ANALIZA WARIANCJI (ANOVA) Spis treści
|
|
- Michalina Wierzbicka
- 7 lat temu
- Przeglądów:
Transkrypt
1 ANALIZA WARIANCJI (ANOVA) Sps treśc. JEDNOCZYNNIKOWA ANALIZA WARIANCJI.... DWUCZYNNIKOWA ANALIZA WARIANCJI TESTY ZAŁOŻEŃ W ANALIZIE WARIANCJI Test normalnośc Test Bartleta ednorodnośc waranc... 6 Zadana:... 8
2 . JEDNOCZYNNIKOWA ANALIZA WARIANCJI Wprowadzene Analza waranc (ANOVA) służy do testowana hpotezy o równośc średnch w różnych populacach (podgrupach). Ich lczba może być wększa nż dwa, mmo to test est wykonywany tylko raz. W ogólnym przypadku wymagane est spełnane przez dane dwóch założeń: badana zmenna ma rozkład normalny w każde z podgrup waranca te zmenne we wszystkch badanych podgrupach est ednakowa Ponadto wymaga sę aby z każde populac próby były losowane nezależne od sebe.
3 Analzę waranc można równeż potraktować ako test, którego wynk mów czy akaś akoścowa zmenna klasyfkuąca (X) ma wpływ na badaną zmenną loścową (Y). Przykładowo, można zastanawać sę czy na dochody gospodarstwa domowego ma wpływ kwartał, w którym te dochody są uzyskwane albo czy nadwyżka dochodu nad konsumpcą zależy od weku głowy gospodarstwa. Ogólna dea analzy waranc polega na porównanu zróżncowana średnch pomędzy grupam (SSB; stosue sę też oznaczena SSTR, a w polske lteraturze SKM) wewnątrz grup (SSE; w polske lteraturze także SKW). Jeżel zróżncowane mędzygrupowe est duże w porównanu ze zróżncowanem wewnątrzgrupowym, to uznaemy że zmenna klasyfkuąca ma wpływ na zmenną badaną. Przez duże zróżncowane należy rozumeć taką ego wartość, która sprawa, ze statystyka testowa znadze sę w obszarze odrzuceń. 3
4 Przykład (lustruący ogólną flozofę analzy waranc) Jeżel w Seme odbywa sę głosowane nad akmś proektem zróżncowane głosów pomędzy partam est duże, a wewnątrzpartyne małe, oznacza to, że przynależność partyna ma wpływ na to ak posłowe głosuą. Przykładu ne można traktować ako dosłowną lustracę analzy waranc, poneważ badana cecha est akoścowa. Przykład (możlwość zastosowana analzy waranc) Jeżel na średną ocenę studentów III roku SG ne wpływa mesce zameszkana (np.: akademk, wynaęte meszkane, wynaęty pokó, przy rodzne, nne), to zróżncowane średnch ocen w ramach ednego rodzau zameszkana pownno być duże w porównanu ze zróżncowanem pomędzy tym rodzaam. Śwadczy ono bowem o tym, że na średną ocenę stotneszy wpływ maą nne neuwzględnone czynnk, obawaące sę zróżncowanem wewnątrzgrupowym. Którą w przyblżenu można potraktować ako zmenną cągłą; normalność rozkładu pownna być testowana. 4
5 W modelu ANOVA wartość zmenne y (-ta wartość w -te grupe; =,...n ; =,...,r) można przedstawć następuąco: y m a e () gdze m oznacza średną w całe populac, a odchylene od m spowodowane dzałanem zmenne klasyfkuące (X) zaś e odchylene losowe o zerowe wartośc oczekwane. potezy można zapsać na dwa sposoby. :, k m :, k m m m k k (, k =,...,r) lub : a : a ( =,...,r) Oba zapsy oznaczaą, że wszystke średne w r grupach są ednakowe że zróżncowane est spowodowane edyne nnym nż cecha klasyfkuąca czynnkam, o charakterze losowym. 5
6 ANOVA wykorzystue równość warancyną, zgodne z którą łączne zróżncowane zmenne badane Y (SST) est sumą zróżncowana mędzygrupowego (SSB) spowodowanego zmenną klasyfkuącą oraz wewnątrzgrupowego (SSE) spowodowanego czynnkam losowym. Statystyka testowa ma postać następuącego lorazu waranc: F SSB/( r ) () SSE/( n r) gdze n oznacza łączną lczebność próby zaś r lczbę klas dla zmenne X. Powyższa statystyka ma rozkład F z (r-/n-r) stopnam swobody przymue tym wększą wartość m wększe est SSB w porównanu z SSE. Zatem eżel przekroczy ona wartość krytyczną właścwą dla rozkładu Fr / nr, to należy odrzucć hpotezę zerową na korzyść hpotezy alternatywne. Można wtedy stwerdzć (z odpowednm ryzykem błędu I rodzau), że przynamne dwe średne w grupach różną sę od sebe, co z kole oznacza wpływ zmenne klasyfkuące X na zmenną badaną Y. 6
