ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013

Wielkość: px
Rozpocząć pokaz od strony:

Download "ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013"

Transkrypt

1 ZESZYTY NAUKOWE NSTYTUTU POJAZDÓW 5(96)/2013 Hubert Sar, Potr Fundowcz 1 WYZNACZANE MASOWEGO MOMENTU BEZWŁADNOŚC WZGLĘDEM OS PODŁUŻNEJ DLA SAMOCHODU TYPU VAN NA PODSTAWE WZORÓW DOŚWADCZALNYCH 1. Wstęp Masowy moment bezwładnośc samochodu typu van względem os podłużnej x przechodzącej przez środek masy samochodu jest parametrem potrzebnym przy wykonywanu oblczeń symulacyjnych zwązanych z drganam samochodu oraz rekonstrukcją wypadków drogowych m.n. typu rollover. Moment ten można wyznaczyć na specjalnym stanowsku badawczym. Jednak dostępność takego stanowska może być trudna. W nnejszym artykule zdecydowano sę odpowedzeć wobec tego na pytane, w jak dużym stopnu wynk oszacowana momentu różną sę od wartośc zmerzonych tej welkośc w przypadku użyca wzoru (1) stosowanego przez rzeczoznawców samochodowych. Zmerzone wartośc momentu pochodzą z danych [2] opublkowanych przez organzację NHTSA. Posłużyły one w nnejszym artykule do przedstawena nnych wzorów służących oszacowanu jego wartośc. Zaproponowano równeż take wzory, które wymagają jedyne podstawowych wymarów gabarytowych samochodu. Podobne jak w artykule [3], rozważana ogranczono do nadwoza typu van. 2. Wzory empryczne do wyznaczana momentu dla samochodów typu van W pracy [1] można znaleźć przedstawone ponżej wzory empryczne. Przedstawony przez Bxela w 1996 roku (1) do szacowana momentu, stosowany jest w praktyce rzeczoznawczej. Został on zweryfkowany na podstawe badań stanowskowych samochodów typu MPV (mult purpose vehcle), cężarowych typu pckup, samochodów typu van: ( h hsm) b m, (1) K gdze: K współczynnk zależny od rodzaju pojazdu, dla samochodów typu van K =9,4738, h wysokość samochodu, h SM wysokość środka masy, b szerokość samochodu (bez lusterek), m masa samochodu. Kolejnym jest zaproponowany przez Garrotta: 0,66m 319, (2) 1 dr nż. Hubert Sar, dr nż. Potr Fundowcz, nstytut Pojazdów Poltechnk Warszawskej 141

2 Stosowanym w programe PC-CRASH jest (3): 2 mb. (3) Porównane wynków oblczeń momentu z rezultatam badań stanowskowych W tablcy 1 przedstawono wynk oblczeń momentu za pomocą wzorów cytowanych powyżej oraz pomarów stanowskowych samochodów typu van, zawartych w pracy [2]. Tablca 1. Podstawowe dane samochodów [2] lość pasaż. /stan zb./bagaż m [kg] l 12 [m] h [m] h SM [m] b [m] Chevrolet Astro Van 6/F ,845 1,83 0,791 1,956 Chevrolet Lumna APV 2/F/ ,794 1,63 0,626 1,877 Chevrolet Lumna APV 2/F/ ,794 1,63 0,719 1,877 Chevrolet Lumna APV 7/F ,794 1,62 0,698 1,877 Dodge Caravan 1/F ,845 1,68 0,634 1,828 Dodge Caravan 1/F ,845 1,66 0,635 1,828 Dodge Caravan 1/F ,858 1,68 0,637 1,828 Dodge Caravan 1/F ,858 1,7 0,659 1,828 Dodge Caravan 1/F ,87 1,68 0,643 1,828 Dodge Caravan 1/F ,87 1,68 0,654 1,828 Dodge Caravan 0/F ,026 1,68 0,642 1,829 Dodge Caravan C/V 1/E ,847 1,68 0,633 1,829 Dodge Ram B-150 1/F , ,777 2,012 Dodge Ram B-150 8/F/ ,781 1,95 0,847 2,012 Ford Aerostar 0/F ,018 1,84 0,694 1,821 Ford Aerostar 0/F ,023 1,84 0,671 1,821 Ford Aerostar L 1/F ,01 1,82 0,695 1,821 Ford Aerostar, long 0/F ,025 1,84 0,684 1,821 Ford E150 0/F ,515 2,02 0,765 2,014 Ford E150 1/F ,518 2,04 0,791 2,029 Ford E150 4/F/ ,518 1,99 0,844 2,029 Ford E150 Club Wag LT 1/F ,518 2,01 0,77 2,029 Mazda MPV /F ,819 1,78 0,665 1,826 Plymouth Voyager 1/F ,845 1,66 0,637 1,829 Plymouth Voyager 1/F ,845 1,66 0,634 1,829 Plymouth Voyager 1/F ,048 1,68 0,648 1,829 Toyota Preva LE 1/F ,858 1,78 0,638 1,801 F-pełen zbornk palwa, masa bagażu [kg] Dla samochodów typu van z tablcy 1, w tablcy 2 zameszczono wynk pomarów momentu zameszczonych w pracy [2] oraz wynk oblczeń tego momentu za pomocą wzorów oblczenowych. 142

3 Tablca 2. Wynk pomarów momentu [2] dla samochodów z tablcy 1 oraz rezultaty oblczeń za pomocą wzorów zawartych w [1] pomary [kgm (1) [kgm (2) [kgm (3) [kgm Chevrolet Astro Van Chevrolet Lumna APV Chevrolet Lumna APV Chevrolet Lumna APV Dodge Caravan Dodge Caravan Dodge Caravan Dodge Caravan Dodge Caravan Dodge Caravan Dodge Caravan Dodge Caravan C/V Dodge Ram B Ford Aerostar Ford Aerostar Ford Aerostar L Ford Aerostar, long Ford E Ford E Mazda MPV Plymouth Voyager Plymouth Voyager Plymouth Voyager Toyota Preva LE W celu porównana oszacowanej wartośc momentu z wartoścą zmerzoną, dla każdego samochodu oblczono różncę D [%] wyrażającą sę wzorem (7): szac pom D 100% (7) pom gdze: szac oszacowana wartość momentu bezwładnośc, pom wartość momentu bezwładnośc zmerzona na stanowsku. Odnośne wzorów lteraturowych, najlepej szacującym moment jest (1). W tablcy 3 zaprezentowano różnce mędzy wynkam pomarów momentu wynkam oblczeń wzoram (1) (3). Na rysunku 1 pokazano zależność wartośc momentu bezwładnośc zmerzonego ( pomary NHTSA) oblczonego z użycem wzoru (1) od masy, szerokośc, wysokośc samochodu oraz środka masy samochodu. 143

4 [kgm [kgm [kgm [kgm Tablca 3. Różnce D [%] mędzy pomaram momentu [2] wynkam oblczeń wzoram (1 3) [1] dla samochodów z tablcy 1 oraz odchylena standardowe tych różnc σ D [%] Różnca D [%] Odchylene standardowe różnc σ D [%] Wartość średna różnc D śred[%] - wzory z lteratury [1] (1) (2) (3) ,5 5,7 25,2 a) b) x - (1) x - (1) c) m [kg] d) 1,70 1,75 1,80 1,85 1,90 1,95 2,00 2,05 2,10 b [m] x - (1) x - (1) 1,50 1,60 1,70 1,80 1,90 2,00 2,10 h [m] 0,55 0,60 0,65 0,70 0,75 0,80 0,85 h SM [m] Rys. 1. Zależność wartośc momentu bezwładnośc zmerzonego ( pomary NHTSA [2]) oblczonego z użycem wzoru (1) od: a) masy, b) szerokośc, c) wysokośc, d) wysokośc środka masy samochodu. 4. Nowe wzory do oszacowana momentu bezwładnośc dla samochodów typu van Wstępne przyjęto, że na moment bezwładnośc, czy promeń bezwładnośc, mają wpływ: rozstaw os pojazdu (l 12 ), wysokość pojazdu (h), wysokość, na której położony jest środek masy (h SM ), 144

