8. Podejmowanie Decyzji przy Niepewności
|
|
- Sabina Piątkowska
- 7 lat temu
- Przeglądów:
Transkrypt
1 8. Podejmowanie Decyzji przy Niepewności Wcześniej, losowość (niepewność) nie była brana pod uwagę (poza przypadkiem ubezpieczenia życiowego). Na przykład, aby brać pod uwagę ryzyko że pożyczka nie zostanie spłacona, po prostu zastosowaliśmy większą stopę procentową. Potem wyznaczyliśmy rozwiązanie nie biorąc losowości bezpośrednio pod uwagę. 1 / 32
2 Podejmowanie Decyzji przy Niepewności Gdy rozwiązujemy problem deterministyczny, wiadomo że mamy zmaksymalizować zyski (lub zminimalizować koszty). Natomiast, gdy zyski (lub koszty) są losowe, wtedy można zastosować różne kryteria wyboru, które odzwierciadlają różne stosunki do ryzyka. 2 / 32
3 Podejmowanie Decyzji przy Niepewności 1. Kryterium Minimaks. 2. Kryterium Savage a (Żalu) 3. Kryterium Hurwicza. 4. Kryterium Laplace a. 5. Maksymalizacja oczekiwanej wypłaty. 3 / 32
4 Podejmowanie Decyzji przy Niepewności Zakładamy że decydent musi wybrać pomiędzy następuja cymi decyzjami: A. $40 na pewno. B. $100 gdy wynikiem rzutu monetą jest orzeł, inaczej $0 Więc wypłata decydenta zależy od wyniku eksperymentu losowego, tutaj od wyniku rzutu monetą. 4 / 32
5 Kryterium Minimaks Stosując kryterium minimaks, podejmujemy decyzję, która daje najlepszy wynik w wypadku gdy natura nam najbardziej przeszkadza. Więc jeśli minimalna wypłata przy decyzji D wynosi x min,d, wtedy osoba podejmuje decyzję, która maksymalizuje tę wypłatę. W tym wypadku, gdy osoba podujmuje decyzję A, wtedy ma zagwarantowaną (więc jednocześnie minimalną i maksymalną) wypłatę $40. Najgorsza z możliwych sytuacji przy decyzji B jest to że decydent nic nie dostaje (minimalna wypłata $0). 5 / 32
6 Kryterium Minimaks Więc, gdy stosuje kryterium minimaks, decydent powinien podjąć decyzję A. Uwaga: Gdy rozważamy koszty (a nie wypłaty), niech c max,d będzie maksymalnym kosztem z tych możliwych przy decyzji D. Stosując kryterium minmaks, decydent podejmuje decyzję, która minimalizuje koszt c max,d. Kryterium minimaks jest często bardzo konserwatywne (nieskłonne do ryzyka). Na przykład, nawet gdy wypłata przy decyzji A została zmieniona na $0,01, kryterium minimaks wciąż wskazuje na decyzję A. 6 / 32
7 Kryterium Savage a (Żalu) Jest to mniej konserwatywne podejście do podejmowania decyzji. Rozważając wypłaty, poziom żalu gdy decydent podejmuje decyzję D przy danym wyniku eksperymentu jest różnicą między maksymalną wypłatą przy tym wyniku a wypłatą uzyskaną przez decydenta. Na przykład, przy założeniu ze wynikiem rzutu jest reszka, gdy decydent podejmuje decyzję A (i więc dostaje $40), jest to najlepsza z możliwych wypłat (czyli poziom żalu w tym przypadku wynosi 0). W tym przypadku, gdy decydent podejmuje decyzję B, zamiast dostać $40 (najlepsza z możliwych wypłat w tym wypadku), decydent dostaje 0. Więc poziom żalu wynosi / 32
8 Kryterium Savage a (Żalu) Natomiast, gdy wynikiem rzutu jest orzeł, decyzja B daje najlepszą z możliwych wypłat (dostaje wypłatę $100). Więc w tym przypadku poziom żalu przy decyzji B wynosi 0. W tym przypadku, gdy decydent podejmuje decyzję A, zamiast dostać $100 (najlepsza z możliwych wypłat gdy wypada orzeł), decydent dostaje 40. Więc poziom żalu wynosi 60. Następujące 2 slajdy ilustrują kryteria minimaksowe oraz żalu. 8 / 32
9 Kryterium Minimaks Reszka Orzeł Min. A B Uwaga: Skoro rozważamy wypłaty, najgorsza sytuacja przy danej decyzji odpowiada najmniejszej wypłacie. 9 / 32
10 Kryterium Savage a (Żalu) Reszka Orzeł Żal (R) Żal (O) Maks. żal A B Uwaga: Macierz żalu wyznaczamy kolumnami. Każdy element jest równy różnicy (bezwględnej) między wypłatą (kosztem) w tej komórce a najlepszą wypłatą (najmniejszem kosztem) w tej kolumnie. Uwaga: Żal jest kosztem, więc najgorsza sytuacja przy danej decyzji odpowiada największemu żalowi. 10 / 32