7 Do przemyślena: Proszę podać przykład rozkładu w którym zmenne są zależne ale średne warunkowe są równe (lczebność lczba kategor dowolna) Proszę zapsać problem ANOVA ako model regres. Wynk testu w analze waranc ne pozwala odpowedzeć na pytane, które średne różną sę od sebe, pozwala edyne stwerdzć, że akaś różnca stnee. Aby odpowedzeć na perwsze pytane trzeba wykonać wele porównań poszczególnych par (w szczególnośc test Bonferronego), co est ne tylko pracochłonne, eżel ne dysponuemy odpowednm oprogramowanem, ale także zwększa prawdopodobeństwo błędu perwszego rodzau, ze względu na welokrotne testowane hpotez. 7
8 . DWUCZYNNIKOWA ANALIZA WARIANCJI Analza waranc pozwala także przeprowadzć test wpływu węce nż edne cechy klasyfkuące na zmenną badaną. Z uwag na kłopotlwość oblczeń w praktycznych zastosowanach welowymarowa ANOVA naczęśce ograncza sę do przypadku z klasyfkaca podwóną. Bada sę wtedy ednocześne wpływ dwóch czynnków oraz nterakc pomędzy nm, co sprawa, że należy wykonać trzy testy. Podobne ak w przypadku analzy waranc z klasyfkacą poedynczą, zasada konstrukc testu sprowadza sę do porównana zróżncowana pomędzy grupam spowodowanego nterakcą ze zróżncowanem spowodowanym czynnkam losowym. Uwaga: W podręcznku Statystyka od Podstaw autorzy zakładaą, że lczebność próby dla każde kombnac czynnka perwszego drugego est ednakowa. Założene to ne est koneczne lecz odeśce od nego wymaga modyfkac podanych tam algorytmów. 8
9 Analogczne do wzoru () k-tą wartość zmenne Y w grupe () można przedstawć ako sumę średne w całe populac (m) oraz odchyleń spowodowanych dzałanem dwóch cech klasyfkuących (a b ), nterakc pomędzy nm (c ) oraz losowych odchyleń (e k ) o zerowe wartośc oczekwane. y k m a b ( ab) e (3) k Czynnk, których dzałane na zmenną Y badamy są reprezentowane przez dwe zmenne akoścowe: X Z. Zgodne z dwuczynnkową równoścą warancyna łączne zróżncowane zmenne badane Y (SST) est sumą zróżncowana wynkaącego z dzałana czynnka X (SSX), zróżncowana wynkaącego z dzałana czynnka Z (SSZ), zróżncowana wynkaącego z nterakc obu czynnków (SSXZ) oraz spowodowanego czynnkam losowym (SSE). 9
10 W dwuczynnkowe analze waranc testowane są ednocześne trzy hpotezy a : a : b : b : (ab), : (ab), :
11 Odpowadaą m, odpowedno, następuące statystyk testowe F X F Z SSX /( r ) SSE/[ rs( n )] SSZ /( s ) SSE/[ rs( n )] F XZ SSXZ /[( r )( s )] SSE/[ rs( n )] gdze r s oznaczaą lczbę klas dla obu zmennych klasyfkuących zaś n est lczebnoścą podpróby dla dowolne kombnac cech (zakłada sę, że lczebnośc te są ednakowe). Powyższe statystyk maą rozkład F, lczba stopn swobody est łatwa do odgadnęca (pytane: czyl aka?)
12 Przykład dzałana nterakc Tak ak w podanym wcześne przykładze, sprawdzamy czy na dochody gospodarstwa domowego ma wpływ kwartał, w którym te dochody są uzyskwane. Dodaemy tym razem drugą zmenną klasyfkuącą, którą est główne źródło utrzymana gospodarstwa. Wyróżnone zostały trzy grupy gospodarstw: pracownków, rolnków emerytów. Może sę zdarzyć, że średne dochody w poszczególnych kwartałach są w populac ednakowe dla wszystkch gospodarstw, ednak osobne zbadane wszystkch trzech typów gospodarstw wykazue, że edyne dochody emerytów ne zależą od kwartału. W pozostałych typach gospodarstw taką zależność zaobserwowano: wśród pracownków dochody w I IV kwartale są wyższe od średne, wśród rolnków w II III. Odchylena te w całe badane grupe znoszą sę nawzaem, natomast mędzykwartalne zróżncowane dochodów dla w. w. grup est przykładem nterakc mędzy dwoma badanym czynnkam. Przykład est fkcyny, w rzeczywstośc w Polsce zawsko take ne ma mesca.