5 szerokość pojazdu (b). W zwązku z tym zaproponowano ogólny wążący wymenone welkośc z momentem bezwładnośc: = f m,l12,h,h sm,b (4) lub z kwadratem promena bezwładnośc: = = f m 2 l12,h,h SM,b (5) w postac wykładnczej w dwóch warantach: lub 2 k1 k2 k3 k4 = k0 l12 h hsm b (6) k h+h 2 b 3 2 k1 k = k0 l12 sm. (7) Do wyznaczena stałych k oraz wykładnków k zastosowano metodę opartą na generatorze lczb losowych. Przyjęto wstępne zakres poszukwań poszczególnych welkośc: MN 145 MA k k, k. (8) Oblczena prowadzono teracyjne. W każdym kroku dokonano losowana razy doberanych parametrów z przyjętego zakresu wybrano najlepsze dopasowane, mnmalzując z kryterum (funkcję celu): szac pom = 1...x δ = x 2, (9) gdze: x lczba pojazdów, których zbadano parametry bezwładnoścowe, (szac) oblczony moment bezwładnośc (lub kwadrat promena bezwładnośc) względem os x lub y, (pom) moment bezwładnośc (lub kwadrat promena bezwładnośc) względem os x znany z pomarów, przyjęty za wzorzec. Następne zawężono zakres poszukwań poszczególnych parametrów ponowne dokonano losowana. Taką procedurę powtórzono 100 razy. Po takm dopasowanu wartość funkcj celu stablzowała sę, a zakres poszukwań poszczególnych parametrów zawężał sę do wartośc pomjalne małych. Po przeprowadzenu wstępnych dopasowań funkcj stwerdzono, że ne wszystke parametry spośród przyjętych do analz (l 12, h, h SM oraz b) mają jednakowy wpływ na oblczaną welkość. Z tego powodu wykonano dodatkowe oblczena, elmnując zbędne czynnk bazowych wzorów (6) (7).

6 W wynku przeprowadzonych powyżej czynnośc, powstały zaprezentowane w dalszej częśc nowe wzory do szacowana masowego momentu bezwładnośc względem os x samochodu przechodzącej przez jego środek masy. Każdy z tych wzorów oprócz masy samochodu zawera różną lczbę nnych w różnym stopnu stotnych parametrów. 0,104 0,259 2,252 m l12 h b (10) 11,3 2,802 m b (12) 12,3 0,32 2,311 m ( h hsm) b (14) 10,8 0,05 0,033 2,683 ml12 hsm b (11) 11,8 0,025 0,34 2,193 ml12 ( h hsm) b (13) 11,7 m 0,103 0,283 0,031 2,336 l12 h SM b h 12,2 (15) W tablcy 4 przedstawono wartośc lczbowe momentu zmerzonego oszacowanego wzoram proponowanym przez autorów. Tablca 4. Wynk pomarów momentu [2] dla samochodów z tablcy 1 oraz rezultaty oblczeń za pomocą proponowanych wzorów pomary [kgm wzory zaproponowane przez autorów (10) (11) (12) (13) (14) 146 (15) Chevrolet Astro Van Chevrolet Lumna APV Chevrolet Lumna APV Chevrolet Lumna APV Dodge Caravan Dodge Caravan Dodge Caravan Dodge Caravan Dodge Caravan Dodge Caravan Dodge Caravan Dodge Caravan C/V Dodge Ram B Ford Aerostar Ford Aerostar Ford Aerostar L Ford Aerostar, long Ford E Ford E Mazda MPV Plymouth Voyager Plymouth Voyager Plymouth Voyager Toyota Preva LE W tablcy 5 przedstawono różnce mędzy wynkam pomarów momentu wynkam oblczeń za pomocą wzorów (10) (15).

7 [kgm [kgm Tablca 5. Różnce D [%] mędzy pomaram momentu [2] wynkam oblczeń za pomocą wzorów (10) (15) dla samochodów z tablcy 1 oraz odchylena standardowe tych różnc σ D [%] Różnca D [%] Odchylene standardowe różnc σ D [%] Wartość średna różnc D śred[%] (10) - wzory zaproponowane przez autorów (11) (12) (13) (14) (15) ,7 1,0 0,7 0,4 0,7 0,2 Na rysunku 2 pokazano zależność wartośc momentu bezwładnośc zmerzonego ( pomary NHTSA [2]) oblczonego z użycem zaproponowanego wzoru ( (15)) od masy, rozstawu os kół, wysokośc samochodu oraz położena jego środka masy. Dla wzoru (15) uzyskano najlepszą zgodność z wynkam badań momentu na stanowsku. Wzór ten zawera jednak welkość h SM (wysokość położena środka masy), która wymaga wyznaczena na stanowsku badawczym może być stotnym utrudnenem dla przygotowujących oblczena symulacyjne. Jednakże dla wzorów (10) (12), gdze ne jest potrzebna znajomość h SM, uzyskano porównywalną, a w pewnych przypadkach lepszą zgodność z badanam stanowskowym, w porównanu do wzoru (1) z lteratury. a) b) x - (15) x - (15) m [kg] 2, 2,775 2,800 2,825 2,850 2,875 2,900 l 12 [m] 147

8 [kgm [kgm [kgm [kgm [kgm c) d) x - (15) x - (15) 1,50 1,55 1,60 1,65 1,70 1,75 1,80 1,85 1,90 1,95 2,00 2,05 2,10 h [m] 1,70 1,75 1,80 1,85 1,90 1,95 2,00 2,05 2,10 b [m] e) x - (15) 0,60 0,65 0,70 0,75 0,80 h SM [m] Rys. 2. Zależność wartośc momentu bezwładnośc zmerzonego ( pomary NHTSA [2]) oblczonego z użycem zaproponowanego wzoru ( (15)) od: a) masy, b) rozstawu os, c) wysokośc samochodu, d), szerokośc samochodu, e) wysokośc środka masy. Dla porównana na rys. 3 pokazano różnce mędzy oszacowanem a wynkam pomaru momentu dla wzoru (12) o najprostszej postac spośród wszystkch proponowanych wzorów. a) b) x - (12) x - (12) m [kg] 1,70 1,75 1,80 1,85 1,90 1,95 2,00 2,05 2,10 b [m] Rys. 3. Zależność wartośc momentu bezwładnośc zmerzonego ( pomary NHTSA [2]) oblczonego z użycem zaproponowanego wzoru ( (12)) od: a) masy, b) szerokośc samochodu. 148

