7.8. RUCH ZMIENNY USTALONY W KORYTACH PRYZMATYCZNYCH
|
|
- Maksymilian Rosiński
- 6 lat temu
- Przeglądów:
Transkrypt
1 WYKŁAD RUCH ZMIENNY USTALONY W KORYTACH PRYZMATYCZNYCH Ogólne równane rucu Rucem zmennym w korytac otwartyc nazywamy tak przepływ, w którym parametry rucu take jak prędkość średna w przekroju v, napełnene, pole przekroju poprzecznego A, szerokość w zwercadle wody B zmenają sę na długośc koryta s. Gdy kształt koryta ceku jest stały, nezmenny na długośc, to parametry rucu w danym przekroju ceku są zależne tylko od napełnena koryta, czyl parametry te można jednoznaczne opsać funkcjam w któryc występuje tylko jedna zmenna nezależna - głębokość koryta, natomast głębokość ta zmena sę na długośc koryta, tzn. jest zmenną zależną od długośc ceku s, czyl v f(), A f(), B f(), natomast f(s). Koryto o takc właścwoścac nazywamy korytem pryzmatycznym. Rys.45. Przekrój podłużny ceku z przepływem ceczy rucem zmennym Zakłada sę, że rozpatruje sę ruc, którego obraz ne zmena sę w czase, a węc w każdym przekroju w czase natężene przepływu jest stałe Q const, czyl jest to ruc ustalony. Na rys. 45. przedstawono przekrój podłużny koryta ceku, którym płyne woda rucem zmennym. Poza welkoścam opsanym wyżej, na rysunku tym zaznaczono straty energ na długośc f, wysokość położena zwercadła wody z spadek dna koryta o. Przyjmując oznaczena J zw.w. - spadek zwercadła wody oraz J e - spadek ln energ, można napsać następujące zależnośc: 49
2 d d ds f d Pa α v f J e ds ; J e z + + ds ρ g g Z powyższyc zależnośc otrzymujemy podstawowe równane rucu zmennego: c v J zw. w. d v v α + ds g (88) c R W rucu jednostajnym spadk dna ceku, zwercadła wody ln energ są sobe równe stałe na długośc określone są zależnoścą o J zw.w. J e v /c R. Poneważ w rucu jednostajnym v const, c obrazem są lne proste równoległe. Z równana (88) wynka, że spadek zwercadła wody w rucu zmennym, w porównanu z rucem jednostajnym, opsany jest dodatkowo przez pocodną wysokośc prędkośc (perwszy człon równ. 88) przy czym w tym przypadku wraz ze zmaną głębokośc na długośc ceku, zmena sę także prędkość średna w przekroju, stąd przebeg ln energ ln zwercadła wody na długośc ceku jest krzywolnowy. Po wylczenu pocodnej oraz wyznaczenu dla welkośc przedstawonyc na rys. 45 zależnośc d v d Q α Q B d α d s g α ds A g 3 g A d s podstawenu tyc zwązków do równana (88) otrzymujemy to równane w postac: J zw. w o d d s Q o d A c R (89) d s α Q B 3 g A Jest to ogólne równane rucu wolnozmennego dla koryt pryzmatycznyc Badane przebegu krzywej zwercadła wody Przy rozwązywanu zagadnena rucu wody w omawanym przypadku koneczna jest znajomość warunków brzegowyc ogólnego przebegu szukanyc krzywyc zwercadła wody. Do analzy przebegu szukanyc krzywyc wykorzystujemy równane (89) sprowadzone do postac: d d s o J F e r Lcznk Manownk gdze: d / ds - spadek zwercadła wody względem dna, o - spadek dna, J e - spadek ln energ, F r - lczba Froude'a F r v g α A B 50
3 Przypadek. Spadek dna ceku mnejszy od spadku krytycznego o < kr STREFA J e F r L M d/ds KRZYWA > H J e < o F r < M kr < < H J e > o F r < M 3 < kr J e > o F r > M3 H - głębokość normalna, napełnene koryta przy rucu jednostajnym; kr, kr - głębokość spadek krytyczny Rys. 46. Układ zwercadła wody przy spadku dna ceku mnejszym od krytycznego o < kr M Krzywa spętrzena (krzywa cofkowa) zwrócona wypukłoścą ku dołow mająca asymptoty: lnę pozomą przy lnę zwercadła wody w rucu jednostajnym przy (głębokość normalna).. Sprawdzene warunku o < kr. Oblczena krzywej: głębokość maleje od H p (wysokość pętrzena) do,0 H (głębokość normalna + %). M Krzywa depresj zwrócona wypukłoścą ku górze mająca asymptoty: lna zwercadła wody w rucu ustalonym przy H lna ponowa.. Sprawdzene warunku o < kr. Oblczena krzywej: głębokość rośne od kr (głębokość krytyczna) do 0,99 H (głębokość normalna - %). M3 Krzywa spętrzena zwrócona wypukłoścą ku dołow zblżająca sę asymptotyczne do prostej ponowej przy kr. Krzywa ta kończy sę odskokem ydraulcznym a rozpoczyna 5
4 sę od pewnego wymuszonego napełnena koryta (np. wypływ spod zasuwy przy wysokośc podnesena a < kr ).. Sprawdzene warunku o < kr. Przyjęce drugej głębokośc sprzężonej równej głębokośc normalnej s H 3. Oblczene odskoku ydraulcznego: s - perwsza głębokość sprzężona, L o - długość odskoku 4. Oblczena krzywej: głębokość rośne od o (głębokość wypływu pod zasuwą) do s Przypadek. Spadek dna ceku wększy od spadku krytycznego o > kr STREFA J e F r L M d/ds KRZYWA > kr J e < o F r < S H < < kr J e < o F r > S 3 < H J e > o F r > S3 Rys. 47. Układ zwercadła wody przy spadku dna wększym od krytycznego o > kr S Krzywa spętrzena zwrócona wypukłoścą ku górze mająca asymptotę pozomą przy a przy kr zblżająca sę asymptotyczne do ln ponowej. Tak układ zwercadła wody występuje powyżej przeszkody w koryce, gdze panuje ruc krytyczny lub nastąpło już przejśce z rucu podkrytycznego w nadkrytyczny. 5