13 3. TESTY ZAŁOŻEŃ W ANALIZIE WARIANCJI Zarówno w ednoczynnkowe ak dwuczynnkowe analze waranc przymue sę dwa podstawowe założena odnośne danych: badana zmenna ma w każde z podgrup rozkład normalny waranca te zmenne we wszystkch badanych podgrupach est ednakowa Założene normalnośc rozkładu badane zmenne est mne stotne gdy próba est duża. Nektórzy statystycy uważaą też, że założene ednorodnośc waranc ne ma stotnego znaczena w ednoczynnkowe analze waranc gdy lczebnośc prób w poszczególnych podgrupach są ednakowe. W ogólnym przypadku ednak testowane obu założeń est koneczne. 3
14 3.. Testy normalnośc Istnee wele testów normalnośc. W podręcznkach Statystyka od Podstaw oraz Statystyka zostały omówone testy zgodnośc χ test Kołmogorowa ednak za naskuteczneszy (o nawyższe mocy) test tego typu dość powszechne uważa sę test Shapro-Wlka. Tak ak wszystke nne, opera sę on na porównanu statystyk emprycznych (uzyskanych na podstawe próby) oraz hpotetycznych, otrzymanych przy założenu normalnośc rozkładu. Duża rozbeżność mędzy nm skutkue odrzucenem hpotezy o normalnośc rozkładu zmenne. poteza zerowa mów, że próba została wylosowana z populac, w które zmenna ma rozkład normalny. Statystyka testowa testu Shapro-Wlka ma następuąca postać: W n n a ( x x ( ) X ) gdze x oraz x () ( =,,, n) są, odpowedno, elementam próby w porządku wylosowanym uporządkowanym nemaleąco, a oznaczaą stablcowane współczynnk testu. 4
15 Wartość krytyczną dla określone welkośc próby stotnośc testu wyznacza sę sę na podstawe specalnych tablc. Poneważ manownk ne może być mneszy od lcznka, to są to tablce o lewostronnym obszarze krytycznym (ponże ednośc). Jeżel welkość próby przekracza klkanaśce elementów, ręczne wyznaczene wartośc statystyk testowe est bardzo pracochłonne, dlatego edynym praktycznym rozwązanem est skorzystane z gotowych procedur wbudowanych w pakety statystyczno-ekonometryczne (w programe Stata est to komenda swlk). Jeżel próby lczy ponad elementów zalecana est modyfkaca w postac testu Shapro Franc (komenda sfranca). Jeżel założene normalnośc rozkładu ne est spełnone próba est mała, to można skorzystać z neparametrycznego odpowednka ednoczynnkowe analzy waranc w postac testu Kruskala-Wallsa. Jego stotą est porównywane rang zmennych zamast porównań ch wartośc. Jednym z celów tego zabegu est osłabene wpływu wartośc netypowych na wynk oraz unezależnene tego wynku od typu rozkładu badanych zmennych. 5
16 6 3. Test Bartleta ednorodnośc waranc Jeżel testuemy dentyczność dwóch waranc, to można posłużyć sę testem F, ednak w analze waranc naczęśce mamy do czynena z co namne trzema warancam korzystne est sprawdzć ch dentyczność za pomocą ednego testu. Takm testem est np. test Bartleta., :, :
17 7 Dla każde z podprób (których lczba wynos r) należy oblczyć neobcążoną warancę S. Statystyka testowa ma postać: r n n r M r ) 3( ln gdze n oznacza lczebność -te podpróby, n lczebność całe próby zaś )ln ( ) ( )ln ( r r S n S n r n r n M Statystyka λ ma rozkład χ z r- stopnam swobody.
18 Zadana:. Wykonano test ANOVA dla trzech średnch w różnych populacach. Został wykonany równeż test równośc dla dwóch spośród trzech średnch nakazał odrzucene hpotezy zerowe przy pozome stotnośc mnesze nż,. Czy: a/ test ANOVA nakaże odrzucene hpotezy zerowe przy pozome,5, b/ Jeżel statystyka F w teśce ANOVA nakaże odrzucć hpotezę zerową, to równeż test każde dowolne pary średnch nakaże odrzucć hpotezę zerową. c/ na podstawe wartośc edne z wykorzystanych statystyk testowych statystyk testowe można ocenć słę zależnośc medzy zmenna obaśnaną klasyfkuącą.. Rozkład zmenne Y w trzech grupach est następuący (w tabel podane są lczebnośc): Y A B C Bez oblczana statystyk testowe należy podać wynk testu ANOVA. Jake założena testu mogą być naruszone? Jake rozwązane można zaproponować w take sytuac? 3. Urząd Antymonopolowy przeprowadzł badane odnośne ewentualne zmowy cenowe w meśce XY. Za przeawy take zmowy uważa sę ednoczesne występowane dwóch zawsk: średna cena w meśce est wyższa od cen w nnych mastach, podczas gdy zróżncowana cen w tym meśce est mnesze od występuącego w nnych mastach. Z XY 9 nnych mast podobne welkośc wylosowano po 5 przedsęborstw, przeprowadzaąc następne dwa testy: a/ test Bartleta, w którym statystyka przyęła wartość,4, b/ test ANOVA, uzyskuąc wartość statystyk,. Czy powyższe wynk wskazuą na występowane zmowy cenowe w XY? 4. Proszę podać własny przykład nterakc wpływu dwóch cech akoścowych na badaną zmenną cągłą. 8
STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH
STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH 1 Test zgodnośc χ 2 Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład o dystrybuance F). Hpoteza alternatywna H1( Cecha X populacj
Bardziej szczegółowoWeryfikacja hipotez dla wielu populacji
Weryfkacja hpotez dla welu populacj Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Parametryczne testy stotnośc w
Bardziej szczegółowoW praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.
Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas
Bardziej szczegółowoPlan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup
Jednoczynnkowa Analza Waranc (ANOVA) Wykład 11 Przypomnene: wykłady zadana kursu były zaczerpnęte z podręcznków: Statystyka dla studentów kerunków techncznych przyrodnczych, J. Koronack, J. Melnczuk, WNT
Bardziej szczegółowoStanisław Cichocki Natalia Nehrebecka. Zajęcia 4
Stansław Cchock Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0-1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających Interpretacja
Bardziej szczegółowoNatalia Nehrebecka. Zajęcia 4
St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0 1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających
Bardziej szczegółowobrak podstaw do odrzucenia hipotezy zerowej.
