rozważmy teraz układ N punktów materialnych, na który nałożono więzy holonomiczne opisane równaniami f i (q 1,q 2,...,q 3N,t) =0, i =1,2,...,k, zktórychmożemywyeliminowaćkwspółrzędnychuogólnionychq j. Nie zmniejszając ogólności rozważań możemy przyjąć, że wyeliminowaliśmy k ostatnich współrzędnych q 3N k+1,q 3N k+2,...,q 3N tak, że wektory położenia poszczególnych punktów układu będą powiązane z pozostałymi 3N k niezależnymi współrzędnymi uogólnionymi równaniami r i = r i (q 1,q 2,...,q 3N k,t), i =1,2,...,N. Karol Kołodziej Mechanika klasyczna i relatywistyczna 26/48

W obecności więzów równanie ruchu i-tego punktu wynikające z II zasady dynamiki Newtona ma postać m i ri = F i + Z i, i =1,2,...,N, gdzie po prawej prawej stronie Karol Kołodziej Mechanika klasyczna i relatywistyczna 27/48

W obecności więzów równanie ruchu i-tego punktu wynikające z II zasady dynamiki Newtona ma postać m i ri = F i + Z i, i =1,2,...,N, gdzie po prawej prawej stronie oprócz wypadkowej, aktywnej siły działającej na i-ty punkt Karol Kołodziej Mechanika klasyczna i relatywistyczna 27/48

W obecności więzów równanie ruchu i-tego punktu wynikające z II zasady dynamiki Newtona ma postać m i ri = F i + Z i, i =1,2,...,N, gdzie po prawej prawej stronie oprócz wypadkowej, aktywnej siły działającejnai-typunkt wprowadziliśmysiłęreakcjiwięzów Z i, Karol Kołodziej Mechanika klasyczna i relatywistyczna 27/48

W obecności więzów równanie ruchu i-tego punktu wynikające z II zasady dynamiki Newtona ma postać m i ri = F i + Z i, i =1,2,...,N, gdzie po prawej prawej stronie oprócz wypadkowej, aktywnej siły działającejnai-typunkt wprowadziliśmysiłęreakcjiwięzów Z i, która sprawia, że punkt materialny porusza się w sposób zgodny z więzami. Karol Kołodziej Mechanika klasyczna i relatywistyczna 27/48

W obecności więzów równanie ruchu i-tego punktu wynikające z II zasady dynamiki Newtona ma postać m i ri = F i + Z i, i =1,2,...,N, gdzie po prawej prawej stronie oprócz wypadkowej, aktywnej siły działającejnai-typunkt wprowadziliśmysiłęreakcjiwięzów Z i, która sprawia, że punkt materialny porusza się w sposób zgodny z więzami. Znamy skutki działania sił reakcji więzów, Karol Kołodziej Mechanika klasyczna i relatywistyczna 27/48

W obecności więzów równanie ruchu i-tego punktu wynikające z II zasady dynamiki Newtona ma postać m i ri = F i + Z i, i =1,2,...,N, gdzie po prawej prawej stronie oprócz wypadkowej, aktywnej siły działającejnai-typunkt wprowadziliśmysiłęreakcjiwięzów Z i, która sprawia, że punkt materialny porusza się w sposób zgodny z więzami. Znamy skutki działania sił reakcji więzów, ale na ogół nie znamy ich wielkości, Karol Kołodziej Mechanika klasyczna i relatywistyczna 27/48

W obecności więzów równanie ruchu i-tego punktu wynikające z II zasady dynamiki Newtona ma postać m i ri = F i + Z i, i =1,2,...,N, gdzie po prawej prawej stronie oprócz wypadkowej, aktywnej siły działającejnai-typunkt wprowadziliśmysiłęreakcjiwięzów Z i, która sprawia, że punkt materialny porusza się w sposób zgodny z więzami. Znamy skutki działania sił reakcji więzów, ale na ogół nie znamy ich wielkości, dlatego ich występowanie komplikuje rozwiązanie zagadnienia ruchu. Karol Kołodziej Mechanika klasyczna i relatywistyczna 27/48