5 . Sprawdzene warunku o > kr. Przyjęce perwszej głębokośc sprzężonej równej głębokośc normalnej s H 3. Oblczene odskoku ydraulcznego: s - druga głębokość sprzężona, L - długość odskoku 4. Oblczena krzywej: głębokość maleje od H p (wysokość pętrzena) do s. S Krzywa depresj zwrócona wypukłoścą ku dołow posadająca asymptoty: lnę ponową lnę zwercadła wody w rucu jednostajnym. Tak układ zwercadła wody panuje przy wypływe spod zamknęca przy wysokośc podnesena a > kr lub zmane spadku koryta na spadek wększy od krytycznego.. Sprawdzene warunku o > kr. Oblczena krzywej: głębokość maleje od kr (głębokość krytyczna) do,0 H (głębokość normalna + %) S3 Krzywa spętrzena zwrócona wypukłoścą ku górze rozpoczynająca sę od wymuszonego napełnena koryta (wypływ spod zasuwy przy wysokośc podnesena a < H < kr ) zblżająca sę asymptotyczne do ln zwercadła wody w rucu jednostajnym.. Sprawdzene warunku o > kr. Oblczena krzywej: głębokość rośne od o (głębokość ponżej zasuwy) do 0,99 H o (głębokość normalna - %) Metody oblczeń Metoda bezpośrednego całkowana (Bacmetewa) Całkowane równana (89) możlwe jest jedyne przy założenu określonyc zwązków mędzy głębokoścą pozostałym welkoścam carakteryzującym przekrój poprzeczny koryta tj. welkoścam A B. Jest to możlwe przy przyjścu określonego kształtu przekroju poprzecznego np. przekroju prostokątnego, parabolcznego, trapezowego tp. Najbardzej ogólne założene przyjął Bacmetew, który stwerdz że dla koryt pryzmatycznyc o dowolnym kształce przekroju poprzecznego w przyblżenu spełnone są zależnośc: K K x, oraz α B c R j g A const (90) tzn. dla dowolnyc dwóc przekrojów stosunek modułów przekroju K A c R (rów. 70) w kwadrace równy jest stosunkow głębokośc w tyc przekrojac podnesonyc do stałej potęg x. Wykładnk potęgowy x carakteryzuje kształt przekroju poprzecznego danego koryta. Wykładnk ten wyznacza sę na podstawe welkośc K oblczonyc dla przekrojów napełnonyc do głębokośc równyc brzegowym wartoścom. Podobne dla tyc samyc głębokośc można oblczy wartośc j do dalszyc oblczeń przyjmować wartość średną j śr 0,5 (j + j ). Przy wyżej 53
6 opsanyc założenac oraz przy przyjęcu do oblczeń głębokośc względnej / H η Bacmetew otrzymał następującą postać równana: o H η ( s s ) ( η η ) ( jśr ) x Wartość całk w równanu (9) zależy od wartośc wykładnka potęgowego. Dla określonyc wartośc wykładnka x wartośc funkcj ϕ ( η) η η oblczenac wykorzystujemy równane (9) w następującej postac: H dn (9) dn podane są w postac tablc. W praktycznyc x η ( η η ) ( j )[ ϕ( η ) ϕ ( η )] śr Równane to ważne jest dla spadku dna o > 0. (9) Procedura oblczeń metodą Bacmetewa. Oblczene głębokośc normalnej H. Oblczena głębokośc krytycznej kr spadku krytycznego kr 3. Ustalene granc zmennośc napełnena koryta typu krzywej 4. Oblczene wykładnka potęgowego 5.Oblczene współczynnka j log K x log log K log 6. Oblczene współrzędnyc krzywej dla przyjętyc wartośc. Dla krzywej M można przyjąć ( H + H ) śr p ; H ; K Aśr R ; K n 3 śr Q o a dla oblczena j sr można przyjąć wprost parametry koryta przy napełnenu sr. W oblczenac H p krzywej M przyjmuje sę najczęścej η j H oraz η. Wartośc funkcj ϕ (η ) ϕ (η ) H odczytujemy z tablc a odległośc l mędzy przekrojam o przyjętyc głębokoścac H p oblczamy ze wzoru (9). Metoda Czarnomskego Punktem wyjśca w tej metodze jest równane Bernoullego napsane dla dwóc przekrojów odległyc od sebe o s, natomast podstawowym założenem metody jest przyjęce 54
7 jednostkowyc strat energ na tej długośc ceku jako średnej wartośc ze spadków energ oblczonyc dla tyc przekrojów, czyl J e v c R ; J + J J śr ; f J śr s Wykorzystując powyższe zależnośc oraz przyjmując oznaczena jak na rys. 48, równane Bernoullego przyberze postać: s o + E + s J śr (93) Rys. 48. Scemat do oblczeń metodą Czarnomskego Z równana (93) możemy wyznaczyć neznaną odległość s mędzy dwoma przekrojam, dla któryc w jednym jest znana głębokość a w drugm głębokość założona. W tyc oblczenac korzystamy z następującej postac równana: s E E J o śr Metoda Czarnomskego jest szczególne wygodna do oblczeń komputerowyc. Procedura oblczeń. Oblczene głębokośc normalnej H. Oblczena głębokośc krytycznej kr spadku krytycznego kr 3. Ustalene granc zmennośc napełnena koryta typu krzywej 4. Oblczene współrzędnyc krzywej dla wyjścowej znanej wartośc kolejnyc zakładanyc głębokośc. W przypadku koryta trapezowego 55
