Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze Polsko-Japońska Wyższa Szkoła Technik Komputerowych Katedra Informatyki Stosowanej
Spis treści Spis treści 1 Wektory 2 Algebra liniowa 3
Spis treści Spis treści 1 Wektory 2 Algebra liniowa 3
Spis treści Spis treści 1 Wektory 2 Algebra liniowa 3
Literatura 1 Z. Fortuna, B. Macukow, J. Wąsowski, Metody numeryczne, WNT, Warszawa, 1993 2 A. Ralston, Wstęp do analizy numerycznej, PWN, Warszawa, 1983 3 E. Kącki, A. Małolepszy, A. Romanowicz, Metody numeryczne dla inżynierów, Wyższa Szkoła Informatyki w Łodzi, Łódź, 2005 4 Z. Kosma, Metody numeryczne dla zastosowań inżynierskich, Politechnika Radomska, Radom, 2008 5 W.T. Vetterling, S.A. Teukolsky, W.H. Press, B.P. Flannery, Numerical Recipes, Cambridge University Press, 2003
Algebra liniowa Przestrzeń Euklidesowa z E 3 P=(x,y,z) y x Rys. 1: Przestrzeń Euklidesowa E 3 i kartezjański układ współrzędnych
Algebra liniowa Przestrzeń Euklidesowa Oznaczenia i definicje: Wektor o rozmiarze n: v = v = v = v = [v 1, v 2,..., v n ] k wektorów liniowo niezależnych { a 1, a 2,..., a k } c 1,...,c k c 1 a 1 + + c k a k = 0 c 1 = c 2 = = c k = 0 wektory a 1 i a 2 są równoległe, gdy jeden jest pewną kombinacją liniową drugiego R n zbiór wektorów o rozmiarze n Baza w R n taki układ wektorów a 1, a 2,..., a n, że det A( a 1, a 2,..., a n ) 0
Algebra liniowa Przestrzeń Euklidesowa Twierdzenie Układ { a 1, a 2,..., a n } wektorów jest liniowo niezależny det A( a 1, a 2,..., a n ) 0. Wniosek b b = c 1 a 1 + + c n a n, a 1, a 2,..., a n baza
Algebra liniowa Przestrzeń Euklidesowa Baza kanoniczna e 1 := (1, 0,..., 0) e 2 := (0, 1,..., 0). e 2 := (0, 0,..., 1)
Algebra liniowa Przestrzeń Euklidesowa Definicje Iloczyn skalarny: a = (a 1, a 2,..., a n ), b = (b 1, b 2,..., b n ) < a, b >= n a i b i i=1 Długość wektora a: a = (< a, a >) 1 2 Odległość wektorów a i b: a b Kąt między wektorami a i b: cos ( a, b) = < a, a > a b
Algebra liniowa Przestrzeń Euklidesowa Definicje Równoległościan rozpięty na wektorach a 1, a 2,..., a n to zbiór wektorów R( a 1, a 2,..., a n ) postaci c 1 a 1 + c 2 a 2 + c n a n, gdzie 0 c i 1, i = 1,..., n Pole równoległoboku R( a 1, a 2 ) R 2 R( a 1, a 2 ) = det A( a 1, a 2 ) Objętość równoległościanu R( a 1, a 2, a 3 ) R 3 R( a 1, a 2, a 3 ) = det A( a 1, a 2, a 3 )
Algebra liniowa Przestrzeń Euklidesowa Definicje Iloczyn wektorowy w R 3 dla a = (a 1, a 2,..., a n) i b = (b 1, b 2,..., b n) [ ( ) ( ) ( )] a a2 a b = det 3 a3 a, det 1 a1 a, det 2 b 2 b 3 b 3 b 1 b 1 b 2 lub inaczej a i j k b = a 1 a 2 a 3 b 1 b 2 b 3 = i a 2 a 3 b 2 b 3 j a 1 a 3 b 1 b 3 + k a 1 a 2 b 1 b 2 lub inaczej ( a b) i = ε ijk a j b k, ε ijk = +1 parzysta permutacja indeksów 1 nieparzysta permutacja indeksów 0 powtarzające się indeksy
Algebra liniowa Przestrzeń Euklidesowa Definicje Wyznacznik Grama układu dwu wektorów a i b ( < a, a > < a, G = det ) b > < a, b > < b, b > Miara objętościowa k-równoległościanu rozpiętego na wektorach a 1,..., a k < a 1, a 1 >, < a 1, a 2 >,..., < a 1, a k > G( a 1,..., a k ) = det. < a k, a 1 >, < a k, a 2 >,..., < a k, a k >
Algebra liniowa Przestrzeń Euklidesowa Algorytm Grama-Schmidta ortogonalizacji wektorów Cel: zbudować ortogonalny układ wektorów b 1, b 2,..., b n mając do dyspozycji wektory a 1, a 2,..., a n Przykład (n = 3): 1 b1 = a 1 a 1, 2 b2 = a 2 ( a 2 b 1 ) b 1, b2 := b 2 b 2 3 b3 = a 3 ( a 3 b 1 ) b 1 ( a 3 b 2 ) b 2, b3 := b 3 b 3
Macierze Algebra liniowa Macierz prostokątna Niech m, n ustalone liczby naturalne, M = {1,..., m}, N = {1,..., n}, X = M N iloczyn kartezjański, Y pewien niepusty zbiór. Określamy funkcję f : X Y. Macierzą prostokątną nazywamy funkcję f z m wierszami i n kolumnami przyjmującą wartości w zbiorze Y f = [f jk ] j=1,...m; k=1,...n = f 11 f 12 f 1n f 21 f 22 f 2n.... f m1 f m2 f mn f T = [f kj ] k=1,...,n; j=1,...m macierz transponowana jest otrzymywana z macierzy f przez zamianę wierszy na kolumny i kolumn na wiersze.