W obecności więzów równanie ruchu i-tego punktu wynikające z II zasady dynamiki Newtona ma postać m i ri = F i + Z i, i =1,2,...,N, gdzie po prawej prawej stronie oprócz wypadkowej, aktywnej siły działającejnai-typunkt wprowadziliśmysiłęreakcjiwięzów Z i, która sprawia, że punkt materialny porusza się w sposób zgodny z więzami. Znamy skutki działania sił reakcji więzów, ale na ogół nie znamy ich wielkości, dlatego ich występowanie komplikuje rozwiązanie zagadnienia ruchu. Karol Kołodziej Mechanika klasyczna i relatywistyczna 27/48

Przykład3.Punktmaterialnyomasiemporuszasiępo wewnętrznej powierzchni stożka o kącie półrozwartości α. z Równanie ruchu ma postać g m m r =m g + Z, α ϕ r y x Karol Kołodziej Mechanika klasyczna i relatywistyczna 28/48

Przykład3.Punktmaterialnyomasiemporuszasiępo wewnętrznej powierzchni stożka o kącie półrozwartości α. z Równanie ruchu ma postać g α m m r =m g + Z, awskładowych x ϕ r y mẍ = Z x, mÿ = Z y, m z = mg +Z z. Karol Kołodziej Mechanika klasyczna i relatywistyczna 28/48

Przykład3.Punktmaterialnyomasiemporuszasiępo wewnętrznej powierzchni stożka o kącie półrozwartości α. z Równanie ruchu ma postać x g α ϕ Równanie więzów: r z r m y m r =m g + Z, awskładowych mẍ = Z x, mÿ = Z y, =ctgα r ztgα =0. m z = mg +Z z. Karol Kołodziej Mechanika klasyczna i relatywistyczna 28/48

Przykład3.Punktmaterialnyomasiemporuszasiępo wewnętrznej powierzchni stożka o kącie półrozwartości α. z Równanie ruchu ma postać x g α ϕ Równanie więzów: r z r m y m r =m g + Z, awskładowych mẍ = Z x, mÿ = Z y, =ctgα r ztgα =0. m z = mg +Z z. Karol Kołodziej Mechanika klasyczna i relatywistyczna 28/48

Jako zmienne niezależne wybieramy współrzędne cylindryczne r i ϕ. Obliczmy pochodne czasowe odpowiednich związków ze współrzędnymi kartezjańskimi x = rcosϕ, y = rsinϕ, z = rctgα, ẋ Karol Kołodziej Mechanika klasyczna i relatywistyczna 29/48

Jako zmienne niezależne wybieramy współrzędne cylindryczne r i ϕ. Obliczmy pochodne czasowe odpowiednich związków ze współrzędnymi kartezjańskimi x = rcosϕ, y = rsinϕ, z = rctgα, ẋ = Karol Kołodziej Mechanika klasyczna i relatywistyczna 29/48

Jako zmienne niezależne wybieramy współrzędne cylindryczne r i ϕ. Obliczmy pochodne czasowe odpowiednich związków ze współrzędnymi kartezjańskimi x = rcosϕ, y = rsinϕ, z = rctgα, ẋ = ṙcosϕ r ϕsinϕ, ẏ Karol Kołodziej Mechanika klasyczna i relatywistyczna 29/48

Jako zmienne niezależne wybieramy współrzędne cylindryczne r i ϕ. Obliczmy pochodne czasowe odpowiednich związków ze współrzędnymi kartezjańskimi x = rcosϕ, y = rsinϕ, z = rctgα, ẋ = ṙcosϕ r ϕsinϕ, ẏ = Karol Kołodziej Mechanika klasyczna i relatywistyczna 29/48