9 Różnca D[%] Na rys. 4 przedstawono różnce D [%] w przypadku oszacowana momentu x uproszczonym wzorem (12) wzorem (15) wymagającym wększej lczby parametrów, oraz wzorem (1) z opracowana [1] dającym spośród dwóch nnych wzorów lteraturowych możlwe najlepsze przyblżene Badane samochody (zgod. z kolejnoścą występowana w tab. 1) x - (1) - lt. x - (12) x - (15) Rys. 4. Różnce D [%] w przypadku oszacowana momentu x autorskm wzoram (12), (15) wzorem (1) z lteratury [1] Wzór (12) mmo znaczne uproszczonej postac (uwzględna jedyne masę szerokość samochodu), newele gorzej szacuje moment w porównanu do wzoru (15), a w częśc przypadków daje lepsze rezultaty. 5. Podsumowane Masowy moment bezwładnośc samochodu jest parametrem trudnym do zmerzena ze względu na rzadko spotykane stanowska do jego pomaru. Jednocześne w lteraturze dostępnych jest wele wzorów oblczenowych, opartych na dośwadczenach przeprowadzanych przez różnych autorów. Wynk oblczeń momentu z użycem tych wzorów dla samochodów typu van są bardzo zróżncowane. Najbardzej korzystne wypadają różnce w stosunku do wartośc zmerzonych w przypadku wzoru (1). Ponadto w artykule zaproponowano nowe wzory, z których najkorzystnejsze rezultaty daje zastosowane wzoru (15). Przeprowadzona analza wynków pomarów momentu z dla samochodów typu van, zawartych w pracy [2], pozwolła wyznaczyć współczynnk w proponowanych wzorach. Lteratura: [1] Macnns D.D, Clff W.E., sng K.W.: A Comparson of Moment of nerta Estmaton Technques for Vehcle Dynamcs Smulaton, SAE Paper

10 [2] Rley Garrott W.: Measured Vehcle nertal Parameters - NHTSA s Data Through September 1992, SAE Paper , [3] Sar H., Fundowcz P., Wyznaczane masowego momentu bezwładnośc względem os ponowej dla samochodu typu van na podstawe wzoru emprycznego, Zeszyty Naukowe nstytutu Pojazdów 2(88), Warszawa Streszczene Masowy moment bezwładnośc samochodu względem os podłużnej x odgrywa stotną rolę w przypadku oblczeń symulacyjnych zwązanych z ruchem samochodu. Najlepszym rozwązanem byłoby zastosowane do wyznaczena tego momentu specjalnego stanowska. Jednak w przypadku, gdy ne ma dostępu do takego stanowska, celowe jest wykorzystane wzorów emprycznych służących oszacowanu wartośc momentu bezwładnośc. W artykule przedstawono wynk oszacowana momentu wzoram znanym z lteratury dla samochodu typu van oraz nowym wzoram zaproponowanym przez autorów nnejszego artykułu, powstałym w wynku analzy wartośc zmerzonych na stanowsku przez organzację NHTSA w USA. Zaproponowane wzory zawerają różną lczbę parametrów samochodu potrzebnych do wyznaczena momentu. Słowa kluczowe: moment bezwładnośc, ruch samochodu, samochód typu van DETERMNNG THE ROLL MASS MOMENT OF NERTA OF VAN TYPE AUTOMOBLE ON THE BASS OF EMPRCAL FORMULAS Abstract Roll mass moment of nerta of automoble s playng mportant role n case of smulaton calculatons connected wth vehcle moton. The optmal soluton would be the measurement of the moment on specal test stand. However, n case f there s no access for such test stand, ntentonal s the usage of emprcal formulas that estmate roll mass moment of nerta. n artcle the results of estmatng the moment usng the formulas known from the lterature for van-type automobles as well as the new desgned by the authors are presented n the artcle. The authors new formulas are based on the analyss of test stand measurement results performed by NHTSA organzaton from USA. The proposed formulas consst of dfferent number of automoble parameters. Keywords: moment of nerta, vehcle moton, van type automoble 150

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 2(88)/2012

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 2(88)/2012 ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW (88)/01 Hubert Sar, Potr Fundowcz 1 WYZNACZANIE ASOWEGO OENTU BEZWŁADNOŚCI WZGLĘDE OSI PIONOWEJ DLA SAOCHODU TYPU VAN NA PODSTAWIE WZORU EPIRYCZNEGO 1. Wstęp asowy moment

Bardziej szczegółowo

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np. Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas

Bardziej szczegółowo

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ],

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ], STATECZNOŚĆ SKARP W przypadku obektu wykonanego z gruntów nespostych zaprojektowane bezpecznego nachylena skarp sprowadza sę do przekształcena wzoru na współczynnk statecznośc do postac: tgφ tgα = n gdze:

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY METODĄ STOKESA

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY METODĄ STOKESA WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY METODĄ STOKESA. Ops teoretyczny do ćwczena zameszczony jest na strone www.wtc.wat.edu.pl w dzale DYDAKTYKA FIZYKA ĆWICZENIA LABORATORYJNE.. Ops układu pomarowego

Bardziej szczegółowo

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.

Bardziej szczegółowo

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup Jednoczynnkowa Analza Waranc (ANOVA) Wykład 11 Przypomnene: wykłady zadana kursu były zaczerpnęte z podręcznków: Statystyka dla studentów kerunków techncznych przyrodnczych, J. Koronack, J. Melnczuk, WNT

Bardziej szczegółowo

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja) Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz

Bardziej szczegółowo

Praca podkładu kolejowego jako konstrukcji o zmiennym przekroju poprzecznym zagadnienie ekwiwalentnego przekroju

Praca podkładu kolejowego jako konstrukcji o zmiennym przekroju poprzecznym zagadnienie ekwiwalentnego przekroju Praca podkładu kolejowego jako konstrukcj o zmennym przekroju poprzecznym zagadnene ekwwalentnego przekroju Work of a ralway sleeper as a structure wth varable cross-secton - the ssue of an equvalent cross-secton

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH 1 Test zgodnośc χ 2 Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład o dystrybuance F). Hpoteza alternatywna H1( Cecha X populacj

Bardziej szczegółowo

STATYSTYCZNA ANALIZA WYNIKÓW POMIARÓW

STATYSTYCZNA ANALIZA WYNIKÓW POMIARÓW Zakład Metrolog Systemów Pomarowych P o l t e c h n k a P o z n ańska ul. Jana Pawła II 4 60-965 POZAŃ (budynek Centrum Mechatronk, Bomechank anonżyner) www.zmsp.mt.put.poznan.pl tel. +48 61 665 5 70 fax

Bardziej szczegółowo

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch Za: Stansław Latoś, Nwelacja trygonometryczna, [w:] Ćwczena z geodezj II [red.] J. eluch 6.1. Ogólne zasady nwelacj trygonometrycznej. Wprowadzene Nwelacja trygonometryczna, zwana równeż trygonometrycznym

Bardziej szczegółowo

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru Pomary fzyczne - dokonywane tylko ze skończoną dokładnoścą. Powodem - nedoskonałość przyrządów pomarowych neprecyzyjność naszych zmysłów borących udzał w obserwacjach. Podawane samego tylko wynku pomaru

Bardziej szczegółowo

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru Pomary fzyczne - dokonywane tylko ze skończoną dokładnoścą. Powodem - nedoskonałość przyrządów pomarowych neprecyzyjność naszych zmysłów borących udzał w obserwacjach. Podawane samego tylko wynku pomaru

Bardziej szczegółowo

MIĘDZYNARODOWE UNORMOWANIA WYRAśANIA ANIA NIEPEWNOŚCI POMIAROWYCH

MIĘDZYNARODOWE UNORMOWANIA WYRAśANIA ANIA NIEPEWNOŚCI POMIAROWYCH MIĘDZYNARODOWE UNORMOWANIA WYRAśANIA ANIA NIEPEWNOŚCI POMIAROWYCH Adam Mchczyńsk W roku 995 grupa nstytucj mędzynarodowych: ISO Internatonal Organzaton for Standardzaton (Mędzynarodowa Organzacja Normalzacyjna),

Bardziej szczegółowo

Zadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane

Bardziej szczegółowo

Evaluation of estimation accuracy of correlation functions with use of virtual correlator model

Evaluation of estimation accuracy of correlation functions with use of virtual correlator model Jadwga LAL-JADZIAK Unwersytet Zelonogórsk Instytut etrolog Elektrycznej Elżbeta KAWECKA Unwersytet Zelonogórsk Instytut Informatyk Elektronk Ocena dokładnośc estymacj funkcj korelacyjnych z użycem modelu

Bardziej szczegółowo

Procedura normalizacji

Procedura normalizacji Metody Badań w Geograf Społeczno Ekonomcznej Procedura normalzacj Budowane macerzy danych geografcznych mgr Marcn Semczuk Zakład Przedsęborczośc Gospodark Przestrzennej Instytut Geograf Unwersytet Pedagogczny

Bardziej szczegółowo

METODA UNITARYZACJI ZEROWANEJ Porównanie obiektów przy ocenie wielokryterialnej. Ranking obiektów.