Paca domowa 9. W pewnym bowaze zanstalowano dwa automaty do napełnana butelek. Ilość pwa nalewana pzez pewszy est zmenną losową o ozkładze N( m,, a lość pwa dozowana pzez dug automat est zmenną losową
Bardziej szczegółowo65120/ / / /200
. W celu zbadana zależnośc pomędzy płcą klentów ch preferencjam, wylosowano kobet mężczyzn zadano m pytane: uważasz za lepszy produkt frmy A czy B? Wynk były następujące: Odpowedź Kobety Mężczyźn Wolę
Bardziej szczegółowoBadanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej
Badane współzależnośc dwóch cech loścowych X Y. Analza korelacj prostej Kody znaków: żółte wyróżnene nowe pojęce czerwony uwaga kursywa komentarz 1 Zagadnena 1. Zwązek determnstyczny (funkcyjny) a korelacyjny.
Bardziej szczegółowoProblemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA
Problemy jednoczesnego testowana welu hpotez statystycznych ch zastosowana w analze mkromacerzy DNA Konrad Furmańczyk Katedra Zastosowań Matematyk SGGW Plan referatu Testowane w analze mkromacerzy DNA
Bardziej szczegółowoNieparametryczne Testy Istotności
Neparametryczne Testy Istotnośc Wzory Neparametryczne testy stotnośc schemat postępowana punkt po punkce Formułujemy hpotezę główną odnoszącą sę do: zgodnośc populacj generalnej z jakmś rozkładem, lub:
Bardziej szczegółowoKURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1
KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej
Bardziej szczegółowoStanisław Cichocki. Natalia Nehrebecka. Wykład 6
Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Interpretacja parametrów przy zmennych objaśnających cągłych Semelastyczność 2. Zastosowane modelu potęgowego Model potęgowy 3. Zmenne cągłe za zmenne dyskretne
Bardziej szczegółowoEgzamin ze statystyki/ Studia Licencjackie Stacjonarne/ Termin I /czerwiec 2010
Egzamn ze statystyk/ Studa Lcencjacke Stacjonarne/ Termn /czerwec 2010 Uwaga: Przy rozwązywanu zadań, jeśl to koneczne, naleŝy przyjąć pozom stotnośc 0,01 współczynnk ufnośc 0,99 Zadane 1 PonŜsze zestawene
Bardziej szczegółowoStanisław Cichocki. Natalia Nehrebecka. Wykład 6
Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych 1. Zastosowane
Bardziej szczegółowoModele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.
Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można
Bardziej szczegółowoNatalia Nehrebecka. Zajęcia 3
St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 3 1. Dobroć dopasowana równana regresj. Współczynnk determnacj R Dk Dekompozycja warancj zmennej zależnej ż Współczynnk determnacj R. Zmenne cągłe a
Bardziej szczegółowoStatystyka Opisowa 2014 część 2. Katarzyna Lubnauer
Statystyka Opsowa 2014 część 2 Katarzyna Lubnauer Lteratura: 1. Statystyka w Zarządzanu Admr D. Aczel 2. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucjan Kowalsk. 4. Statystyka opsowa,
Bardziej szczegółowo) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4
Zadane. Nech ( X, Y ),( X, Y ), K,( X, Y n n ) będą nezależnym zmennym losowym o tym samym rozkładze normalnym z następującym parametram: neznaną wartoścą oczekwaną EX = EY = m, warancją VarX = VarY =
Bardziej szczegółowoNatalia Nehrebecka Stanisław Cichocki. Wykład 10
Natala Nehrebecka Stansław Cchock Wykład 10 1 1. Testy dagnostyczne 2. Testowane prawdłowośc formy funkcyjnej modelu 3. Testowane normalnośc składnków losowych 4. Testowane stablnośc parametrów 5. Testowane
Bardziej szczegółowoPrawdopodobieństwo i statystyka r.
Prawdopodobeństwo statystya.05.00 r. Zadane Zmenna losowa X ma rozład wyładnczy o wartośc oczewanej, a zmenna losowa Y rozład wyładnczy o wartośc oczewanej. Obe zmenne są nezależne. Oblcz E( Y X + Y =
Bardziej szczegółowoStanisław Cichocki. Natalia Nehrebecka. Wykład 7
Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy zmennych dyskretnych 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy
Bardziej szczegółowoProces narodzin i śmierci
Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do
Bardziej szczegółowoTESTY NORMALNOŚCI. ( Cecha X populacji ma rozkład normalny). Hipoteza alternatywna H1( Cecha X populacji nie ma rozkładu normalnego).
TESTY NORMALNOŚCI Test zgodośc Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład ormaly). Hpoteza alteratywa H1( Cecha X populacj e ma rozkładu ormalego). Weryfkacja powyższych hpotez za pomocą tzw. testu
Bardziej szczegółowoNatalia Nehrebecka. Wykład 2
Natala Nehrebecka Wykład . Model lnowy Postad modelu lnowego Zaps macerzowy modelu lnowego. Estymacja modelu Wartośd teoretyczna (dopasowana) Reszty 3. MNK przypadek jednej zmennej . Model lnowy Postad
Bardziej szczegółowoTESTY NIEPARAMETRYCZNE. 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa.