Jako zmienne niezależne wybieramy współrzędne cylindryczne r i ϕ. Obliczmy pochodne czasowe odpowiednich związków ze współrzędnymi kartezjańskimi x = rcosϕ, y = rsinϕ, z = rctgα, ẋ = ṙcosϕ r ϕsinϕ, ẏ = ṙsinϕ+r ϕcosϕ, ż Karol Kołodziej Mechanika klasyczna i relatywistyczna 29/48

Jako zmienne niezależne wybieramy współrzędne cylindryczne r i ϕ. Obliczmy pochodne czasowe odpowiednich związków ze współrzędnymi kartezjańskimi x = rcosϕ, y = rsinϕ, z = rctgα, ẋ = ṙcosϕ r ϕsinϕ, ẏ = ṙsinϕ+r ϕcosϕ, ż = Karol Kołodziej Mechanika klasyczna i relatywistyczna 29/48

Jako zmienne niezależne wybieramy współrzędne cylindryczne r i ϕ. Obliczmy pochodne czasowe odpowiednich związków ze współrzędnymi kartezjańskimi x = rcosϕ, y = rsinϕ, z = rctgα, ẋ = ṙcosϕ r ϕsinϕ, ẏ = ṙsinϕ+r ϕcosϕ, ż = ṙctgα, Zadanie 2. Uzasadnić powyższe wzory na pochodne czasowe w oparciu o wzór na pochodną funkcji złożonej wielu zmiennych, biorącpoduwagę,żer =r(t),ϕ =ϕ(t)akątαjeststały. Karol Kołodziej Mechanika klasyczna i relatywistyczna 29/48

Jako zmienne niezależne wybieramy współrzędne cylindryczne r i ϕ. Obliczmy pochodne czasowe odpowiednich związków ze współrzędnymi kartezjańskimi x = rcosϕ, y = rsinϕ, z = rctgα, ẋ = ṙcosϕ r ϕsinϕ, ẏ = ṙsinϕ+r ϕcosϕ, ż = ṙctgα, Zadanie 2. Uzasadnić powyższe wzory na pochodne czasowe w oparciu o wzór na pochodną funkcji złożonej wielu zmiennych, biorącpoduwagę,żer =r(t),ϕ =ϕ(t)akątαjeststały. Karol Kołodziej Mechanika klasyczna i relatywistyczna 29/48

Obliczmy drugą pochodną czasową ẍ ẍ = d (ṙcosϕ r ϕsinϕ) dt Karol Kołodziej Mechanika klasyczna i relatywistyczna 30/48

Obliczmy drugą pochodną czasową ẍ ẍ = d (ṙcosϕ r ϕsinϕ) dt = Karol Kołodziej Mechanika klasyczna i relatywistyczna 30/48

Obliczmy drugą pochodną czasową ẍ ẍ = d (ṙcosϕ r ϕsinϕ) dt = rcosϕ ṙ ϕsinϕ ṙ ϕsinϕ r ϕsinϕ r ϕ 2 cosϕ Karol Kołodziej Mechanika klasyczna i relatywistyczna 30/48

Obliczmy drugą pochodną czasową ẍ ẍ = d (ṙcosϕ r ϕsinϕ) dt = rcosϕ ṙ ϕsinϕ ṙ ϕsinϕ r ϕsinϕ r ϕ 2 cosϕ = rcosϕ 2ṙ ϕsinϕ r ϕsinϕ r ϕ 2 cosϕ. Karol Kołodziej Mechanika klasyczna i relatywistyczna 30/48

Obliczmy drugą pochodną czasową ẍ ẍ = d (ṙcosϕ r ϕsinϕ) dt = rcosϕ ṙ ϕsinϕ ṙ ϕsinϕ r ϕsinϕ r ϕ 2 cosϕ = rcosϕ 2ṙ ϕsinϕ r ϕsinϕ r ϕ 2 cosϕ. Karol Kołodziej Mechanika klasyczna i relatywistyczna 30/48