METODA UNITARYZACJI ZEROWANEJ Porównanie obiektów przy ocenie wielokryterialnej. Ranking obiektów. Opracowane: Dorota Mszczyńska METODA UNITARYZACJI ZEROWANEJ Porównane obektów przy ocene welokryteralnej. Rankng obektów. Porównane wybranych obektów (warantów decyzyjnych) ze względu na różne cechy (krytera)

Bardziej szczegółowo

Sprawozdanie powinno zawierać:

Sprawozdanie powinno zawierać: Sprawozdane pownno zawerać: 1. wypełnoną stronę tytułową (gotowa do ćw. nr 0 na strone drugej, do pozostałych ćwczeń zameszczona na strone 3), 2. krótk ops celu dośwadczena, 3. krótk ops metody pomaru,

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4 Stansław Cchock Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0-1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających Interpretacja

Bardziej szczegółowo

Wyznaczanie współczynnika sztywności zastępczej układu sprężyn

Wyznaczanie współczynnika sztywności zastępczej układu sprężyn Wyznaczane zastępczej sprężyn Ćwczene nr 10 Wprowadzene W przypadku klku sprężyn ze sobą połączonych, można mu przypsać tzw. współczynnk zastępczej k z. W skrajnych przypadkach sprężyny mogą być ze sobą

Bardziej szczegółowo

Weryfikacja hipotez dla wielu populacji

Weryfikacja hipotez dla wielu populacji Weryfkacja hpotez dla welu populacj Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Parametryczne testy stotnośc w

Bardziej szczegółowo

Problematyka walidacji metod badań w przemyśle naftowym na przykładzie benzyn silnikowych

Problematyka walidacji metod badań w przemyśle naftowym na przykładzie benzyn silnikowych NAFTA-GAZ luty 013 ROK LXIX Zygmunt Burnus Instytut Nafty Gazu, Kraków Problematyka waldacj metod badań w przemyśle naftowym na przykładze benzyn slnkowych Wprowadzene Waldacja metody badawczej to szereg

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE

PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE Janusz Wątroba, StatSoft Polska Sp. z o.o. W nemal wszystkch dzedznach badań emprycznych mamy do czynena ze złożonoścą zjawsk procesów.

Bardziej szczegółowo

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne ś POLITECHNIKA POZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA PROWADZĄCY: mgr nż. Łukasz Amanowcz Systemy Ochrony Powetrza Ćwczena Laboratoryjne 2 TEMAT ĆWICZENIA: Oznaczane lczbowego rozkładu lnowych projekcyjnych

Bardziej szczegółowo

ZASTOSOWANIE PROGRAMÓW PC-CRASH I V-SIM DO SYMULACJI RAJDOWEJ JAZDY SAMOCHODEM

ZASTOSOWANIE PROGRAMÓW PC-CRASH I V-SIM DO SYMULACJI RAJDOWEJ JAZDY SAMOCHODEM Potr Śwder Krzysztof Wach ZASTOSOWANIE PROGRAMÓW PC-CRASH I V-SIM DO SYMULACJI RAJDOWEJ JAZDY SAMOCHODEM Streszczene Podczas wypadku drogowego samochód bardzo często porusza sę ruchem odbegającym od ruchu

Bardziej szczegółowo

Natalia Nehrebecka. Zajęcia 4

Natalia Nehrebecka. Zajęcia 4 St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0 1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających

Bardziej szczegółowo

Współczynnik przenikania ciepła U v. 4.00

Współczynnik przenikania ciepła U v. 4.00 Współczynnk przenkana cepła U v. 4.00 1 WYMAGANIA Maksymalne wartośc współczynnków przenkana cepła U dla ścan, stropów, stropodachów, oken drzw balkonowych podano w załącznku do Rozporządzena Mnstra Infrastruktury

Bardziej szczegółowo

1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ

1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ Ćwczene nr 1 cz.3 Dyfuzja pary wodnej zachodz w kerunku od środowska o wyższej temperaturze do środowska chłodnejszego. Para wodna dyfundująca przez przegrody budowlane w okrese zmowym napotyka na coraz

Bardziej szczegółowo

Zastosowanie symulatora ChemCad do modelowania złożonych układów reakcyjnych procesów petrochemicznych

Zastosowanie symulatora ChemCad do modelowania złożonych układów reakcyjnych procesów petrochemicznych NAFTA-GAZ styczeń 2011 ROK LXVII Anna Rembesa-Śmszek Instytut Nafty Gazu, Kraków Andrzej Wyczesany Poltechnka Krakowska, Kraków Zastosowane symulatora ChemCad do modelowana złożonych układów reakcyjnych

Bardziej szczegółowo

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe

Bardziej szczegółowo

± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości

± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości Podstawowe pojęca procesu pomarowego kreślene jakośc poznana rzeczywstośc Δ zmerzone rzeczywste 17 9 Zalety stosowana elektrycznych przyrządów 1/ 1. możlwość budowy czujnków zamenających werne każdą welkość

Bardziej szczegółowo

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy (MD) MECHANIKA - Dynamka T. Środek cężkośc środek masy (M) Dynamka T: Środek cężkośc środek masy robert.szczotka(at)gmal.com Fzyka astronoma, Lceum 01/014 1 (MD) MECHANIKA - Dynamka T. Środek cężkośc środek

Bardziej szczegółowo

PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA WAHANIA SEZONOWE

PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA WAHANIA SEZONOWE STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 36 Krzysztof Dmytrów * Marusz Doszyń ** Unwersytet Szczecńsk PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA

Bardziej szczegółowo

Regulacje i sądownictwo przeszkody w konkurencji między firmami w Europie Środkowej i Wschodniej

Regulacje i sądownictwo przeszkody w konkurencji między firmami w Europie Środkowej i Wschodniej Łukasz Goczek * Regulacje sądownctwo przeszkody w konkurencj mędzy frmam w Europe Środkowej Wschodnej Wstęp Celem artykułu jest analza przeszkód dla konkurencj pomędzy frmam w Europe Środkowej Wschodnej.