TESTY NIEPARAMETRYCZNE 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa. Standardowe testy równości średnich wymagają aby badane zmienne losowe
Bardziej szczegółowoKURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1
KURS STATYSTYKA Lekcja 1 Statystyka opsowa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 W statystyce opsowej mamy pełne nformacje
Bardziej szczegółowoStanisław Cichocki. Natalia Nehrebecka. Wykład 6
Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Model potęgowy Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych
Bardziej szczegółowoProcedura normalizacji
Metody Badań w Geograf Społeczno Ekonomcznej Procedura normalzacj Budowane macerzy danych geografcznych mgr Marcn Semczuk Zakład Przedsęborczośc Gospodark Przestrzennej Instytut Geograf Unwersytet Pedagogczny
Bardziej szczegółowoStanisław Cichocki. Natalia Nehrebecka. Wykład 11
Stansław Cchock Natala Nehrebecka Wykład 11 1 1. Testowane hpotez łącznych 2. Testy dagnostyczne Testowane prawdłowośc formy funkcyjnej: test RESET Testowane normalnośc składnków losowych: test Jarque-Berra
Bardziej szczegółowoInstrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy rozkroju materiałowego, zagadnienia dualne
Instrukca do ćwczeń laboratorynych z przedmotu: Badana operacyne Temat ćwczena: Problemy rozkrou materałowego, zagadnena dualne Zachodnopomorsk Unwersytet Technologczny Wydzał Inżyner Mechanczne Mechatronk
Bardziej szczegółowo0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4
Zad. 1. Dana jest unkcja prawdopodobeństwa zmennej losowej X -5-1 3 8 p 1 1 c 1 Wyznaczyć: a. stałą c b. wykres unkcj prawdopodobeństwa jej hstogram c. dystrybuantę jej wykres d. prawdopodobeństwa: P (
Bardziej szczegółowoWykład 2: Uczenie nadzorowane sieci neuronowych - I
Wykład 2: Uczene nadzorowane sec neuronowych - I Algorytmy uczena sec neuronowych Na sposób dzałana sec ma wpływ e topologa oraz funkconowane poszczególnych neuronów. Z reguły topologę sec uznae sę za
Bardziej szczegółowoAnaliza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)
Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz
Bardziej szczegółowoRozwiązania (lub wskazówki do rozwiązań) większości zadań ze skryptu STATYSTYKA: MATERIAŁY POMOCNICZE DO ZAJĘĆ oraz EGZAMINÓW Z LAT
Rozwązana (lub wskazówk do rozwązań) wększośc zadań ze skryptu STATYSTYKA: MATERIAŁY POMOCNICZE DO ZAJĘĆ oraz EGZAMINÓW Z LAT 01-014 ZMIENNA LOSOWA I JEJ ROZKŁAD Zadane 1/ str. 4 a/ zmenna może przyjmować
Bardziej szczegółowoPrzykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna
rzykład.. Kratownca dwukrotne statyczne newyznaczana oecene: korzystaąc z metody sł wyznaczyć sły w prętach ponższe kratowncy. const Rozwązane zadana rozpoczynamy od obczena stopna statyczne newyznaczanośc
Bardziej szczegółowoBADANIA ZALEŻNOŚCI GRUBOŚCI POWIERZCHNIOWEJ WARSTWY KOMPOZYTOWEJ OD WIELKOŚCI ODLEWU I RODZAJU WKŁADKI KOMPOZYTUJĄCEJ
/5 Archves of Foundry, Year 005, Volume 5, 5 Archwum Odlewnctwa, Rok 005, Rocznk 5, Nr 5 PAN Katowce PL ISSN 64-5308 BADANIA ZALEŻNOŚCI GRUBOŚCI POWIERZCHNIOWEJ WARSTWY KOMPOZYTOWEJ OD WIELKOŚCI ODLEWU
Bardziej szczegółowoZadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane
Bardziej szczegółowoBadania sondażowe. Braki danych Konstrukcja wag. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa
Badana sondażowe Brak danych Konstrukcja wag Agneszka Zęba Zakład Badań Marketngowych Instytut Statystyk Demograf Szkoła Główna Handlowa 1 Błędy braku odpowedz Całkowty brak odpowedz (UNIT nonresponse)
Bardziej szczegółowoSTATYSTYCZNA ANALIZA WYNIKÓW POMIARÓW
Zakład Metrolog Systemów Pomarowych P o l t e c h n k a P o z n ańska ul. Jana Pawła II 4 60-965 POZAŃ (budynek Centrum Mechatronk, Bomechank anonżyner) www.zmsp.mt.put.poznan.pl tel. +48 61 665 5 70 fax
Bardziej szczegółowo( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X
Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są
Bardziej szczegółowoTestowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.
Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ
Bardziej szczegółowoStatystyka Inżynierska
Statystyka Inżynerska dr hab. nż. Jacek Tarasuk AGH, WFIS 013 Wykład DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE Zmenna losowa, Funkcja rozkładu, Funkcja gęstośc, Dystrybuanta, Charakterystyk zmennej, Funkcje
Bardziej szczegółowoSZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW
SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.
Bardziej szczegółowoAnaliza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A
Analza rodzajów skutków krytycznośc uszkodzeń FMECA/FMEA według MIL STD - 629A Celem analzy krytycznośc jest szeregowane potencjalnych rodzajów uszkodzeń zdentyfkowanych zgodne z zasadam FMEA na podstawe
Bardziej szczegółowoBADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda
BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp
Bardziej szczegółowoDobór zmiennych objaśniających
Dobór zmennych objaśnających Metoda grafowa: Należy tak rozpąć graf na werzchołkach opsujących poszczególne zmenne, aby występowały w nm wyłączne łuk symbolzujące stotne korelacje pomędzy zmennym opsującym.
Bardziej szczegółowoMinister Edukacji Narodowej Pani Katarzyna HALL Ministerstwo Edukacji Narodowej al. J. Ch. Szucha 25 00-918 Warszawa Dnia 03 czerwca 2009 r.