8 B b + m, A ( b + m ), χ b + + m, R A χ c n R 6 ; v Q A Dla kolejnyc przekrojów oblczamy: E α v + ; g J c v R Odległość s mędzy rozpatrywanym przekrojam wylczamy z równana (94). Przykład W kanale o spadku dna,5 napełnenu H,335 m, zmenono gwałtowne spadek na dzesęcokrotne wększy 5. Szerokość dna kanału b m, nacylene skarp m oraz współczynnk szorstkośc n 0,05. Oblczyć: a) natężene przepływu Q w kanale, b) napełnene koryta w rucu jednostajnym na odcnku o spadku, c) odległośc, w górę dół od mejsca zmany spadku, w jakej napełnene kanału jest praktyczne równe głębokośc normalnej. Rozwązane: Oblczamy natężene przepływu Q przy napełnenu H Oblczamy głębokość krytyczną kr α Q g,0 6 9,8 3,67 m 3 56
9 Drogą kolejnyc przyblżeń przyjęto kr 0,9 m, dla której Oblczamy spadek krytyczny kr Poneważ spadek dna,5 jest mnejszy od spadku krytycznego kr 8,4, napełnene koryta na tym odcnku będze zmenało sę od głębokośc normalnej do głębokośc krytycznej kr, czyl kr < < H 57
10 Na odcnku o spadku 5 dla założonej wartośc H 0,799 m oblczamy Poneważ spadek dna po zmane wynos 5 jest wększy od spadku krytycznego kr 8,4, napełnene koryta na tym odcnku będze zmenało sę od głębokośc krytycznej do głębokośc normalnej, H < < kr. 58
11 59
Przepływ w korytach otwartych. kanał otwarty przepływ ze swobodną powierzchnią
Przepływ w korytach otwartych kanał otwarty przepływ ze swobodną powierzchnią Przepływ w korytach otwartych Przewody otwarte dzielimy na: Naturalne rzeki strumienie potoki Sztuczne kanały komunikacyjne
mgr inż. Wojciech Artichowicz MODELOWANIE PRZEPŁYWU USTALONEGO NIEJEDNOSTAJNEGO W KANAŁACH OTWARTYCH
Poltechnka Gdańska Wydzał Inżyner Lądowej Środowska Katedra ydrotechnk mgr nż. Wojcech Artchowcz MODELOWANIE PRZEPŁYWU USTALONEGO NIEJEDNOSTAJNEGO W KANAŁAC OTWARTYC PRACA DOKTORSKA Promotor: prof. dr
CAŁKOWANIE NUMERYCZNE całki pojedyncze
CAŁKOWANIE NUMERYCZNE całk pojedyncze Kwadratury nterpolacyjne Kwadratury nterpolacyjne Rozpatrujemy funkcję f() cągłą ogranczoną w przedzale domknętym [a, b]. Przedzał [a, b] dzelmy na skończoną lczbę
Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE
Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:
SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW
SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.
Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej
Badane współzależnośc dwóch cech loścowych X Y. Analza korelacj prostej Kody znaków: żółte wyróżnene nowe pojęce czerwony uwaga kursywa komentarz 1 Zagadnena 1. Zwązek determnstyczny (funkcyjny) a korelacyjny.
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych
Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,
Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch
Za: Stansław Latoś, Nwelacja trygonometryczna, [w:] Ćwczena z geodezj II [red.] J. eluch 6.1. Ogólne zasady nwelacj trygonometrycznej. Wprowadzene Nwelacja trygonometryczna, zwana równeż trygonometrycznym
PRZEPŁYW CIECZY W KORYCIE VENTURIEGO
LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 9 PRZEPŁYW CIECZY W KORYCIE VENTURIEGO . Cel ćwiczenia Sporządzenie carakterystyki koryta Venturiego o przepływie rwącym i wyznaczenie średniej wartości współczynnika
KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1
KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej
MECHANIKA 2 MOMENT BEZWŁADNOŚCI. Wykład Nr 10. Prowadzący: dr Krzysztof Polko
MECHANIKA Wykład Nr 10 MOMENT BEZWŁADNOŚCI Prowadzący: dr Krzysztof Polko Defncja momentu bezwładnośc Momentem bezwładnośc punktu materalnego względem płaszczyzny, os lub beguna nazywamy loczyn masy punktu
Przepływ w korytach otwartych. kanał otwarty przepływ ze swobodną powierzchnią
Przepływ w korytach otwartych kanał otwarty przepływ ze swobodną powierzchnią Przepływ w korytach otwartych Przewody otwarte dzielimy na: Naturalne rzeki strumienie potoki Sztuczne kanały komunikacyjne
Zaawansowane metody numeryczne
Wykład 9. jej modyfkacje. Oznaczena Będzemy rozpatrywać zagadnene rozwązana następującego układu n równań lnowych z n newadomym x 1... x n : a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x
Weryfikacja hipotez dla wielu populacji
Weryfkacja hpotez dla welu populacj Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Parametryczne testy stotnośc w
ELEKTROCHEMIA. ( i = i ) Wykład II b. Nadnapięcie Równanie Buttlera-Volmera Równania Tafela. Wykład II. Równowaga dynamiczna i prąd wymiany
Wykład II ELEKTROCHEMIA Wykład II b Nadnapęce Równane Buttlera-Volmera Równana Tafela Równowaga dynamczna prąd wymany Jeśl układ jest rozwarty przez elektrolzer ne płyne prąd, to ne oznacza wcale, że na
W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.
Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas
65120/ / / /200
. W celu zbadana zależnośc pomędzy płcą klentów ch preferencjam, wylosowano kobet mężczyzn zadano m pytane: uważasz za lepszy produkt frmy A czy B? Wynk były następujące: Odpowedź Kobety Mężczyźn Wolę
Kwantowa natura promieniowania elektromagnetycznego
Efekt Comptona. Kwantowa natura promenowana elektromagnetycznego Zadane 1. Foton jest rozpraszany na swobodnym elektrone. Wyznaczyć zmanę długośc fal fotonu w wynku rozproszena. Poneważ układ foton swobodny
MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5
MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając
STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH
STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH 1 Test zgodnośc χ 2 Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład o dystrybuance F). Hpoteza alternatywna H1( Cecha X populacj
STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ],
STATECZNOŚĆ SKARP W przypadku obektu wykonanego z gruntów nespostych zaprojektowane bezpecznego nachylena skarp sprowadza sę do przekształcena wzoru na współczynnk statecznośc do postac: tgφ tgα = n gdze:
POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ
WPŁYW SIŁY JONOWEJ ROZTWORU N STŁĄ SZYKOŚI REKJI WSTĘP Rozpatrzmy reakcję przebegającą w roztworze mędzy jonam oraz : k + D (1) Gdy reakcja ta zachodz przez równowagę wstępną, w układze występuje produkt
Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4
Stansław Cchock Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0-1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających Interpretacja
Laboratorium ochrony danych
Laboratorum ochrony danych Ćwczene nr Temat ćwczena: Cała skończone rozszerzone Cel dydaktyczny: Opanowane programowej metody konstruowana cał skończonych rozszerzonych GF(pm), poznane ch własnośc oraz
Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.
Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można
Slajd 1. Slajd 2. Slajd 3. Slajd 4. Slajd 5. Wykład 2. Transport rumowiska wleczonego i unoszonego:
Slajd 1 Slajd Slajd Slajd 4 Slajd 5 Akadema Rolncza w Krakowe WIŚG Katedra Inżyner Wodnej Dr nż. Leszek Ksążek : wzór Meyera-Petera Müllera, wzór USLE SMU Inżynera Środowska 009/010 Rodzaje transportu
Natalia Nehrebecka. Wykład 2
Natala Nehrebecka Wykład . Model lnowy Postad modelu lnowego Zaps macerzowy modelu lnowego. Estymacja modelu Wartośd teoretyczna (dopasowana) Reszty 3. MNK przypadek jednej zmennej . Model lnowy Postad
Natalia Nehrebecka. Zajęcia 3
St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 3 1. Dobroć dopasowana równana regresj. Współczynnk determnacj R Dk Dekompozycja warancj zmennej zależnej ż Współczynnk determnacj R. Zmenne cągłe a
RUCH WOLNOZMIENNY W KORYTACH PRYZMATYCZNYCH
atedra Iżyer Wode Satare Uwersytet Przyrodczy w Pozau UCH WOLNOZMIENNY W OYTCH PYZMTYCZNYCH NLIZ UŁDU ZWIECIDŁ WODY I PZYŁDY OLICZEŃ Metoda grafczo-całkowa Metoda Czarowskego Metoda aketeffa Opracował:
Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 3. Analiza obwodów RLC przy wymuszeniach sinusoidalnych w stanie ustalonym
ĆWCZENE 3 Analza obwodów C przy wymszenach snsodalnych w stane stalonym 1. CE ĆWCZENA Celem ćwczena jest praktyczno-analtyczna ocena obwodów elektrycznych przy wymszenach snsodalne zmennych.. PODSAWY EOEYCZNE
Współczynnik przenikania ciepła U v. 4.00
Współczynnk przenkana cepła U v. 4.00 1 WYMAGANIA Maksymalne wartośc współczynnków przenkana cepła U dla ścan, stropów, stropodachów, oken drzw balkonowych podano w załącznku do Rozporządzena Mnstra Infrastruktury
AERODYNAMICS I WYKŁAD 6 AERODYNAMIKA SKRZYDŁA O SKOŃCZONEJ ROZPIĘTOŚCI PODSTAWY TEORII LINII NOŚNEJ
WYKŁAD 6 AERODYNAMIKA SKRZYDŁA O SKOŃCZONEJ ROZPIĘTOŚCI PODSTAWY TEORII INII NOŚNEJ Prawo Bota-Savarta Pole prędkośc ndukowanej przez lnę (nć) wrową o cyrkulacj może być wyznaczone przy użycu formuły Bota-Savarta
INDUKCJA ELEKTROMAGNETYCZNA. - Prąd powstający w wyniku indukcji elektro-magnetycznej.
INDUKCJA ELEKTROMAGNETYCZNA Indukcja - elektromagnetyczna Powstawane prądu elektrycznego w zamknętym, przewodzącym obwodze na skutek zmany strumena ndukcj magnetycznej przez powerzchnę ogranczoną tym obwodem.
RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.
RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu
Metody badań kamienia naturalnego: Oznaczanie współczynnika nasiąkliwości kapilarnej
Metody badań kaena naturalnego: Oznaczane współczynnka nasąklwośc kaplarnej 1. Zasady etody Po wysuszenu do stałej asy, próbkę do badana zanurza sę w wodze jedną z powerzchn (ngdy powerzchną obrabaną)
XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne
XXX OLIMPIADA FIZYCZNA ETAP III Zadane dośwadczalne ZADANIE D Nazwa zadana: Maszyna analogowa. Dane są:. doda półprzewodnkowa (krzemowa) 2. opornk dekadowy (- 5 Ω ), 3. woltomerz cyfrowy, 4. źródło napęca
Natalia Nehrebecka. Zajęcia 4
St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0 1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających
BADANIA CHARAKTERYSTYK HYDRAULICZNYCH KSZTAŁTEK WENTYLACYJNYCH
INSTYTUT KLIMATYZACJI I OGRZEWNICTWA ĆWICZENIA LABORATORYJNE Z WENTYLACJI I KLIMATYZACJI: BADANIA CHARAKTERYSTYK HYDRAULICZNYCH KSZTAŁTEK WENTYLACYJNYCH 1. WSTĘP Stanowsko laboratoryjne pośwęcone badanu
Ile wynosi suma miar kątów wewnętrznych w pięciokącie?
1 Ile wynos suma mar kątów wewnętrznych w pęcokące? 1 Narysuj pęcokąt foremny 2 Połącz środek okręgu opsanego na tym pęcokące ze wszystkm werzchołkam pęcokąta 3 Oblcz kąty każdego z otrzymanych trójkątów
Statystyka Inżynierska
Statystyka Inżynerska dr hab. nż. Jacek Tarasuk AGH, WFIS 013 Wykład DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE Zmenna losowa, Funkcja rozkładu, Funkcja gęstośc, Dystrybuanta, Charakterystyk zmennej, Funkcje
ZADANIE 9.5. p p T. Dla dwuatomowego gazu doskonałego wykładnik izentropy = 1,4 (patrz tablica 1). Temperaturę spiętrzenia obliczymy następująco
ZADANIE 9.5. Do dyszy Bendemanna o rzekroju wylotowym A = mm doływa owetrze o cśnenu =,85 MPa temeraturze t = C, z rędkoścą w = 5 m/s. Cśnene owetrza w rzestrzen, do której wyływa owetrze z dyszy wynos
Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB
Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe
Badanie współzaleŝności dwóch cech ilościowych X i Y. Analiza korelacji prostej. Badanie zaleŝności dwóch cech ilościowych. Analiza regresji prostej
Badane współzaleŝnośc dwóch cech loścowych X Y. Analza korelacj prostej Badane zaleŝnośc dwóch cech loścowych. Analza regresj prostej Kody znaków: Ŝółte wyróŝnene nowe pojęce czerwony uwaga kursywa komentarz
Zadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane
Praca podkładu kolejowego jako konstrukcji o zmiennym przekroju poprzecznym zagadnienie ekwiwalentnego przekroju
Praca podkładu kolejowego jako konstrukcj o zmennym przekroju poprzecznym zagadnene ekwwalentnego przekroju Work of a ralway sleeper as a structure wth varable cross-secton - the ssue of an equvalent cross-secton
BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda
BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp
Stanisław Cichocki. Natalia Nehrebecka. Wykład 6
Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Model potęgowy Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych
Stanisław Cichocki. Natalia Nehrebecka. Wykład 6
Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych 1. Zastosowane
AUTOMATYKA I STEROWANIE W CHŁODNICTWIE, KLIMATYZACJI I OGRZEWNICTWIE L3 STEROWANIE INWERTEROWYM URZĄDZENIEM CHŁODNICZYM W TRYBIE PD ORAZ PID
ĆWICZENIE LABORAORYJNE AUOMAYKA I SEROWANIE W CHŁODNICWIE, KLIMAYZACJI I OGRZEWNICWIE L3 SEROWANIE INWEREROWYM URZĄDZENIEM CHŁODNICZYM W RYBIE PD ORAZ PID Wersja: 03-09-30 -- 3.. Cel ćwczena Celem ćwczena
Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.
Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :
Sprawozdanie powinno zawierać:
Sprawozdane pownno zawerać: 1. wypełnoną stronę tytułową (gotowa do ćw. nr 0 na strone drugej, do pozostałych ćwczeń zameszczona na strone 3), 2. krótk ops celu dośwadczena, 3. krótk ops metody pomaru,
Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że
Twerdzene Bezouta lczby zespolone Javer de Lucas Ćwczene 1 Ustal dla których a, b R można podzelć f 1 X) = X 4 3X 2 + ax b przez f 2 X) = X 2 3X+2 Oblcz a b Z 5 jeżel zak ladamy, że f 1 f 2 s a welomanam
Model ASAD. ceny i płace mogą ulegać zmianom (w odróżnieniu od poprzednio omawianych modeli)
Model odstawowe założena modelu: ceny płace mogą ulegać zmanom (w odróżnenu od poprzedno omawanych model) punktem odnesena analzy jest obserwacja pozomu produkcj cen (a ne stopy procentowej jak w modelu
Prawdopodobieństwo i statystyka r.