Bardziej szczegółowo

Wyznaczanie lokalizacji obiektu logistycznego z zastosowaniem metody wyważonego środka ciężkości studium przypadku

Wyznaczanie lokalizacji obiektu logistycznego z zastosowaniem metody wyważonego środka ciężkości studium przypadku B u l e t y n WAT Vo l. LXI, Nr 3, 2012 Wyznaczane lokalzacj obektu logstycznego z zastosowanem metody wyważonego środka cężkośc studum przypadku Emla Kuczyńska, Jarosław Zółkowsk Wojskowa Akadema Technczna,

Bardziej szczegółowo

6. ROŻNICE MIĘDZY OBSERWACJAMI STATYSTYCZNYMI RUCHU KOLEJOWEGO A SAMOCHODOWEGO

6. ROŻNICE MIĘDZY OBSERWACJAMI STATYSTYCZNYMI RUCHU KOLEJOWEGO A SAMOCHODOWEGO Różnce mędzy obserwacjam statystycznym ruchu kolejowego a samochodowego 7. ROŻNICE MIĘDZY OBSERWACJAMI STATYSTYCZNYMI RUCHU KOLEJOWEGO A SAMOCHODOWEGO.. Obserwacje odstępów mędzy kolejnym wjazdam na stację

Bardziej szczegółowo

OPTYMALNE STRATEGIE INWESTYCYJNE PODEJŚCIE FUNDAMENTALNE OPTIMAL INVESTMENT STRATEGY FUNDAMENTAL ANALYSIS

OPTYMALNE STRATEGIE INWESTYCYJNE PODEJŚCIE FUNDAMENTALNE OPTIMAL INVESTMENT STRATEGY FUNDAMENTAL ANALYSIS ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2014 Sera: ORGANIZACJA I ZARZĄDZANIE z. 68 Nr kol. 1905 Adranna MASTALERZ-KODZIS Unwersytet Ekonomczny w Katowcach OPTYMALNE STRATEGIE INWESTYCYJNE PODEJŚCIE FUNDAMENTALNE

Bardziej szczegółowo

Określanie mocy cylindra C w zaleŝności od ostrości wzroku V 0 Ostrość wzroku V 0 7/5 6/5 5/5 4/5 3/5 2/5 Moc cylindra C 0,5 0,75 1,0 1,25 1,5 > 2

Określanie mocy cylindra C w zaleŝności od ostrości wzroku V 0 Ostrość wzroku V 0 7/5 6/5 5/5 4/5 3/5 2/5 Moc cylindra C 0,5 0,75 1,0 1,25 1,5 > 2 T A R C Z A Z E G A R O W A ASTYGMATYZM 1.Pojęca ogólne a) astygmatyzm prosty (najbardzej zgodny z pozomem) - najbardzej płask połudnk tzn. o najmnejszej mocy jest pozomy b) astygmatyzm odwrotny (najbardzej

Bardziej szczegółowo

BADANIE DRGAŃ WŁASNYCH NAPĘDU ROBOTA KUCHENNEGO Z SILNIKIEM SRM

BADANIE DRGAŃ WŁASNYCH NAPĘDU ROBOTA KUCHENNEGO Z SILNIKIEM SRM Zeszyty Problemowe Maszyny Elektryczne Nr 88/2010 13 Potr Bogusz Marusz Korkosz Jan Prokop POLITECHNIKA RZESZOWSKA Wydzał Elektrotechnk Informatyk BADANIE DRGAŃ WŁASNYCH NAPĘDU ROBOTA KUCHENNEGO Z SILNIKIEM

Bardziej szczegółowo

Analiza struktury zbiorowości statystycznej

Analiza struktury zbiorowości statystycznej Analza struktury zborowośc statystycznej.analza tendencj centralnej. Średne klasyczne Średna arytmetyczna jest parametrem abstrakcyjnym. Wyraża przecętny pozom badanej zmennej (cechy) w populacj generalnej:

Bardziej szczegółowo

ZESZYTY NAUKOWE NR x(xx) AKADEMII MORSKIEJ W SZCZECINIE. Metody wymiarowania obszaru manewrowego statku oparte na badaniach rzeczywistych

ZESZYTY NAUKOWE NR x(xx) AKADEMII MORSKIEJ W SZCZECINIE. Metody wymiarowania obszaru manewrowego statku oparte na badaniach rzeczywistych ISSN 009-069 ZESZYTY NUKOWE NR () KDEMII MORSKIEJ W SZCZECINIE IV MIĘDZYNRODOW KONFERENCJ NUKOWO-TECHNICZN E X P L O - S H I P 0 0 6 Paweł Zalewsk, Jakub Montewka Metody wymarowana obszaru manewrowego

Bardziej szczegółowo

POMIAROWA WERYFIKACJA NUMERYCZNEJ ANALIZY WYBRANEGO ZAGADNIENIA EMC NISKIEJ CZĘSTOTLIWOŚCI

POMIAROWA WERYFIKACJA NUMERYCZNEJ ANALIZY WYBRANEGO ZAGADNIENIA EMC NISKIEJ CZĘSTOTLIWOŚCI Wojcech KRAJEWSKI Mchał FOTYMA 621.391.823 519.6 537.212 POMIAROWA WERYFIKACJA NUMERYCZNEJ ANALIZY WYBRANEGO ZAGADNIENIA EMC NISKIEJ CZĘSTOTLIWOŚCI STRESZCZENIE W artykule przedstawono wynk eksperymentalnej

Bardziej szczegółowo

OPTYMALIZACJA WARTOŚCI POLA MAGNETYCZNEGO W POBLIŻU LINII NAPOWIETRZNEJ Z WYKORZYSTANIEM ALGORYTMU GENETYCZNEGO

OPTYMALIZACJA WARTOŚCI POLA MAGNETYCZNEGO W POBLIŻU LINII NAPOWIETRZNEJ Z WYKORZYSTANIEM ALGORYTMU GENETYCZNEGO POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 81 Electrcal Engneerng 015 Mkołaj KSIĄŻKIEWICZ* OPTYMALIZACJA WARTOŚCI POLA MAGNETYCZNEGO W POLIŻU LINII NAPOWIETRZNEJ Z WYKORZYSTANIEM ALGORYTMU

Bardziej szczegółowo

WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA RÓŻNICOWEGO

WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA RÓŻNICOWEGO I PRACOWNIA FIZYCZNA, INSYU FIZYKI UMK, ORUŃ Instrukca do ćwczena nr WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA RÓŻNICOWEGO 1. Cel ćwczena Celem ćwczena est poznane ruchu harmonczneo eo praw,

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH.

POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH. POLITECHIKA ŚLĄSKA W GLIWICACH WYDZIAŁ IŻYIERII ŚRODOWISKA EERGETYKI ISTYTUT MASZY URZĄDZEŃ EERGETYCZYCH Turbna arowa II Laboratoru oarów azyn celnych (PM 8) Oracował: dr nż. Grzegorz Wcak Srawdzł: dr

Bardziej szczegółowo

Badania sondażowe. Braki danych Konstrukcja wag. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa

Badania sondażowe. Braki danych Konstrukcja wag. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa Badana sondażowe Brak danych Konstrukcja wag Agneszka Zęba Zakład Badań Marketngowych Instytut Statystyk Demograf Szkoła Główna Handlowa 1 Błędy braku odpowedz Całkowty brak odpowedz (UNIT nonresponse)

Bardziej szczegółowo

WPŁYW POSTACI FUNKCJI JAKOŚCI ORAZ WAG KRYTERIÓW CZĄSTKOWYCH NA WYNIKI OPTYMALIZACJI ZDERZENIA METODĄ GENETYCZNĄ

WPŁYW POSTACI FUNKCJI JAKOŚCI ORAZ WAG KRYTERIÓW CZĄSTKOWYCH NA WYNIKI OPTYMALIZACJI ZDERZENIA METODĄ GENETYCZNĄ PIOTR KRZEMIEŃ *, ANDRZEJ GAJEK ** WPŁYW POSTACI FUNKCJI JAKOŚCI ORAZ WAG KRYTERIÓW CZĄSTKOWYCH NA WYNIKI OPTYMALIZACJI ZDERZENIA METODĄ GENETYCZNĄ THE INFLUENCE OF THE SHAPE OF THE QUALITY FUNCTION AND

Bardziej szczegółowo

Jakość cieplna obudowy budynków - doświadczenia z ekspertyz

Jakość cieplna obudowy budynków - doświadczenia z ekspertyz dr nż. Robert Geryło Jakość ceplna obudowy budynków - dośwadczena z ekspertyz Wdocznym efektem występowana znaczących mostków ceplnych w obudowe budynku, występującym na ogół przy nedostosowanu ntensywnośc