11 Kryterium Savage a (Żalu) Przy kryterium Savage a decydent powinien podjąć decyzję, która minimalizuje maksymalny z możliwych poziomów żalu. Maksymalny poziom żalu przy decyzji A jest 60. Maksymalny poziom żalu przy decyzji B jest 40. Więc, stosując kryterium Savage a (żalu), decydent powinien podjąć decyzję B. Uwaga: Gdy rozważamy koszty, poziom żalu jest równy kosztom ponoszonym minus minimalne z możliwych kosztów przy danym wyniku eksperymentu. 11 / 32
12 Związek między Kryterium Minimaks a Kryterium Savage a Należy zauważyć że niezależnie od tego czy zadanie jest sformułowane w języku kosztów czy w języku wypłat, poziom żalu jest kosztem. Kryterium Savage a polega na minimalizacji żalu w najgorszej z możliwych sytuacji. Więc kryterium Savage a stosuje kryterium minimaks do poziomu żalu. 12 / 32
13 Kryterium Hurwicza Kryterium Hurwicza bierze pod uwagę zarówno najgorszą jak i najlepszą sytuację przy danej decyzji. Przypisano wagę α najlepszej z możliwych sytuacji, 0 < α < 1. Można zinterpretować α jako indeks optimizmu. Przypisano wagę α najgorszej z możliwych sytuacji 1 α. 13 / 32
14 Kryterium Hurwicza Rozważając wypłaty, decydent powinien zmaksymalizować wskaźnik Hurwicza przy decyzji podjętej, gdzie wskaźnik ten jest dany wzorem H D = αx max,d + (1 α)x min,d, x max,d i x min,d są odpowiednio maksymalną i minimalną z możliwych wypłat przy decyzji D. Przy decyzji A, decydent zawsze dostaje $40, więc x max,d = x min,d = 40. Przy decyzji B, x max,d = 100, x min,d = / 32
15 Kryterium Hurwicza Niech indeks optimizmu będzie α = 0.3. Wtedy H A = (1 0.3) 40 = 40 H B = (1 0.3) 0 = 30. Więc, decydent powinien podjąć decyzję A. 15 / 32
16 Kryterium Hurwicza Gdy rozważamy koszty, wskaźnik Hurwicza przy decyzji D wyraża się wzorem H D = αc min,d + (1 α)c max,d, gdzie c max,d i c min,d są maksymalne i miniminalne, odpowiednio, z możliwych kosztów przy decyzji D. Czyli współczynnik α zawsze odpowiada najlepszej sytuacji (maksymalnej wypłacie lub, jak tutaj, minimalnym kosztom). Rozważając koszty, decydent powinien zminimalizować wskaźnik Hurwicza przy podjętej decyzji. 16 / 32
17 Kryterium Hurwicza Gdy α = 0 (czyli decydent jest bardzo pesymistyczny), kryterium Hurwicza odpowiada kryterium minimaksowemu. Gdy α = 1 (czyli decydent jest bardzo optymistyczny), stosując kryterium Hurwicza decydent podejmuje decyzję, która daje maksymalną z wszystkich możliwych wypłat (odpowiednio, najmniejszy z wszystkich możliwych kosztów). W ten sposób, możemy modelować różne poziomy optimizmu. 17 / 32
18 Kryterium Laplace a Według kryterium Laplace a, gdy nie mamy informacji, należy przyjąć że wszystkie możliwe wyniki eksperymentu są jednakowo prawdopodobne. Jest to zasada niepełnej informacji. W tym wypadku, maksymalizujemy średnią z możliwych wypłat przy danej decyzji (jest to wypłata oczekiwana gdy wszystkie wyniki są jednakowo prawdopodobne). Uwaga: Jest to równoważna maksymalizacji sumy wypłat we wierszu. 18 / 32
19 Kryterium Laplace a W tym wypadku, wypłata oczekiwana przy decyzji B wynosi = 50. Wypłata zagwarantowana przy decyzji A wynosi 40. Więc, decydent powinien podjąć decyzję B. Gdy rozważamy koszty, stostując kryterium Laplace a, minimalizujemy średnie koszty ponoszone przy danej decyzji. Uwaga: Jest to równoważna minimalizacji sumy kosztów we wierszu. 19 / 32
20 Maksymalizacja Wypłaty Oczekiwanej Natomiast, w wielu wypadkach mamy wtstarczająco dużo informacji, aby oszacować prawdopodobieństwa różnych wyników. np. rzut monetą, rzut kostką, proawdopodobieństwo że deszcz pada w dniu listopadowym. W tym wypadku, opłaca się korzystać z tych informacji przy podjęciu decyzji. 20 / 32
21 Maksymalizacja Wypłaty Oczekiwanej Przy warunku że moneta jest symetryczna, wtedy kryterium Laplace a jest równoważne maksymalizacji wypłaty oczekiwanej (lub minimalizacji kosztów oczekiwanych). Ogólniej, zakładamy że prawdopodobieństwo tego iż wypadnie orzeł wynosi p. Przy decyzji B wypłata oczekiwana wynosi 100p + 0(1 p) = 100p. Więc decydent powinien podjąć decyzję B gdy 100p > 40, czyli p > / 32