Mnster Edukacj arodowej Pan Katarzyna HALL Mnsterstwo Edukacj arodowej al. J. Ch. Szucha 25 00-918 arszawa Dna 03 czerwca 2009 r. TEMAT: Propozycja zmany art. 30a ustawy Karta auczycela w forme lstu otwartego
Bardziej szczegółowoStatystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski
Statystyczna analiza danych w programie STATISTICA (wykład ) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Weryfikacja (testowanie) hipotez statystycznych
Bardziej szczegółowoPodstawy teorii falek (Wavelets)
Podstawy teor falek (Wavelets) Ψ(). Transformaca Haara (97).. Przykład pewne metody zapsu obrazu Transformaca Haara Przykład zapsu obrazu -D Podstawy matematyczne transformac Algorytmy rozkładana funkc
Bardziej szczegółowoSortowanie szybkie Quick Sort
Sortowane szybke Quck Sort Algorytm sortowana szybkego opera sę na strateg "dzel zwycęża" (ang. dvde and conquer), którą możemy krótko scharakteryzować w trzech punktach: 1. DZIEL - problem główny zostae
Bardziej szczegółowoNatalia Nehrebecka. Dariusz Szymański
Natala Nehrebecka Darusz Szymańsk . Sprawy organzacyjne Zasady zalczena Ćwczena Lteratura. Czym zajmuje sę ekonometra? Model ekonometryczny 3. Model lnowy Postać modelu lnowego Zaps macerzowy modelu dl
Bardziej szczegółowo± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości
Podstawowe pojęca procesu pomarowego kreślene jakośc poznana rzeczywstośc Δ zmerzone rzeczywste 17 9 Zalety stosowana elektrycznych przyrządów 1/ 1. możlwość budowy czujnków zamenających werne każdą welkość
Bardziej szczegółowoAnaliza struktury zbiorowości statystycznej
Analza struktury zborowośc statystycznej.analza tendencj centralnej. Średne klasyczne Średna arytmetyczna jest parametrem abstrakcyjnym. Wyraża przecętny pozom badanej zmennej (cechy) w populacj generalnej:
Bardziej szczegółowoZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013
ZESZYTY NAUKOWE NSTYTUTU POJAZDÓW 5(96)/2013 Hubert Sar, Potr Fundowcz 1 WYZNACZANE MASOWEGO MOMENTU BEZWŁADNOŚC WZGLĘDEM OS PODŁUŻNEJ DLA SAMOCHODU TYPU VAN NA PODSTAWE WZORÓW DOŚWADCZALNYCH 1. Wstęp
Bardziej szczegółowoWykład 2: Uczenie nadzorowane sieci neuronowych - I
Wykład 2: Uczene nadzorowane sec neuronowych - I Algorytmy uczena sec neuronowych Na sposób dzałana sec ma wpływ e topologa oraz funkconowane poszczególnych neuronów. Z reguły topologę sec uznae sę za
Bardziej szczegółowoSTATYSTYKA. Zmienna losowa skokowa i jej rozkład
STATYSTYKA Wnosowane statystyczne to proces myślowy polegający na formułowanu sądów o całośc przy dysponowanu o nej ogranczoną lczbą nformacj Zmenna losowa soowa jej rozład Zmenną losową jest welość, tóra
Bardziej szczegółowoProblem plecakowy (KNAPSACK PROBLEM).
Problem plecakowy (KNAPSACK PROBLEM). Zagadnene optymalzac zwane problemem plecakowym swą nazwę wzęło z analog do sytuac praktyczne podobne do problemu pakowana plecaka. Chodz o to, by zapakować maksymalne
Bardziej szczegółowoSystem Przeciwdziałania Powstawaniu Bezrobocia na Terenach Słabo Zurbanizowanych SPRAWOZDANIE Z BADAŃ Autor: Joanna Wójcik
Opracowane w ramach projektu System Przecwdzałana Powstawanu Bezroboca na Terenach Słabo Zurbanzowanych ze środków Europejskego Funduszu Społecznego w ramach Incjatywy Wspólnotowej EQUAL PARTNERSTWO NA
Bardziej szczegółowoSYSTEMY UCZĄCE SIĘ WYKŁAD 7. KLASYFIKATORY BAYESA. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSTEMY UCZĄCE SIĘ WYKŁAD 7. KLASYFIKATORY BAYESA Częstochowa 4 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TWIERDZENIE BAYESA Wedza pozyskwana przez metody probablstyczne ma
Bardziej szczegółowo1.1. Uprość opis zdarzeń: 1.2. Uprościć opis zdarzeń: a) A B A Uprościć opis zdarzeń: 1.4. Uprościć opis zdarzeń:
.. Uprość ops zdarzeń: a) A B, A \ B b) ( A B) ( A' B).. Uproścć ops zdarzeń: a) A B A b) A B, ( A B) ( B C).. Uproścć ops zdarzeń: a) A B A B b) A B C ( A B) ( B C).4. Uproścć ops zdarzeń: a) A B, A B
Bardziej szczegółowo), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0
Testowanie hipotez Każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy nazywamy hipotezą statystyczną. Hipoteza określająca jedynie wartości nieznanych parametrów liczbowych badanej cechy
Bardziej szczegółowoSIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY
SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY Opsowa analza struktury zjawsk masowych Demografa statystyka PROJEKT DOFINANSOWANY ZE ŚRODKÓW NARODOWEGO BANKU POLSKIEGO URZĄD STATYSTYCZNY
Bardziej szczegółowoHipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ
WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego
Bardziej szczegółowoMetody predykcji analiza regresji
Metody predykcj analza regresj TPD 008/009 JERZY STEFANOWSKI Instytut Informatyk Poltechnka Poznańska Przebeg wykładu. Predykcja z wykorzystanem analzy regresj.. Przypomnene wadomośc z poprzednch przedmotów..