Bardziej szczegółowo

WPŁYW PARAMETRÓW DYSKRETYZACJI NA NIEPEWNOŚĆ WYNIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO

WPŁYW PARAMETRÓW DYSKRETYZACJI NA NIEPEWNOŚĆ WYNIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO Walenty OWIECZKO WPŁYW PARAMETRÓW DYSKRETYZACJI A IEPEWOŚĆ WYIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO STRESZCZEIE W artykule przedstaono ynk analzy nepenośc pomaru ybranych cech obektu obrazu cyfroego. Wyznaczono

Bardziej szczegółowo

Analiza ryzyka jako instrument zarządzania środowiskiem

Analiza ryzyka jako instrument zarządzania środowiskiem WARSZTATY 2003 z cyklu Zagrożena naturalne w górnctwe Mat. Symp. str. 461 466 Elżbeta PILECKA, Małgorzata SZCZEPAŃSKA Instytut Gospodark Surowcam Mneralnym Energą PAN, Kraków Analza ryzyka jako nstrument

Bardziej szczegółowo

Propozycja modyfikacji klasycznego podejścia do analizy gospodarności

Propozycja modyfikacji klasycznego podejścia do analizy gospodarności Jacek Batóg Unwersytet Szczecńsk Propozycja modyfkacj klasycznego podejśca do analzy gospodarnośc Przedsęborstwa dysponujące dentycznym zasobam czynnków produkcj oraz dzałające w dentycznych warunkach

Bardziej szczegółowo

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne XXX OLIMPIADA FIZYCZNA ETAP III Zadane dośwadczalne ZADANIE D Nazwa zadana: Maszyna analogowa. Dane są:. doda półprzewodnkowa (krzemowa) 2. opornk dekadowy (- 5 Ω ), 3. woltomerz cyfrowy, 4. źródło napęca

Bardziej szczegółowo

Zastosowanie wielowymiarowej analizy porównawczej w doborze spó³ek do portfela inwestycyjnego Zastosowanie wielowymiarowej analizy porównawczej...

Zastosowanie wielowymiarowej analizy porównawczej w doborze spó³ek do portfela inwestycyjnego Zastosowanie wielowymiarowej analizy porównawczej... Adam Waszkowsk * Adam Waszkowsk Zastosowane welowymarowej analzy porównawczej w doborze spó³ek do portfela nwestycyjnego Zastosowane welowymarowej analzy porównawczej... Wstêp Na warszawskej Ge³dze Paperów

Bardziej szczegółowo

Wstęp. Obliczenia własne na podstawie: Budżety (2015), s. 116.

Wstęp. Obliczenia własne na podstawie: Budżety (2015), s. 116. Studa Prace WNEZ US nr 43/3 216 DOI: 1.18276/sp.216.43/3-38 Anna Turczak* Zachodnopomorska Szkoła Bznesu w Szczecne Czynnk kształtujące wydatk na żywność napoje bezalkoholowe gospodarstw domowych w Polsce

Bardziej szczegółowo

Zmodyfikowana technika programowania dynamicznego

Zmodyfikowana technika programowania dynamicznego Zmodyfkowana technka programowana dynamcznego Lech Madeysk 1, Zygmunt Mazur 2 Poltechnka Wrocławska, Wydzał Informatyk Zarządzana, Wydzałowy Zakład Informatyk Wybrzeże Wyspańskego 27, 50-370 Wrocław Streszczene.

Bardziej szczegółowo

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie. Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane

Bardziej szczegółowo

INVESTIGATION OF DYNAMIC PROPERTIES OF A MOTOR CAR IN ITS CURVILINEAR MOTION

INVESTIGATION OF DYNAMIC PROPERTIES OF A MOTOR CAR IN ITS CURVILINEAR MOTION Journal of KONES Powertran and Transport, Vol. 3, No. 3 INVESTIGATION OF DYNAMIC PROPERTIES OF A MOTOR CAR IN ITS CURVILINEAR MOTION Andrzej Reńsk, Janusz Pokorsk, Marek Belńsk, Hubert Sar Warsaw Unversty

Bardziej szczegółowo

Analiza niestacjonarności systemów WIM 1

Analiza niestacjonarności systemów WIM 1 Poary Autoatyka Kontrola nr 10bs/06 Potr BUROS, AGH AKADEMIA GÓRICZO-HUTICZA, KATEDRA METROLOGII ELEKTROIKI {burnos@agh.edu.pl} Analza nestacjonarnośc systeów WIM 1 Ten utwór jest dostępny na lcencj Creatve

Bardziej szczegółowo

mgr inż. Wojciech Artichowicz MODELOWANIE PRZEPŁYWU USTALONEGO NIEJEDNOSTAJNEGO W KANAŁACH OTWARTYCH

mgr inż. Wojciech Artichowicz MODELOWANIE PRZEPŁYWU USTALONEGO NIEJEDNOSTAJNEGO W KANAŁACH OTWARTYCH Poltechnka Gdańska Wydzał Inżyner Lądowej Środowska Katedra ydrotechnk mgr nż. Wojcech Artchowcz MODELOWANIE PRZEPŁYWU USTALONEGO NIEJEDNOSTAJNEGO W KANAŁAC OTWARTYC PRACA DOKTORSKA Promotor: prof. dr

Bardziej szczegółowo

Statystyka Inżynierska

Statystyka Inżynierska Statystyka Inżynerska dr hab. nż. Jacek Tarasuk AGH, WFIS 013 Wykład DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE Zmenna losowa, Funkcja rozkładu, Funkcja gęstośc, Dystrybuanta, Charakterystyk zmennej, Funkcje

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Interpretacja parametrów przy zmennych objaśnających cągłych Semelastyczność 2. Zastosowane modelu potęgowego Model potęgowy 3. Zmenne cągłe za zmenne dyskretne

Bardziej szczegółowo

Analiza i diagnoza sytuacji finansowej wybranych branż notowanych na Warszawskiej Giełdzie Papierów Wartościowych w latach

Analiza i diagnoza sytuacji finansowej wybranych branż notowanych na Warszawskiej Giełdzie Papierów Wartościowych w latach Jacek Batóg Unwersytet Szczecńsk Analza dagnoza sytuacj fnansowej wybranych branż notowanych na Warszawskej Gełdze Paperów Wartoścowych w latach 997-998 W artykule podjęta została próba analzy dagnozy

Bardziej szczegółowo

ANALIZA PORÓWNAWCZA WYNIKÓW UZYSKANYCH ZA POMOCĄ MIAR SYNTETYCZNYCH: M ORAZ PRZY ZASTOSOWANIU METODY UNITARYZACJI ZEROWANEJ

ANALIZA PORÓWNAWCZA WYNIKÓW UZYSKANYCH ZA POMOCĄ MIAR SYNTETYCZNYCH: M ORAZ PRZY ZASTOSOWANIU METODY UNITARYZACJI ZEROWANEJ METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XVI/3, 2015, str. 248 257 ANALIZA PORÓWNAWCZA WYNIKÓW UZYSKANYCH ZA POMOCĄ MIAR SYNTETYCZNYCH: M ORAZ PRZY ZASTOSOWANIU METODY UNITARYZACJI ZEROWANEJ Sławomr