22 Maksymalizacja Wypłaty Oczekiwanej Gdy zbiór możliwych wyników danego eksperymentu jest dyskretny (np. wynik rzutu kostką, rzut monetą, zwycięzca wyborów), wtedy można przedstawić wszystkie możliwe wypłaty (lub koszty) w postaci macierzy. Każdy wiersz odpowiada pewnej decyzji. Każda kolumna odpowiada pewnemu wynikowi eksperymentowi. 22 / 32
23 Przykład 8.1 Gdy wybieram się do pracy, mogę wybrać jeden z trzech środków transportu: A, B, C. Są trzy możliwe stany na drogach (dobry, średni, zły). Czas jazdy w zależności od środka transportu oraz stanu na drogach jest opisany następującą macierzą. Dobry Średni Zły A B C / 32
24 Przykład 8.1 Wyznaczyć decyzję, którą należy podjąć według 1. Kryterium minimaksowe. 2. Kryterium Savage a (żalu). 3. Kryterium Hurwicza przy indeksie optimizmu α = Kryterium Laplace a. 5. Minimalizacji kosztów oczekiwanych gdy prawdopodbieństwo zarówno złych jak i dobrych warunków wynosi 0,2. 24 / 32
25 Przykład / 32
26 Przykład / 32
27 Przykład / 32
28 Przykład / 32
29 Przykład / 32
30 Przykład / 32
31 Przykład / 32
32 Przykład / 32
Przedsiębiorczość i Podejmowanie Ryzyka. Zajęcia 2
Przedsiębiorczość i Podejmowanie Ryzyka Zajęcia 2 Reguły podejmowania decyzji w warunkach niepewności Wybór spośród A1, A2,, Am alternatyw (decyzji dopuszczalnych, opcji, działań), gdzie relatywna użyteczność
9 Funkcje Użyteczności
9 Funkcje Użyteczności Niech u(x) oznacza użyteczność wynikającą z posiadania x jednostek pewnego dobra. Z założenia, 0 jest punktem referencyjnym, czyli u(0) = 0. Należy to zinterpretować jako użyteczność
PODEJMOWANIE DECYZJI W WARUNKACH NIEPEŁNEJ INFORMACJI
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 5 PODEJMOWANIE DECYZJI W WARUNKACH NIEPEŁNEJ INFORMACJI 5.2. Ćwiczenia komputerowe
4. Ubezpieczenie Życiowe
4. Ubezpieczenie Życiowe Składka ubezpieczeniowa musi brać pod uwagę następujące czynniki: 1. Kwotę wypłaconą przy śmierci ubezpieczonego oraz jej wartość aktualną. 2. Rozkład czasu do śmierci ubezpieczonego
Gry z naturą 1. Przykład
Gry z naturą 1 Gry z naturą to gry dwuosobowe, w których przeciwnikiem jest natura. Przeciwnik ten nie jest zainteresowany wynikiem gry, a więc grę rozwiązuje się z punktu widzenia jednego z graczy. Optymalną
11. Gry Macierzowe - Strategie Czyste i Mieszane
11. Gry Macierzowe - Strategie Czyste i Mieszane W grze z doskonałą informacją, gracz nie powinien wybrać akcję w sposób losowy (o ile wypłaty z różnych decyzji nie są sobie równe). Z drugiej strony, gdy
4. Ubezpieczenie Życiowe
4. Ubezpieczenie Życiowe Składka ubezpieczeniowa musi brać pod uwagę następujące czynniki: 1. Kwotę wypłaconą przy śmierci ubezpieczonego oraz jej wartość aktualną. 2. Rozkład czasu do śmierci ubezpieczonego
14. Ekonomia Behawioralna - Wady Klasycznej Teorii Gier
14. Ekonomia Behawioralna - Wady Klasycznej Teorii Gier Klasyczna teoria gier zakłada że gracze tylko interesują się swoimi wypłatami, a nie wypłatami innych graczy. W dodatku, z założenia gracze maksymalizują
5.1 Stopa Inflacji - Dyskonto odpowiadające sile nabywczej
5.1 Stopa Inflacji - Dyskonto odpowiadające sile nabywczej Stopa inflacji, i, mierzy jak szybko ceny się zmieniają jako zmianę procentową w skali rocznej. Oblicza się ją za pomocą średniej ważonej cząstkowych
Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast
TEORIA GIER W NAUKACH SPOŁECZNYCH. Gry macierzowe, rybołówstwo na Jamajce, gry z Naturą
TEORIA GIER W NAUKACH SPOŁECZNYCH Gry macierzowe, rybołówstwo na Jamajce, gry z Naturą Przypomnienie Gry w postaci macierzowej i ekstensywnej Gry o sumie zerowej i gry o sumie niezerowej Kryterium dominacji
Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.
Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. 3.2. Niezależność zdarzeń Katarzyna Rybarczyk-Krzywdzińska Niezależność dwóch zdarzeń Intuicja Zdarzenia losowe
3.1 Analiza zysków i strat
3.1 Analiza zysków i strat Zakładamy że firma decyduje czy ma wdrożyć nowy produkt lub projekt. Firma musi rozważyć czy przyszłe zyski (dyskontowane w czasie) z tego projektu są większe niż koszty poniesione
13. Teoriogrowe Modele Konkurencji Gospodarczej
13. Teoriogrowe Modele Konkurencji Gospodarczej Najpierw, rozważamy model monopolu. Zakładamy że monopol wybiera ile ma produkować w danym okresie. Jednostkowy koszt produkcji wynosi k. Cena wynikająca
Elementy teorii gier. Badania operacyjne
2016-06-12 1 Elementy teorii gier Badania operacyjne Plan Przykład Definicja gry dwuosobowej o sumie zerowej Macierz gry Strategie zdominowane Mieszane rozszerzenie gry Strategie mieszane Rozwiązywanie
3.1 Analiza zysków i strat
3.1 Analiza zysków i strat Zakładamy że firma decyduje czy ma wdrożyć nowy produkt lub projekt. Firma musi rozważyć czy przyszłe zyski (dyskontowane w czasie) z tego projektu są większe niż koszty podniesione.
Problemy oceny alternatyw w warunkach niepewności
Problemy oceny alternatyw w warunkach niepewności Statystyczne metody oceny alternatyw Rozpatrzmy sytuacje, w których decyzja pociąga za sobą korzyść lub stratę Tę sytuację nazywać będziemy problemem decyzyjnym,
1 Wersja testu A 18 września 2014 r.
1 Wersja testu A 18 września 2014 r. 1. Zapisać w postaci przedziału lub uporządkowanej sumy przedziałów zbiór liczb rzeczywstych x, dla których podana implikacja jest prawdziwa. a) x 2 < 4 x < 3, (, +
Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie
Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w
Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe
Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i
Zdarzenia losowe i prawdopodobieństwo
Rozdział 1 Zdarzenia losowe i prawdopodobieństwo 1.1 Klasyfikacja zdarzeń Zdarzenie elementarne pojęcie aprioryczne, które nie może być zdefiniowane. Odpowiednik pojęcia punkt w geometrii. Zdarzenie elementarne
Zmienne losowe i ich rozkłady
Zmienne losowe i ich rozkłady 29 kwietnia 2019 Definicja: Zmienną losową nazywamy mierzalną funkcję X : (Ω, F, P) (R n, B(R n )). Definicja: Niech A będzie zbiorem borelowskim. Rozkładem zmiennej losowej
Ćwiczenia: Ukryte procesy Markowa lista 1 kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II
Ćwiczenia: Ukryte procesy Markowa lista kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II dr Jarosław Kotowicz Zadanie. Dany jest łańcuch Markowa, który może przyjmować wartości,,...,
Zarządzanie ryzykiem finansowym
Zarządzanie projektami Wrocław, 30 października 2013 Spis treści Motywacja Rachunek prawdopodobieństwa Koherentne miary ryzyka Przykłady zastosowań Podsumowanie Po co analizować ryzyko na rynkach finansowych?
Zarządzanie ryzykiem 3. Dorota Kuchta
Zarządzanie ryzykiem 3 Dorota Kuchta Pojęcie użyteczności paradoks petersburski Bernoulli paradoks petersburski: Rzucamy kostką aż do momentu, kiedy po raz pierwszy wypadnie orzeł W tym momencie gracz
Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 1
Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 1 Przygotowując wykład korzystam głównie z książki Jakubowski, Sztencel Wstęp do teorii prawdopodobieństwa. Jakubowski, Sztencel:
RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub
RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub 1. W grupie jest 15 kobiet i 18 mężczyzn. Losujemy jedną osobę
10. Wstęp do Teorii Gier
10. Wstęp do Teorii Gier Definicja Gry Matematycznej Gra matematyczna spełnia następujące warunki: a) Jest co najmniej dwóch racjonalnych graczy. b) Zbiór możliwych dezycji każdego gracza zawiera co najmniej
STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA
STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;
Wyznaczanie strategii w grach
Wyznaczanie strategii w grach Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Definicja gry Teoria gier i konstruowane na jej podstawie programy stanowią jeden z głównych
Modelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony.
GRY (część 1) Zastosowanie: Modelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony. Najbardziej znane modele: - wybór strategii marketingowych przez konkurujące ze sobą firmy
Ćwiczenia z metodyki nauczania rachunku prawdopodobieństwa
Ćwiczenia z metodyki nauczania rachunku prawdopodobieństwa 25 marca 209 Zadanie. W urnie jest b kul białych i c kul czarnych. Losujemy n kul bez zwracania. Jakie jest prawdopodobieństwo, że pierwsza kula
Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) =
Zestaw : Zmienne losowe. Które z poniższych funkcji są dystrybuantami? Odpowiedź uzasadnij. Wskazówka: naszkicuj wykres. 0, x 0,, x 0, F (x) = x, F (x) = x, 0 x
P (A B) P (B) = 1/4 1/2 = 1 2. Zakładamy, że wszystkie układy dwójki dzieci: cc, cd, dc, dd są jednakowo prawdopodobne.