Macierze Algebra liniowa Suma macierzy A = a 11 a 12 a 1n a 21 a 22 a 2n.... a m1 a m2 a mn A + B =, B = b 11 b 12 b 1n b 21 b 22 b 2n.... b m1 b m2 b mn a 11 + b 11 a 12 + b 12 a 1n + b 1n a 21 + b 21 a 22 + b 22 a 2n + b 2n.... a m1 + b m1 a m2 + b m2 a mn + b mn [a ij ] + [b ij ] = [a ij + b ij ]
Macierze Algebra liniowa Wymiar macierzy Jeśli dim A = m n to dim A T = n m A macierz kwadratowa gdy m = n Mnożenie macierzy przez liczbę a 11 a 12 a 1n a 21 a 22 a 2n c A = A c = c.... a m1 a m2 a mn c a 11 c a 12 c a 1n c a 21 c a 22 c a 2n =.... c a m1 c a m2 c a mn
Macierze Algebra liniowa Iloczyn macierzy (Kroneckera) Przykład A = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 A B = [ b11 b, B = 12 b 21 b 22 a 11 B a 12 B a 13 B a 21 B a 22 B a 23 B a 31 B a 32 B a 33 B ]
Macierze Algebra liniowa Iloczyn macierzy (Cauchy) Przykład [ a11 a A = 12 a 21 a 22 ] [ b11 b, B = 12 b 13 b 21 b 22 b 23 ] [ a11 b A B = 11 + a 12 b 21 a 11 b 12 + a 12 b 22 a 11 b 13 + a 12 b 23 a 21 b 21 + a 22 b 21 a 21 b 22 + a 22 b 22 a 21 b 23 + a 22 b 23 ] UWAGA!!! Mnożenie macierzy w sensie Cauchy ego jest wykonalne gdy liczba kolumn w pierwszej macierzy jest równa liczbie wierszy w drugiej macierzy!
Macierze Algebra liniowa Iloczyn macierzy (Cauchy) przypadek wektorów a = [a 1, a 2,..., a n ], b = [b 1, b 2,..., b n ] b 1 b T b 2 =. b n a b T = [a 1 b 1 + a 2 b 2 + + a n b n ]
Wyznaczniki Algebra liniowa Definicja wyznacznika (Laplace) Rozwinięcie względem i-tego wiersza det [A] m m = A = m ( 1) i+j a ij det A i,j i=1 gdzie A i,j macierz stopnia m 1 powstała z macierzy A poprzez skreślenie i-tego wiersza i j-tej kolumny (minor) Definicja wyznacznika permutacyjna A = σ S n ( 1) Inv(σ) a 1σ(1) a 2σ(2) a nσ(n) gdzie S n zbiór wszystkich permutacji zbioru {1, 2,..., m}, Inv(σ) liczba inwersji danej permutacji σ S n
Wyznaczniki Algebra liniowa Właściwości wyznaczników Transpozycja macierzy nie powoduje zmiany wartości jej wyznacznika. Zamiana miejscami dwóch dowolnych kolumn lub wierszy zmienia znak wyznacznika, nie zmieniając jego wartości bezwzględnej. Jeśli dwa wiersze lub dwie kolumny macierzy są proporcjonalne (np. są równe), to wyznacznik ma wartość zero. Jeśli jakiś wiersz (lub kolumna) macierzy jest kombinacją liniową innych wierszy (lub kolumn) (np. wiersz/kolumna składa się tylko z zer), wyznacznik ma wartość zero. Pomnożenie dowolnej kolumny lub dowolnego wiersza przez stałą mnoży przez tę samą stałą wartość wyznacznika.
Wyznaczniki Algebra liniowa Właściwości wyznaczników Dodając lub odejmując od dowolnego wiersza/kolumny inny wiersz/kolumnę lub kombinacje liniowe innych wierszy/kolumn nie zmieniamy wartości wyznacznika. Wyznacznik iloczynu macierzy jest równy iloczynowi wyznaczników: det(a B) = det A det B Wyznacznik macierzy odwrotnej jest równy odwrotności wyznacznika: det(a 1 ) = (det A) 1 Zachodzi wzór (k dowolna liczba, n stopnień macierzy A): det(k A) = k n det A
Macierze Algebra liniowa Macierz odwrotna Macierz odwrotna do nieosobliwej macierzy kwadratowej A A 1 = AD det A gdzie A D macierz dołączona do macierzy A (czyli transponowana macierz dopełnień algebraicznych). Dopełnienie algebraiczne elementu a ij macierzy kwadratowej A stopnia n to wyznacznik macierzy powstałej z A poprzez skreślenie jej i-tego wiersza i j-tej kolumny, pomnożony przez ( 1) i+j.
Algebra liniowa Macierze, wyznaczniki i komputer Przy obliczaniu macierzy odwrotnych i wyznaczników stosujemy rozwijanie względem wiersza lub kolumny, czy też metodę Sarrusa. W przypadku pracy z komputerem metody te są bezużyteczne!!! W celu obliczenia wyznacznika macierzy n-tego stopnia powyższe techniki wymagają n! mnożeń. Przy n = 16 jest to niemal 5 10 12 mnożeń maszyna wykonująca 10 6 mnożeń na sekundę potrzebowałaby na to niemal rok nieprzerwanej pracy. Trzeba zatem stosować inne metody.
Koniec? :-( Algebra liniowa Koniec wykładu 3