Bardziej szczegółowo

ANALIZA WPŁYWU OBSERWACJI NIETYPOWYCH NA WYNIKI MODELOWANIA REGIONALNEJ WYDAJNOŚCI PRACY

ANALIZA WPŁYWU OBSERWACJI NIETYPOWYCH NA WYNIKI MODELOWANIA REGIONALNEJ WYDAJNOŚCI PRACY STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 36, T. 1 Barbara Batóg *, Jacek Batóg ** Unwersytet Szczecńsk ANALIZA WPŁYWU OBSERWACJI NIETYPOWYCH NA WYNIKI MODELOWANIA REGIONALNEJ WYDAJNOŚCI

Bardziej szczegółowo

Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer

Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer Statystyka Opsowa 2014 część 2 Katarzyna Lubnauer Lteratura: 1. Statystyka w Zarządzanu Admr D. Aczel 2. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucjan Kowalsk. 4. Statystyka opsowa,

Bardziej szczegółowo

Rachunek niepewności pomiaru opracowanie danych pomiarowych

Rachunek niepewności pomiaru opracowanie danych pomiarowych Rachunek nepewnośc pomaru opracowane danych pomarowych Mędzynarodowa Norma Oceny Nepewnośc Pomaru (Gude to Epresson of Uncertanty n Measurements - Mędzynarodowa Organzacja Normalzacyjna ISO) http://physcs.nst./gov/uncertanty

Bardziej szczegółowo

LABORATORIUM METROLOGII TECHNIKA POMIARÓW (M-1)

LABORATORIUM METROLOGII TECHNIKA POMIARÓW (M-1) LABORATORIUM METROLOGII TECHNIKA POMIARÓW (M-) wwwmuepolslpl/~wwwzmape Opracował: Dr n Jan Około-Kułak Sprawdzł: Dr hab n Janusz Kotowcz Zatwerdzł: Dr hab n Janusz Kotowcz Cel wczena Celem wczena jest

Bardziej szczegółowo

ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH

ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH Grzegorz PRZEKOTA ZESZYTY NAUKOWE WYDZIAŁU NAUK EKONOMICZNYCH ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH Zarys treśc: W pracy podjęto problem dentyfkacj cykl gełdowych.

Bardziej szczegółowo

Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu

Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu PRACE KOMISJI GEOGRAFII PRZEMY SŁU Nr 7 WARSZAWA KRAKÓW 2004 Akadema Pedagogczna, Kraków Kształtowane sę frm nformatycznych jako nowych elementów struktury przestrzennej przemysłu Postępujący proces rozwoju

Bardziej szczegółowo

DIAGNOSTYKA WYMIENNIKÓW CIEPŁA Z UWIARYGODNIENIEM WYNIKÓW POMIARÓW EKPLOATACYJNYCH

DIAGNOSTYKA WYMIENNIKÓW CIEPŁA Z UWIARYGODNIENIEM WYNIKÓW POMIARÓW EKPLOATACYJNYCH RYNEK CIEŁA 03 DIANOSYKA YMIENNIKÓ CIEŁA Z UIARYODNIENIEM YNIKÓ OMIARÓ EKLOAACYJNYCH Autorzy: rof. dr hab. nż. Henryk Rusnowsk Dr nż. Adam Mlejsk Mgr nż. Marcn ls Nałęczów, 6-8 paźdzernka 03 SĘ Elementam

Bardziej szczegółowo

WSKAŹNIK OCENY HIC SAMOCHODU OSOBOWEGO W ASPEKCIE BEZPIECZEŃSTWA RUCHU DROGOWEGO

WSKAŹNIK OCENY HIC SAMOCHODU OSOBOWEGO W ASPEKCIE BEZPIECZEŃSTWA RUCHU DROGOWEGO WSKAŹNIK OCENY SAMOCHODU OSOBOWEGO W ASPEKCIE BEZPIECZEŃSTWA RUCHU DROGOWEGO Dagmara KARBOWNICZEK 1, Kazmerz LEJDA, Ruch cała człoweka w samochodze podczas wypadku drogowego zależy od sztywnośc nadwoza

Bardziej szczegółowo

Analiza porównawcza rozwoju wybranych banków komercyjnych w latach 2001 2009

Analiza porównawcza rozwoju wybranych banków komercyjnych w latach 2001 2009 Mara Konopka Katedra Ekonomk Organzacj Przedsęborstw Szkoła Główna Gospodarstwa Wejskego w Warszawe Analza porównawcza rozwoju wybranych banków komercyjnych w latach 2001 2009 Wstęp Polska prywatyzacja

Bardziej szczegółowo

APROKSYMACJA QUASIJEDNOSTAJNA

APROKSYMACJA QUASIJEDNOSTAJNA POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 73 Electrcal Engneerng 213 Jan PURCZYŃSKI* APROKSYMACJA QUASIJEDNOSTAJNA W pracy wykorzystano metodę aproksymacj średnokwadratowej welomanowej, przy

Bardziej szczegółowo

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej Badane współzależnośc dwóch cech loścowych X Y. Analza korelacj prostej Kody znaków: żółte wyróżnene nowe pojęce czerwony uwaga kursywa komentarz 1 Zagadnena 1. Zwązek determnstyczny (funkcyjny) a korelacyjny.

Bardziej szczegółowo

Opracowanie metody predykcji czasu życia baterii na obiekcie i oceny jej aktualnego stanu na podstawie analizy bieżących parametrów jej eksploatacji.

Opracowanie metody predykcji czasu życia baterii na obiekcie i oceny jej aktualnego stanu na podstawie analizy bieżących parametrów jej eksploatacji. Zakład Systemów Zaslana (Z-5) Opracowane nr 323/Z5 z pracy statutowej pt. Opracowane metody predykcj czasu życa bater na obekce oceny jej aktualnego stanu na podstawe analzy beżących parametrów jej eksploatacj.

Bardziej szczegółowo

Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że

Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że Twerdzene Bezouta lczby zespolone Javer de Lucas Ćwczene 1 Ustal dla których a, b R można podzelć f 1 X) = X 4 3X 2 + ax b przez f 2 X) = X 2 3X+2 Oblcz a b Z 5 jeżel zak ladamy, że f 1 f 2 s a welomanam

Bardziej szczegółowo

Funkcje i charakterystyki zmiennych losowych

Funkcje i charakterystyki zmiennych losowych Funkcje charakterystyk zmennych losowych Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Funkcje zmennych losowych

Bardziej szczegółowo

Michal Strzeszewski Piotr Wereszczynski. poradnik. Norma PN-EN 12831. Nowa metoda. obliczania projektowego. obciazenia cieplnego

Michal Strzeszewski Piotr Wereszczynski. poradnik. Norma PN-EN 12831. Nowa metoda. obliczania projektowego. obciazenia cieplnego Mchal Strzeszewsk Potr Wereszczynsk Norma PN-EN 12831 Nowa metoda oblczana projektowego. obcazena ceplnego poradnk Mchał Strzeszewsk Potr Wereszczyńsk Norma PN EN 12831 Nowa metoda oblczana projektowego

Bardziej szczegółowo

KONCEPCJA OCENY HYBRYDOWYCH SYSTEMÓW ENERGETYCZNYCH

KONCEPCJA OCENY HYBRYDOWYCH SYSTEMÓW ENERGETYCZNYCH 2-2010 PROBLEMY ESPLOATACJI 159 Robert DZIERŻAOWSI Poltechnka Warszawska OCCJA OCEY HYBRYDOWYCH SYSTEMÓW EERGETYCZYCH Słowa kluczowe Hybrydowy system energetyczny, skojarzony system energetyczny, generator

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5 MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając

Bardziej szczegółowo

Grupa: Elektrotechnika, wersja z dn Studia stacjonarne, II stopień, sem.1 Laboratorium Techniki Świetlnej