Wykład Prawdopodobieństwo warunkowe Dwukrotny rzut symetryczną monetą Ω {OO, OR, RO, RR}. Zdarzenia: Awypadną dwa orły, Bw pierwszym rzucie orzeł. P (A) 1 4, 1. Jeżeli już wykonaliśmy pierwszy rzut i wiemy,
Badania operacyjne i teorie optymalizacji
Badania operacyjne i teorie optymalizacji dr Zbigniew Karwacki Wydział Ekonomiczno-Socjologiczny Katedra Badań Operacyjnych Centrum Informatyczno-Ekonometryczne pok. E-137 Środa, 16.30-18.00 zakarwacki@uni.lodz.pl
Symulacyjne metody analizy ryzyka inwestycyjnego wybrane aspekty. Grzegorz Szwałek Katedra Matematyki Stosowanej Uniwersytet Ekonomiczny w Poznaniu
Symulacyjne metody analizy ryzyka inwestycyjnego wybrane aspekty Grzegorz Szwałek Katedra Matematyki Stosowanej Uniwersytet Ekonomiczny w Poznaniu Plan prezentacji 1. Opis metody wyceny opcji rzeczywistej
3. Macierze i Układy Równań Liniowych
3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x
Czym jest użyteczność?
Czym jest użyteczność? W teorii gier: Ilość korzyści (czy też dobrobytu ), którą gracz osiąga dla danego wyniku gry. W ekonomii: Zdolność dobra do zaspokajania potrzeb. Określa subiektywną przyjemność,
Stopa Inflacji. W oparciu o zbiór składający się z n towarów, stopa inflacji wyraża się wzorem. n 100w k p k. , p k
2.1 Stopa Inflacji Stopa inflacji, i, mierzy jak szybko ceny się zmieniają jako zmianę procentową w skali rocznej. Oblicza się ją za pomocą średniej ważonej cząstkowych stóp inflacji, gdzie cząstkowa stopa
= A. A - liczba elementów zbioru A. Lucjan Kowalski
Lucjan Kowalski ZADANIA, PROBLEMY I PARADOKSY W PROBABILISTYCE Przypomnienie. Ω - zbiór zdarzeń elementarnych. A zdarzenie (podzbiór Ω). A - liczba elementów zbioru A Jeśli zdarzeń elementarnych jest skończenie
= 10 9 = Ile jest wszystkich dwucyfrowych liczb naturalnych podzielnych przez 3? A. 12 B. 24 C. 29 D. 30. Sposób I = 30.
Kombinatoryka i rachunek prawdopodobieństwa Zadania zamknięte (0 1 pkt) 1. Flagę, taką jak pokazano na rysunku, należy zszyć z trzech jednakowej szerokości pasów kolorowej tkaniny. Oba pasy zewnętrzne
Rachunek prawdopodobieństwa dla informatyków
Rachunek prawdopodobieństwa dla informatyków Adam Roman Instytut Informatyki UJ Wykład 1 rys historyczny zdarzenia i ich prawdopodobieństwa aksjomaty i reguły prawdopodobieństwa prawdopodobieństwo warunkowe
Ubezpieczenia majątkowe
Funkcje użyteczności a składki Uniwersytet Przyrodniczy we Wrocławiu Instytut Nauk Ekonomicznych i Społecznych 2016/2017 Funkcja użyteczności Niech ω wielkość majątku decydenta wyrażona w j.p., u (ω) stopień
-Teoria gier zajmuje się logiczną analizą sytuacji konfliktu i kooperacji
1 -Teoria gier zajmuje się logiczną analizą sytuacji konfliktu i kooperacji 2 Teoria gier bada,w jaki sposób gracze powinnirozgrywać grę, a każdy dąży do takiego wyniku gry, który daje mu jak największą
Statystyka podstawowe wzory i definicje
1 Statystyka podstawowe wzory i definicje Średnia arytmetyczna to suma wszystkich liczb (a 1, a 2,, a n) podzielona przez ich ilość (n) Przykład 1 Dany jest zbiór liczb {6, 8, 11, 2, 5, 3}. Oblicz średnią
Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski
Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW STATYSTYKA to nauka, której przedmiotem
DODATKOWA PULA ZADAŃ DO EGZAMINU. Rozważmy ciąg zdefiniowany tak: s 0 = a. s n+1 = 2s n +b (dla n=0,1,2 ) Pokaż, że s n = 2 n a +(2 n =1)b
DODATKOWA PULA ZADAŃ DO EGZAMINU Rozważmy ciąg zdefiniowany tak: s 0 = a s n+1 = 2s n +b (dla n=0,1,2 ) Pokaż, że s n = 2 n a +(2 n =1)b Udowodnij, że liczba postaci 5 n+1 +2 3 n +1 jest podzielna przez
6. Teoria Podaży Koszty stałe i zmienne
6. Teoria Podaży - 6.1 Koszty stałe i zmienne Koszty poniesione przez firmę zwykle są podzielone na dwie kategorie. 1. Koszty stałe - są niezależne od poziomu produkcji, e.g. stałe koszty energetyczne
2.1 Wartość Aktualna Renty Stałej
2.1 Wartość Aktualna Renty Stałej Zakładamy że dana osoba ma dostać kwotę o stałej wartości nominalnej x przez N okresów (zwykle miesięcznie lub rocznie), np. stała renta/emerytura. Zakładamy że pierwsza
Teoria Gier - wojna, rybołówstwo i sprawiedliwość w polityce.