Prawdopodobeństwo statystya.05.00 r. Zadane Zmenna losowa X ma rozład wyładnczy o wartośc oczewanej, a zmenna losowa Y rozład wyładnczy o wartośc oczewanej. Obe zmenne są nezależne. Oblcz E( Y X + Y =
Stanisław Cichocki. Natalia Nehrebecka. Wykład 7
Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy zmennych dyskretnych 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy
SYMULACJA KOMPUTEROWA NAPRĘŻEŃ DYNAMICZNYCH WE WRĘGACH MASOWCA NA FALI NIEREGULARNEJ
Jan JANKOWSKI *), Maran BOGDANIUK *),**) SYMULACJA KOMPUTEROWA NAPRĘŻEŃ DYNAMICZNYCH WE WRĘGACH MASOWCA NA FALI NIEREGULARNEJ W referace przedstawono równana ruchu statku w warunkach falowana morza oraz
TERMODYNAMIKA TECHNICZNA I CHEMICZNA
TRMODYNAMIKA TCHNICZNA I CHMICZNA Część IV TRMODYNAMIKA ROZTWORÓW TRMODYNAMIKA ROZTWORÓW FUGATYWNOŚCI I AKTYWNOŚCI a) Wrowadzene Potencjał chemczny - rzyomnene de G n na odstawe tego, że otencjał termodynamczny
Model ISLM. Inwestycje - w modelu ISLM przyjmujemy, że inwestycje przyjmują postać funkcji liniowej:
dr Bartłomej Rokck Ćwczena z Makroekonom I Model ISLM Podstawowe założena modelu: penądz odgrywa ważną rolę przy determnowanu pozomu dochodu zatrudnena nwestycje ne mają charakteru autonomcznego, a ch
Płyny nienewtonowskie i zjawisko tiksotropii
Płyny nenewtonowske zjawsko tksotrop ) Krzywa newtonowska, lnowa proporcjonalność pomędzy szybkoścą ścnana a naprężenem 2) Płyny zagęszczane ścnanem, naprężene wzrasta bardzej nż proporcjonalne do wzrostu
5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim
5. Pocodna funkcj Defncja 5.1 Nec f: (a, b) R nec c (a, b). Jeśl stneje granca lm x c x c to nazywamy ją pocodną funkcj f w punkce c oznaczamy symbolem f (c) Twerdzene 5.1 Jeśl funkcja f: (a, b) R ma pocodną
f(x, y) = arctg x y. f(u) = arctg(u), u(x, y) = x y. x = 1 1 y = y y = 1 1 +
Różnczkowalność pocodne Ćwczene. Znaleźć pocodne cz astkowe funkcj f(x, y) = arctg x y. Rozw azane: Wdać, że funkcj f można napsać jako f(u(x, y)) gdze f(u) = arctg(u), u(x, y) = x y. Korzystaj ac z reg
Metody analizy obwodów
Metody analzy obwodów Metoda praw Krchhoffa, która jest podstawą dla pozostałych metod Metoda transfguracj, oparte na przekształcenach analzowanego obwodu na obwód równoważny Metoda superpozycj Metoda
Pomiary stanów wód w ciekach. Związki wodowskazów
Pomiary stanów wód w ciekach. Związki wodowskazów Łaty wodowskazowe Sieć posterunków wodowskazowych IMGW w Polsce Limnigrafy Krzywa natęŝenia przepływu (krzywa przepływu, krzywa konsumpcyjna)
Proces narodzin i śmierci
Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do
u u u( x) u, x METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH i METODA ELEMENTÓW SKOŃCZONYCH
METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH METODA ELEMENTÓW SKOŃCZONYCH Szkc rozwązana równana Possona w przestrzen dwuwymarowe. Równane Possona to równae różnczkowe cząstkowe opsuące wele
POLE MAGNETYCZNE W PRÓŻNI - CD. Zjawisko indukcji elektromagnetycznej polega na powstawaniu prądu elektrycznego w
POL AGNTYCZN W PRÓŻNI - CD Indukcja elektomagnetyczna Zjawsko ndukcj elektomagnetycznej polega na powstawanu pądu elektycznego w zamknętym obwodze wskutek zmany stumena wektoa ndukcj magnetycznej. Np.
WYZNACZENIE DYSYPACJI KINETYCZNEJ ENERGII TURBULENCJI PRZY UŻYCIU PRAWA -5/3. E c = E k + E p + E w
Metrologa... - "W y z n ac z an e d y s y p ac z p raw a -5 / " WYZNACZENIE DYSYPACJI KINETYCZNEJ ENERGII TRBLENCJI PRZY ŻYCI PRAWA -5/. WPROWADZENIE Energa przepływaącego płyn E c dem E p dem E c E k
Statystyka. Zmienne losowe
Statystyka Zmenne losowe Zmenna losowa Zmenna losowa jest funkcją, w której każdej wartośc R odpowada pewen podzbór zboru będący zdarzenem losowym. Zmenna losowa powstaje poprzez przyporządkowane każdemu
LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie obwodów prądu sinusoidalnie zmiennego
Ćwczene 1 Wydzał Geonżyner, Górnctwa Geolog ABORATORUM PODSTAW EEKTROTECHNK Badane obwodów prądu snusodalne zmennego Opracował: Grzegorz Wśnewsk Zagadnena do przygotowana Ops elementów RC zaslanych prądem
Metody predykcji analiza regresji
Metody predykcj analza regresj TPD 008/009 JERZY STEFANOWSKI Instytut Informatyk Poltechnka Poznańska Przebeg wykładu. Predykcja z wykorzystanem analzy regresj.. Przypomnene wadomośc z poprzednch przedmotów..