Bardziej szczegółowoTestowanie hipotez statystycznych.
Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich
Bardziej szczegółowoSZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej
Bardziej szczegółowoZestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.
Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :
Bardziej szczegółowoParametry zmiennej losowej
Eonometra Ćwczena Powtórzene wadomośc ze statysty SS EK Defncja Zmenną losową X nazywamy funcję odwzorowującą przestrzeń zdarzeń elementarnych w zbór lczb rzeczywstych, taą że przecwobraz dowolnego zboru
Bardziej szczegółowoWykład 1 Zagadnienie brzegowe liniowej teorii sprężystości. Metody rozwiązywania, metody wytrzymałości materiałów. Zestawienie wzorów i określeń.
Wykład Zagadnene brzegowe lnowe teor sprężystośc. Metody rozwązywana, metody wytrzymałośc materałów. Zestawene wzorów określeń. Układ współrzędnych Kartezańsk, prostokątny. Ose x y z oznaczono odpowedno
Bardziej szczegółowoTestowanie hipotez statystycznych. Wnioskowanie statystyczne
Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy
Bardziej szczegółowo1. Komfort cieplny pomieszczeń
1. Komfort ceplny pomeszczeń Przy określanu warunków panuących w pomeszczenu używa sę zwykle dwóch poęć: mkroklmat komfort ceplny. Przez poęce mkroklmatu wnętrz rozume sę zespół wszystkch parametrów fzycznych
Bardziej szczegółowoZapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.
Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane
Bardziej szczegółowoZarządzanie ryzykiem w przedsiębiorstwie i jego wpływ na analizę opłacalności przedsięwzięć inwestycyjnych
dr nż Andrze Chylńsk Katedra Bankowośc Fnansów Wyższa Szkoła Menedżerska w Warszawe Zarządzane ryzykem w rzedsęborstwe ego wływ na analzę ołacalnośc rzedsęwzęć nwestycynych w w w e - f n a n s e c o m
Bardziej szczegółowoPROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA WAHANIA SEZONOWE
STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 36 Krzysztof Dmytrów * Marusz Doszyń ** Unwersytet Szczecńsk PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA
Bardziej szczegółowoAnaliza regresji modele ekonometryczne
Analza regresj modele ekonometryczne Klasyczny model regresj lnowej - przypadek jednej zmennej objaśnającej. Rozpatrzmy klasyczne zagadnene zależnośc pomędzy konsumpcją a dochodam. Uważa sę, że: - zależność
Bardziej szczegółowoMikroekonometria 5. Mikołaj Czajkowski Wiktor Budziński
Mkroekonometra 5 Mkołaj Czajkowsk Wktor Budzńsk Uogólnone modele lnowe Uogólnone modele lnowe (ang. Generalzed Lnear Models GLM) Różną sę od standardowego MNK na dwa sposoby: Rozkład zmennej objaśnanej
Bardziej szczegółowoStatystyka. Zmienne losowe
Statystyka Zmenne losowe Zmenna losowa Zmenna losowa jest funkcją, w której każdej wartośc R odpowada pewen podzbór zboru będący zdarzenem losowym. Zmenna losowa powstaje poprzez przyporządkowane każdemu
Bardziej szczegółowoXXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne
XXX OLIMPIADA FIZYCZNA ETAP III Zadane dośwadczalne ZADANIE D Nazwa zadana: Maszyna analogowa. Dane są:. doda półprzewodnkowa (krzemowa) 2. opornk dekadowy (- 5 Ω ), 3. woltomerz cyfrowy, 4. źródło napęca
Bardziej szczegółowoWstęp. Obliczenia własne na podstawie: Budżety (2015), s. 116.
Studa Prace WNEZ US nr 43/3 216 DOI: 1.18276/sp.216.43/3-38 Anna Turczak* Zachodnopomorska Szkoła Bznesu w Szczecne Czynnk kształtujące wydatk na żywność napoje bezalkoholowe gospodarstw domowych w Polsce
Bardziej szczegółowoZaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych
Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,
Bardziej szczegółowoMikroekonometria 13. Mikołaj Czajkowski Wiktor Budziński
Mkroekonometra 13 Mkołaj Czajkowsk Wktor Budzńsk Symulacje Analogczne jak w przypadku cągłej zmennej zależnej można wykorzystać metody Monte Carlo do analzy różnego rodzaju problemów w modelach gdze zmenna
Bardziej szczegółowoStatystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych
Statystyka matematyczna. Wykład IV. e-mail:e.kozlovski@pollub.pl Spis treści 1 2 3 Definicja 1 Hipoteza statystyczna jest to przypuszczenie dotyczące rozkładu (wielkości parametru lub rodzaju) zmiennej
Bardziej szczegółowoStatystyka matematyczna
Statystyka matematyczna Wykład 9 i 10 Magdalena Alama-Bućko 14 i 21 maja 2018 Magdalena Alama-Bućko Statystyka matematyczna 14 i 21 maja 2018 1 / 25 Hipotezy statystyczne Hipoteza statystyczna nazywamy
Bardziej szczegółowoSTATYSTYKA: MATERIAŁY POMOCNICZE DO ZAJĘĆ
Dr hab. Adam Szulc, prof. SGH Instytut Statystyk Demograf STATYSTYKA: MATERIAŁY POMOCNICZE DO ZAJĘĆ Motto I: Prawe każdy jest statystykem ale newelu o tym we (nspratorzy: Moler Joseph Schumpeter) Motto
Bardziej szczegółowoRÓWNOWAGA STACKELBERGA W GRACH SEKWENCYJNYCH
Stansław KOWALIK e-mal: skowalk@wsb.edu.pl Wyższa Szkoła Bznesu Dąbrowa Górncza RÓWNOWAGA STACKELBERGA W GRACH SEKWENCYJNYCH Streszczene Praca dotyczy nekooperacynych sekwencynych ger dwuosobowych o sume
Bardziej szczegółowoZjawiska masowe takie, które mogą wystąpid nieograniczoną ilośd razy. Wyrazów Obcych)
Statystyka - nauka zajmująca sę metodam badana przedmotów zjawsk w ch masowych przejawach ch loścową lub jakoścową analzą z punktu wdzena nauk, do której zakresu należą.