Liceum Ogólnokształcące nr XIV we Wrocławiu 5 maja 2009 1 2 Podobieństwa i różnice do gier o sumie zerowej Równowaga Nasha I co teraz zrobimy? 3 Idee 1 Grać będą dwie osoby. U nas nazywają się: pan Wiersz
Dane są następujące reguły gry losowej: losujemy jedną kartę z pełnej talii (bez jokerów) i sprawdzamy wynik:
Elementy teorii gier Dane są następujące reguły gry losowej: losujemy jedną kartę z pełnej talii (bez jokerów) i sprawdzamy wynik: wylosowanie karty w kolorze czerwonym (kier lub karo) oznacza wygraną
Statystyka Matematyczna Anna Janicka
Statystyka Matematyczna Anna Janicka wykład IX, 25.04.2016 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Plan na dzisiaj 1. Hipoteza statystyczna 2. Test statystyczny 3. Błędy I-go i II-go rodzaju 4. Poziom istotności,
Akademia Młodego Ekonomisty
Akademia Młodego Ekonomisty Ryzyko w procesie zarządzania dr Mirosław Wójciak Uniwersytet Ekonomiczny w Katowicach 27 lutego 2012 1 Gdzie spotykamy się z ryzykiem? Praktycznie w każdej dziedzinie życia.
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona
Materiał dydaktyczny dla nauczycieli przedmiotów ekonomicznych. Mikroekonomia. w zadaniach. Gry strategiczne. mgr Piotr Urbaniak
Materiał dydaktyczny dla nauczycieli przedmiotów ekonomicznych Mikroekonomia w zadaniach Gry strategiczne mgr Piotr Urbaniak Teoria gier Dział matematyki zajmujący się badaniem optymalnego zachowania w
Matematyka Ekonomiczna
Matematyka Ekonomiczna Dr. hab. David Ramsey e-mail: david.ramsey@pwr.edu.pl strona domowa: www.ioz.pwr.edu.pl/pracownicy/ramsey Pokój 5.16, B-4 Godziny konsultacji: Wtorek 11-13, Czwartek 11-13 28 września
Zmienna losowa (wygrana w pojedynczej grze): (1, 0.5), ( 1, 0.5)
Przykład 0. Gra polega na jednokrotnym rzucie symetryczną monetą, przy czym wygrywamy 1 jeżeli wypadnie orzeł oraz przegrywamy 1 jeżeli wypadnie reszka. Nasz początkowy kapitał wynosi 5. Jakie jest prawdopodobieństwo,
Programowanie liniowe
Badania operacyjne Problem Model matematyczny Metoda rozwiązania Znaleźć optymalny program produkcji. Zmaksymalizować 1 +3 2 2 3 (1) Przy ograniczeniach 3 1 2 +2 3 7 (2) 2 1 +4 2 12 (3) 4 1 +3 2 +8 3 10
Podstawy nauk przyrodniczych Matematyka
Podstawy nauk przyrodniczych Matematyka Elementy rachunku prawdopodobieństwa dr inż. Małgorzata Szeląg Zakład Genetyki Molekularnej Człowieka tel. 61 829 59 04 malgorzata.szelag@amu.edu.pl Pokój 1.118
UBEZPIECZENIA NA ŻYCIE
UBEZPIECZENIA NA ŻYCIE M BIENIEK Ubezpieczenie na życie jest to kontrakt pomiędzy ubezpieczycielem a ubezpieczonym gwarantujący, że ubezpieczyciel w zamian za opłacanie składek, wypłaci z góry ustaloną
O regularyzacji rozwiązań niejednoznacznych w grze przeciwko naturze
Zaprezentowano kilka znanych z literatury kryteriów wyboru strategii w grach przeciwko naturze i wykazano użyteczność lub nieużyteczność określonych regularyzacji. regularyzacja, kryteria wyboru strategii,
Zmienna losowa. Rozkład skokowy
Temat: Zmienna losowa. Rozkład skokowy Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga * - materiał nadobowiązkowy Anna Rajfura, Matematyka i statystyka matematyczna na kierunku Rolnictwo SGGW 1 Zagadnienia
REZERWY UBEZPIECZEŃ I RENT ŻYCIOWYCH
REZERWY UBEZPIECZEŃ I RENT ŻYCIOWYCH M. BIENIEK Przypomnijmy, że dla dowolnego wektora przepływów c rezerwę w chwili k względem funkcji dyskonta v zdefiniowaliśmy jako k(c; v) = Val k ( k c; v), k = 0,
Deska Galtona. Adam Osękowski. Instytut Matematyki, Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski
a schemat Bernoulliego Instytut Matematyki, Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski XV Festiwal Nauki, 21 września 2011r. a schemat Bernoulliego Schemat Bernoulliego B(n, p)
Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie
Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w
Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa
Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa 2.1. σ ciało (algebra) zdarzeń Katarzyna Rybarczyk-Krzywdzińska losowe Zdarzenie losowe to pewien podzbiór przestrzeni zdarzeń
Matematyka ubezpieczeń majątkowych r.