Stanisław Cichocki. Natalia Nehrebecka. Wykład 6
Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Interpretacja parametrów przy zmennych objaśnających cągłych Semelastyczność 2. Zastosowane modelu potęgowego Model potęgowy 3. Zmenne cągłe za zmenne dyskretne
INŻYNIERIA RZECZNA Konspekt wykładu
INŻYNIERIA RZECZNA Konspekt wykładu Wykład 3 Charakterystyka morfologiczna koryt meandrujących Pod względem układu poziomego rzeki naturalne w większości posiadają koryta kręte. Jednakże stopień krętości
OPRÓśNIANIE DWÓCH SZEREGOWO POŁĄCZONYCH KOMÓR ZBIORNIKA RETENCYJNEGO CIECZY EMPTYING OF TWO CONNECTED IN SERIES CHAMBERS OF A LIQUID CONTAINER
JAKUB KISIEL, ADAM KISIEL OPRÓśNIANIE DWÓCH SZEREGOWO POŁĄCZONYCH KOMÓR ZBIORNIKA RETENCYJNEGO CIECZY EMPTYING O TWO CONNECTED IN SERIES CHAMBERS O A LIQUID CONTAINER S t r e s z c z e n e A b s t r a
V. TERMODYNAMIKA KLASYCZNA
46. ERMODYNAMIKA KLASYCZNA. ERMODYNAMIKA KLASYCZNA ermodynamka jako nauka powstała w XIX w. Prawa termodynamk są wynkem obserwacj welu rzeczywstych procesów- są to prawa fenomenologczne modelu rzeczywstośc..
Regresja liniowa i nieliniowa
Metody prognozowana: Regresja lnowa nelnowa Dr nż. Sebastan Skoczypec Zmenna losowa Zmenna losowa X zmenna, która w wynku pewnego dośwadczena przyjmuje z pewnym prawdopodobeństwem wartość z określonego
5. OPTYMALIZACJA GRAFOWO-SIECIOWA
. OPTYMALIZACJA GRAFOWO-SIECIOWA Defncja grafu Pod pojęcem grafu G rozumemy następującą dwójkę uporządkowaną (defncja grafu Berge a): (.) G W,U gdze: W zbór werzchołków grafu, U zbór łuków grafu, U W W,
Regulamin promocji 14 wiosna
promocja_14_wosna strona 1/5 Regulamn promocj 14 wosna 1. Organzatorem promocj 14 wosna, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 lutego 2014 do 30
1.1. Uprość opis zdarzeń: 1.2. Uprościć opis zdarzeń: a) A B A Uprościć opis zdarzeń: 1.4. Uprościć opis zdarzeń:
.. Uprość ops zdarzeń: a) A B, A \ B b) ( A B) ( A' B).. Uproścć ops zdarzeń: a) A B A b) A B, ( A B) ( B C).. Uproścć ops zdarzeń: a) A B A B b) A B C ( A B) ( B C).4. Uproścć ops zdarzeń: a) A B, A B
Egzamin poprawkowy z Analizy II 11 września 2013
Egzamn poprawkowy z nalzy II 11 wrześna 13 Uwag organzacyjne: każde zadane rozwązujemy na osobnej kartce Każde zadane należy podpsać menem nazwskem własnym oraz prowadzącego ćwczena Na wszelk wypadek prosmy
Wykład Turbina parowa kondensacyjna
Wykład 9 Maszyny ceplne turbna parowa Entropa Równane Claususa-Clapeyrona granca równowag az Dośwadczena W. Domnk Wydzał Fzyk UW ermodynamka 08/09 /5 urbna parowa kondensacyjna W. Domnk Wydzał Fzyk UW
Arytmetyka finansowa Wykład z dnia 30.04.2013
Arytmetyka fnansowa Wykła z na 30042013 Wesław Krakowak W tym rozzale bęzemy baać wartość aktualną rent pewnych, W szczególnośc, wartość obecną renty, a równeż wartość końcową Do wartośc końcowej renty
Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego
Portel nwestycyjny ćwczena Na podst. Wtold Jurek: Konstrukcja analza rozdzał 5 dr chał Konopczyńsk Portele zawerające walor pozbawony ryzyka. lementy teor rynku kaptałowego 1. Pożyczane penędzy amy dwa
1. Obliczenia rowu przydrożnego prawostronnego odcinki 6-8
H h = 0,8H Przykładowe obliczenia odwodnienia autor: mgr inż. Marek Motylewicz strona 1 z 5 1. Obliczenia rowu przydrożnego prawostronnego odcinki 6-8 1:m1 1:m2 c Przyjęte parametry: rów o przekroju trapezowym
3. ŁUK ELEKTRYCZNY PRĄDU STAŁEGO I PRZEMIENNEGO
3. ŁUK ELEKTRYCZNY PRĄDU STŁEGO I PRZEMIENNEGO 3.1. Cel zakres ćwczena Celem ćwczena jest zapoznane sę z podstawowym właścwoścam łuku elektrycznego palącego sę swobodne, w powetrzu o cśnentmosferycznym.