Bardziej szczegółowoPortfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego
Portel nwestycyjny ćwczena Na podst. Wtold Jurek: Konstrukcja analza rozdzał 5 dr chał Konopczyńsk Portele zawerające walor pozbawony ryzyka. lementy teor rynku kaptałowego 1. Pożyczane penędzy amy dwa
Bardziej szczegółowoRegresja liniowa i nieliniowa
Metody prognozowana: Regresja lnowa nelnowa Dr nż. Sebastan Skoczypec Zmenna losowa Zmenna losowa X zmenna, która w wynku pewnego dośwadczena przyjmuje z pewnym prawdopodobeństwem wartość z określonego
Bardziej szczegółowoElementy statystyki STA - Wykład 5
STA - Wykład 5 Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza 1 ANOVA 2 Model jednoczynnikowej analizy wariancji Na model jednoczynnikowej analizy wariancji możemy traktować jako uogólnienie
Bardziej szczegółowoBadanie współzaleŝności dwóch cech ilościowych X i Y. Analiza korelacji prostej. Badanie zaleŝności dwóch cech ilościowych. Analiza regresji prostej
Badane współzaleŝnośc dwóch cech loścowych X Y. Analza korelacj prostej Badane zaleŝnośc dwóch cech loścowych. Analza regresj prostej Kody znaków: Ŝółte wyróŝnene nowe pojęce czerwony uwaga kursywa komentarz
Bardziej szczegółowoPROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE
PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE Janusz Wątroba, StatSoft Polska Sp. z o.o. W nemal wszystkch dzedznach badań emprycznych mamy do czynena ze złożonoścą zjawsk procesów.
Bardziej szczegółowoWeryfikacja hipotez statystycznych, parametryczne testy istotności w populacji
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Bardziej szczegółowo7.8. RUCH ZMIENNY USTALONY W KORYTACH PRYZMATYCZNYCH
WYKŁAD 7 7.8. RUCH ZMIENNY USTALONY W KORYTACH PRYZMATYCZNYCH 7.8.. Ogólne równane rucu Rucem zmennym w korytac otwartyc nazywamy tak przepływ, w którym parametry rucu take jak prędkość średna w przekroju
Bardziej szczegółowoSTATYSTYKA I DOŚWIADCZALNICTWO Wykład 6
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6 Metody sprawdzania założeń w analizie wariancji: -Sprawdzanie równości (jednorodności) wariancji testy: - Cochrana - Hartleya - Bartletta -Sprawdzanie zgodności
Bardziej szczegółowoZadania ze statystyki cz. 8 I rok socjologii. Zadanie 1.
Zadania ze statystyki cz. 8 I rok socjologii Zadanie 1. W potocznej opinii pokutuje przekonanie, że lepsi z matematyki są chłopcy niż dziewczęta. Chcąc zweryfikować tę opinię, przeprowadzono badanie w
Bardziej szczegółowoEgzamin poprawkowy z Analizy II 11 września 2013
Egzamn poprawkowy z nalzy II 11 wrześna 13 Uwag organzacyjne: każde zadane rozwązujemy na osobnej kartce Każde zadane należy podpsać menem nazwskem własnym oraz prowadzącego ćwczena Na wszelk wypadek prosmy
Bardziej szczegółowoKształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu
PRACE KOMISJI GEOGRAFII PRZEMY SŁU Nr 7 WARSZAWA KRAKÓW 2004 Akadema Pedagogczna, Kraków Kształtowane sę frm nformatycznych jako nowych elementów struktury przestrzennej przemysłu Postępujący proces rozwoju
Bardziej szczegółowoWnioskowanie statystyczne Weryfikacja hipotez. Statystyka
Wnioskowanie statystyczne Weryfikacja hipotez Statystyka Co nazywamy hipotezą Każde stwierdzenie o parametrach rozkładu lub rozkładzie zmiennej losowej w populacji nazywać będziemy hipotezą statystyczną
Bardziej szczegółowoRachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej
Rachunek prawdopodobeństwa statstka W 11: Analz zależnoścpomędz zmennm losowm Model regresj welokrotnej Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Model regresj lnowej Model regresj lnowej prostej
Bardziej szczegółowo