Zadanie. W pewnej populacji kierowców każdego jej członka charakteryzują trzy zmienne: K liczba przejeżdżanych kilometrów (w tysiącach rocznie) NP liczba szkód w ciągu roku, w których kierowca jest stroną
LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.
Komisja Egzaminacyjna dla Aktuariuszy LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Rachunek prawdopodobieństwa
Rachunek prawdopodobieństwa Sebastian Rymarczyk srymarczyk@afm.edu.pl Tematyka zajęć 1. Elementy kombinatoryki. 2. Definicje prawdopodobieństwa. 3. Własności prawdopodobieństwa. 4. Zmienne losowe, parametry
Matematyka podstawowa X. Rachunek prawdopodobieństwa
Matematyka podstawowa X Rachunek prawdopodobieństwa Zadania wprowadzające: 1. Rzucasz trzy razy monetą a) Napisz zbiór wszystkich wyników tego doświadczenia losowego. Ile ich jest? Wyrzuciłeś większą liczbę
Prawdopodobieństwo geometryczne
Prawdopodobieństwo geometryczne Krzysztof Jasiński Wydział Matematyki i Informatyki UMK, Toruń V Lieceum Ogólnokształące im. Jana Pawała II w Toruniu 13.03.2014 Krzysztof Jasiński (WMiI UMK) Prawdopodobieństwo
Postawy wobec ryzyka
Postawy wobec ryzyka Wskaźnik Sharpe a przykład zintegrowanej miary rentowności i ryzyka Konstrukcja wskaźnika odwołuje się do klasycznej teorii portfelowej Markowitza, której elementem jest mapa ryzyko
Systemy Wspomagania Decyzji
Teoria decyzji Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności February 5, 2016 1 Definicje 2 Normatywna teoria decyzji 3 Opisowa teoria decyzji 4 Naturalistyczny model podejmowania decyzji
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona
Metody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2
Metody teorii gier ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier Cel: Wyprowadzenie oszacowania dolnego na oczekiwany czas działania dowolnego algorytmu losowego dla danego problemu.
p k (1 p) n k. k c. dokładnie 10 razy została wylosowana kula amarantowa, ale nie za pierwszym ani drugim razem;
05DRAP - Niezależność zdarzeń, schemat Bernoulliego Definicja.. Zdarzenia A i B nazywamy niezależnymi, jeżeli zachodzi równość P(A B) = P(A) P(B). Definicja. 2. Zdarzenia A,..., A n nazywamy niezależnymi
Zadanie niezbilansowane. Gliwice 1
Zadanie niezbilansowane 1 Zadanie niezbilansowane Przykład 11 5 3 8 2 A 4 6 4 2 B 9 2 3 11 C D E F G dostawcy odbiorcy DOSTAWCY: A: 15 B: 2 C: 6 ODBIORCY: D: 8 E: 3 F: 4 G: 5 2 Zadanie niezbilansowane
Rachunek prawdopodobieństwa i statystyka
Rachunek prawdopodobieństwa i statystyka Przestrzeń probabilistyczna Niech Ω będzie dowolnym zbiorem, zwanym przestrzenią zdarzeń elementarnych. Elementy ω tej przestrzeni nazywamy zdarzeniami elementarnymi.
= µ. Niech ponadto. M( s) oznacza funkcję tworzącą momenty. zmiennej T( x), dla pewnego wieku x, w populacji A. Wówczas e x wyraża się wzorem: 1
1. W populacji B natężenie wymierania µ ( B ) x jest większe od natężenia wymierania ( A) µ x w populacji A, jednostajnie o µ > 0, dla każdego wieku x tzn. ( B) ( A) µ µ x = µ. Niech ponadto x M( s) oznacza
BADANIA OPERACYJNE PROGRAMOWANIE WIELOKRYTERIALNE
DR ADAM SOJDA Czasem istnieje wiele kryteriów oceny. Kupno samochodu: cena prędkość maksymalna spalanie kolor typ nadwozia bagażnik najniższa najwyższa najniższe {czarny*, czerwony, } {sedan, coupe, SUV,
Prawdopodobieństwo geometryczne
Prawdopodobieństwo geometryczne Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Uniwersyteckie Koło Matematyczne 23 kwietnia 2009 r. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
c. dokładnie 10 razy została wylosowana kula antracytowa, ale nie za pierwszym ani drugim razem;
05DRAP - Niezależność zdarzeń, schemat Bernoulliego A Zadania na ćwiczenia Zadanie A.. Niech Ω = {ω, ω 2, ω, ω, ω 5 } i P({ω }) = 8, P({ω 2}) = P({ω }) = P({ω }) = 6 oraz P({ω 5}) = 5 6. Niech A = {ω,
Halina Piotrowska. Rozwiązywanie problemów decyzyjnych w nauczaniu fizyki
Halina Piotrowska Rozwiązywanie problemów decyzyjnych w nauczaniu fizyki 1 Problemy decyzyjne pojawiają się podczas czynności wyboru działania. Rozwiązywanie problemów decyzyjnych składa się z całego szeregu
51. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń.