Grupa: Elektrotechnika, wersja z dn Studia stacjonarne, II stopień, sem.1 Laboratorium Techniki Świetlnej ul.potrowo 3a http://lumen.ee.put.poznan.pl Grupa: Elektrotechnka, wersja z dn. 29.03.2016 Studa stacjonarne, stopeń, sem.1 Laboratorum Technk Śwetlnej Ćwczene nr 6 Temat: Badane parametrów fotometrycznych

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej

Bardziej szczegółowo

ANALIZA KORELACJI WYDATKÓW NA KULTURĘ Z BUDŻETU GMIN ORAZ WYKSZTAŁCENIA RADNYCH

ANALIZA KORELACJI WYDATKÓW NA KULTURĘ Z BUDŻETU GMIN ORAZ WYKSZTAŁCENIA RADNYCH Potr Mchalsk Węzeł Centralny OŻK-SB 25.12.2013 rok ANALIZA KORELACJI WYDATKÓW NA KULTURĘ Z BUDŻETU GMIN ORAZ WYKSZTAŁCENIA RADNYCH Celem ponższej analzy jest odpowedź na pytane: czy wykształcene radnych

Bardziej szczegółowo

TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE

TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE POLITHNIKA RZSZOWSKA Katedra Podstaw lektronk Instrkcja Nr4 F 00/003 sem. letn TRANZYSTOR IPOLARNY HARAKTRYSTYKI STATYZN elem ćwczena jest pomar charakterystyk statycznych tranzystora bpolarnego npn lb

Bardziej szczegółowo

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego

Bardziej szczegółowo

KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE

KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE Adranna Mastalerz-Kodzs Unwersytet Ekonomczny w Katowcach KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE Wprowadzene W dzałalnośc nstytucj fnansowych, takch

Bardziej szczegółowo

WERYFIKACJA EKONOMETRYCZNA MODELU CAPM II RODZAJU DLA RÓŻNYCH HORYZONTÓW STÓP ZWROTU I PORTFELI RYNKOWYCH

WERYFIKACJA EKONOMETRYCZNA MODELU CAPM II RODZAJU DLA RÓŻNYCH HORYZONTÓW STÓP ZWROTU I PORTFELI RYNKOWYCH SCRIPTA COMENIANA LESNENSIA PWSZ m. J. A. Komeńskego w Leszne R o k 0 0 8, n r 6 TOMASZ ŚWIST* WERYFIKACJA EKONOMETRYCZNA MODELU CAPM II RODZAJU DLA RÓŻNYCH HORYZONTÓW STÓP ZWROTU I PORTFELI RYNKOWYCH

Bardziej szczegółowo

Zarządzenie Nr 3831/2013 Prezydenta Miasta Płocka z dnia 25 listopada 2013

Zarządzenie Nr 3831/2013 Prezydenta Miasta Płocka z dnia 25 listopada 2013 Zarządzene Nr 3831/2013 Prezydenta Masta Płocka z dna 25 lstopada 2013 w sprawe ustalena szczegółowych zasad kryterów oblczana wynków egzamnów zewnętrznych poszczególnych szkół oraz średnej tych wynków

Bardziej szczegółowo

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4 Zadane. Nech ( X, Y ),( X, Y ), K,( X, Y n n ) będą nezależnym zmennym losowym o tym samym rozkładze normalnym z następującym parametram: neznaną wartoścą oczekwaną EX = EY = m, warancją VarX = VarY =

Bardziej szczegółowo

Natalia Nehrebecka. Wykład 2

Natalia Nehrebecka. Wykład 2 Natala Nehrebecka Wykład . Model lnowy Postad modelu lnowego Zaps macerzowy modelu lnowego. Estymacja modelu Wartośd teoretyczna (dopasowana) Reszty 3. MNK przypadek jednej zmennej . Model lnowy Postad

Bardziej szczegółowo

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4. Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można

Bardziej szczegółowo

Natalia Nehrebecka. Zajęcia 3

Natalia Nehrebecka. Zajęcia 3 St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 3 1. Dobroć dopasowana równana regresj. Współczynnk determnacj R Dk Dekompozycja warancj zmennej zależnej ż Współczynnk determnacj R. Zmenne cągłe a

Bardziej szczegółowo

Ćwiczenie 10. Metody eksploracji danych

Ćwiczenie 10. Metody eksploracji danych Ćwczene 10. Metody eksploracj danych Grupowane (Clusterng) 1. Zadane grupowana Grupowane (ang. clusterng) oznacza grupowane rekordów, obserwacj lub przypadków w klasy podobnych obektów. Grupa (ang. cluster)

Bardziej szczegółowo

WYZNACZENIE CHARAKTERYSTYK DYNAMICZNYCH PRZETWORNIKÓW POMIAROWYCH

WYZNACZENIE CHARAKTERYSTYK DYNAMICZNYCH PRZETWORNIKÓW POMIAROWYCH Zakład Metrolog Systemów Pomarowych P o l t e c h n k a P o z n ańska ul. Jana Pawła II 6-965 POZNAŃ (budynek Centrum Mechatronk, Bomechank Nanonżyner) www.zmsp.mt.put.poznan.pl tel. +8 6 665 35 7 fa +8

Bardziej szczegółowo

ANALIZA STRAT MOCY CZYNNEJ WYBRANEGO FRAGMENTU SIECI ROZDZIELCZEJ ŚREDNIEGO NAPIĘCIA W ASPEKCIE WYBORU METODY ESTYMACJI OBCIĄŻEŃ SIECI

ANALIZA STRAT MOCY CZYNNEJ WYBRANEGO FRAGMENTU SIECI ROZDZIELCZEJ ŚREDNIEGO NAPIĘCIA W ASPEKCIE WYBORU METODY ESTYMACJI OBCIĄŻEŃ SIECI POZNAN UNIVERSITY OF TECHNOLOGY ACADEMIC JOURNALS No 94 Electrcal Engneerng 2018 DOI 10.21008/j.1897-0737.2018.94.0010 Wojcech BĄCHOREK *, Marusz BENESZ * Andrzej MAKUCH * ANALIZA STRAT MOCY CZYNNEJ WYBRANEGO

Bardziej szczegółowo

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwczena: BADANIE POPRAWNOŚCI OPISU STANU TERMICZNEGO POWIETRZA PRZEZ RÓWNANIE

Bardziej szczegółowo

POMIAR WSPÓŁCZYNNIKÓW ODBICIA I PRZEPUSZCZANIA

POMIAR WSPÓŁCZYNNIKÓW ODBICIA I PRZEPUSZCZANIA Ćwczene O5 POMIAR WSPÓŁCZYNNIKÓW ODBICIA I PRZEPUSZCZANIA 1. Cel zakres ćwczena Celem ćwczena jest poznane metod pomaru współczynnków odbca przepuszczana próbek płaskch 2. Ops stanowska laboratoryjnego

Bardziej szczegółowo

WADY W PROCEDURZE OBLICZANIA WSPÓŁCZYNNIKA PRZENIKANIA CIEPŁA DEFECT IN PROCEDURE OF CALCULATION OF COEFFICIENT OF PENETRATION OF WARMTH

WADY W PROCEDURZE OBLICZANIA WSPÓŁCZYNNIKA PRZENIKANIA CIEPŁA DEFECT IN PROCEDURE OF CALCULATION OF COEFFICIENT OF PENETRATION OF WARMTH ANDRZEJ DYLLA, KRZYSZTOF PAWŁOWSKI WADY W PROCEDURZE OBLICZANIA WSPÓŁCZYNNIKA PRZENIKANIA CIEPŁA DEFECT IN PROCEDURE OF CALCULATION OF COEFFICIENT OF PENETRATION OF WARMTH Streszczene Głównym celem nnejszego

Bardziej szczegółowo