Dane hydrologiczne obiektu określono metodami empirycznymi, stosując regułę opadową. Powierzchnię zlewni wyznaczona na podstawie mapy:
Obliczenia hydrologiczne mostu stałego Dane hydrologiczne obiektu określono metodami empirycznymi, stosując regułę opadową. Powierzchnię zlewni wyznaczona na podstawie mapy: A= 12,1 km2 Długość zlewni
1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ
Ćwczene nr 1 cz.3 Dyfuzja pary wodnej zachodz w kerunku od środowska o wyższej temperaturze do środowska chłodnejszego. Para wodna dyfundująca przez przegrody budowlane w okrese zmowym napotyka na coraz
- opór właściwy miedzi (patrz tabela 9.1), l długość nawiniętego na cewkę drutu miedzianego,
Zadana do rozdzału 9. Zad. 9.. Oblcz opór elektryczny cewk, składającej sę z n = 900 zwojów zolowanego drutu medzanego o średncy d = mm (w zolacj, mm) w temperaturze t = 60 o C. Wymary cewk przedstawono
Analiza danych. Analiza danych wielowymiarowych. Regresja liniowa. Dyskryminacja liniowa. PARA ZMIENNYCH LOSOWYCH
Analza danych Analza danych welowymarowych. Regresja lnowa. Dyskrymnacja lnowa. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ PARA ZMIENNYCH LOSOWYCH Parę zmennych losowych X, Y możemy
1. Wstęp. Grupa: Elektrotechnika, wersja z dn Studia stacjonarne, II stopień, sem.1 Laboratorium Techniki Świetlnej
ul.potrowo 3a http://lumen.ee.put.poznan.pl Grupa: Elektrotechnka, wersja z dn..03.013 Studa stacjonarne, stopeń, sem.1 Laboratorum Technk Śwetlnej Ćwczene nr 6 Temat: Porównane parametrów fotometrycznych
Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne
ś POLITECHNIKA POZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA PROWADZĄCY: mgr nż. Łukasz Amanowcz Systemy Ochrony Powetrza Ćwczena Laboratoryjne 2 TEMAT ĆWICZENIA: Oznaczane lczbowego rozkładu lnowych projekcyjnych
Grupa: Elektrotechnika, wersja z dn Studia stacjonarne, II stopień, sem.1 Laboratorium Techniki Świetlnej
ul.potrowo 3a http://lumen.ee.put.poznan.pl Grupa: Elektrotechnka, wersja z dn. 29.03.2016 Studa stacjonarne, stopeń, sem.1 Laboratorum Technk Śwetlnej Ćwczene nr 6 Temat: Badane parametrów fotometrycznych
EKONOMIA MENEDŻERSKA. Wykład 3 Funkcje produkcji 1 FUNKCJE PRODUKCJI. ANALIZA KOSZTÓW I KORZYŚCI SKALI. MINIMALIZACJA KOSZTÓW PRODUKCJI.
EONOMIA MENEDŻERSA Wykład 3 Funkcje rodukcj 1 FUNCJE PRODUCJI. ANAIZA OSZTÓW I ORZYŚCI SAI. MINIMAIZACJA OSZTÓW PRODUCJI. 1. FUNCJE PRODUCJI: JEDNO- I WIEOCZYNNIOWE Funkcja rodukcj określa zależność zdolnośc
Pomiary parametrów akustycznych wnętrz.
Pomary parametrów akustycznych wnętrz. Ocena obektywna wnętrz pod względem akustycznym dokonywana jest na podstawe wartośc następujących parametrów: czasu pogłosu, wczesnego czasu pogłosu ED, wskaźnków
METODA ELEMENTU SKOŃCZONEGO. Termokinetyka
METODA ELEMENTU SKOŃCZONEGO Termoknetyka Matematyczny ops ruchu cepła (1) Zasada zachowana energ W a Cepło akumulowane, [J] P we Moc wejścowa, [W] P wy Moc wyjścowa, [W] t przedzał czasu, [s] V q S(V)
Wyznaczanie współczynnika sztywności zastępczej układu sprężyn
Wyznaczane zastępczej sprężyn Ćwczene nr 10 Wprowadzene W przypadku klku sprężyn ze sobą połączonych, można mu przypsać tzw. współczynnk zastępczej k z. W skrajnych przypadkach sprężyny mogą być ze sobą
WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY METODĄ STOKESA
WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY METODĄ STOKESA. Ops teoretyczny do ćwczena zameszczony jest na strone www.wtc.wat.edu.pl w dzale DYDAKTYKA FIZYKA ĆWICZENIA LABORATORYJNE.. Ops układu pomarowego
Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu
PRACE KOMISJI GEOGRAFII PRZEMY SŁU Nr 7 WARSZAWA KRAKÓW 2004 Akadema Pedagogczna, Kraków Kształtowane sę frm nformatycznych jako nowych elementów struktury przestrzennej przemysłu Postępujący proces rozwoju
OPORY RUCHU w ruchu turbulentnym
Katedra Inżynierii Wodnej i Geotechniki Wydział Inżynierii Środowiska i Geodezji Uniwersytet Rolniczy im. Hugona Kołłątaja w Krakowie dr hab. inż. Leszek Książ ążek OPORY RUCHU w ruchu turbulentnym Hydraulika
Wykład IX Optymalizacja i minimalizacja funkcji
Wykład IX Optymalzacja mnmalzacja funkcj Postawene zadana podstawowe dee jego rozwązana Proste metody mnmalzacj Metody teracj z wykorzystanem perwszej pochodnej Metody teracj z wykorzystanem drugej pochodnej
Refraktometria. sin β sin β
efraktometra Prędkość rozchodzena sę promen śwetlnych zależy od gęstośc optycznej ośrodka oraz od długośc fal promenena. Promene śwetlne padając pod pewnym kątem na płaszczyznę granczących ze sobą dwóch