Matematyka lekcja 5 5. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń. I. rzypomnij sobie:. Jak rysujemy drzewo stochastyczne i przy jego pomocy obliczamy prawdopodobieństwo
Optymalizacja wielokryterialna
Optymalizacja wielokryterialna Optymalizacja wielokryterialna Dział badań operacyjnych zajmujący się wyznaczaniem optymalnej decyzji w przypadku, gdy występuje więcej niż jedno kryterium Problem wielokryterialny
WYKŁAD 3. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki
WYKŁAD 3 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Schemmat Bernouliego Rzucamy 10 razy moneta, próba Bernouliego jest pojedynczy
Rzucamy dwa razy sprawiedliwą, sześcienną kostką do gry. Oblicz prawdopodobieństwo otrzymania:
Statystyka Ubezpieczeniowa Część 1. Rachunek prawdopodobieństwa: - prawdopodobieństwo klasyczne - zdarzenia niezależne - prawdopodobieństwo warunkowe - prawdopodobieństwo całkowite - wzór Bayesa Schemat
Instytut Matematyczny Uniwersytet Wrocławski. Zakres egzaminu magisterskiego. Wybrane rozdziały anazlizy i topologii 1 i 2
Instytut Matematyczny Uniwersytet Wrocławski Zakres egzaminu magisterskiego Wybrane rozdziały anazlizy i topologii 1 i 2 Pojęcia, fakty: Definicje i pojęcia: metryka, iloczyn skalarny, norma supremum,
D. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO
D. Miszczyńska, M.Miszczyński KBO UŁ GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO Gra w sensie niżej przedstawionym to zasady którymi kierują się decydenci. Zakładamy, że rezultatem gry jest wypłata,
Wielokryteriowa optymalizacja liniowa cz.2
Wielokryteriowa optymalizacja liniowa cz.2 Metody poszukiwania końcowych rozwiązań sprawnych: 1. Metoda satysfakcjonujących poziomów kryteriów dokonuje się wyboru jednego z kryteriów zadania wielokryterialnego
METODY ESTYMACJI PUNKTOWEJ. nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie
METODY ESTYMACJI PUNKTOWEJ X 1,..., X n - próbka z rozkładu P θ, θ Θ, θ jest nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie P θ. Definicja. Estymatorem
P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A)
Wykład 3 Niezależność zdarzeń, schemat Bernoulliego Kiedy dwa zdarzenia są niezależne? Gdy wiedza o tym, czy B zaszło, czy nie, NIE MA WPŁYWU na oszacowanie prawdopodobieństwa zdarzenia A: P (A B) = P
Teoria gier. prof. UŚ dr hab. Mariusz Boryczka. Wykład 4 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego
Instytut Informatyki Uniwersytetu Śląskiego Wykład 4 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.
Rachunek prawdopodobieństwa- wykład 2
Rachunek prawdopodobieństwa- wykład 2 Pojęcie dyskretnej przestrzeni probabilistycznej i określenie prawdopodobieństwa w tej przestrzeni dr Marcin Ziółkowski Instytut Matematyki i Informatyki Uniwersytet
Uczeń: -podaje przykłady ciągów liczbowych skończonych i nieskończonych oraz rysuje wykresy ciągów
Wymagania edukacyjne PRZEDMIOT: Matematyka KLASA: III Th ZAKRES: zakres podstawowy Poziom wymagań Lp. Dział programu Konieczny-K Podstawowy-P Rozszerzający-R Dopełniający-D Uczeń: 1. Ciągi liczbowe. -zna
OGÓLNE RENTY ŻYCIOWE
OGÓLNE RENTY ŻYCIOWE M. BIENIEK Rentą życiową nazywamy kontrakt między ubezpieczycielem a ubezpieczonym, w którym ubezpieczony w zamian za określoną opłatę, zwaną składką, otrzymuje ciąg z góry określonych
Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra
Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele
Pułapki podejmowania decyzji inwestycyjnych
Pułapki podejmowania decyzji inwestycyjnych Decyzje inwestycyjne na Giełdzie Akademia Młodego Ekonomisty program edukacji ekonomicznej gimnazjalistów 17 lutego 2009 r. Żeby zarobić? Żeby nie stracić? Po
{( ) ( ) ( ) ( )( ) ( )( ) ( RRR)
.. KLASYCZNA DEFINICJA PRAWDOPODOBIEŃSTWA Klasyczna definicja prawdopodobieństwa JeŜeli jest skończonym zbiorem zdarzeń elementarnych jednakowo prawdopodobnych i A, to liczbę A nazywamy prawdopodobieństwem