ELEMENTY TEORII GIER
|
|
- Ignacy Urbaniak
- 5 lat temu
- Przeglądów:
Transkrypt
1 ELEMENTY TEORII GIER Śwt s otcząc pełe est koflktów rwlzc. Moż weć lcze przkłd stuc deczch, ędz : wo, kpe poltcze, kpe reklowe rketgowe rwlzuącch ze sobą fr wele ch, w którch do cze z koflkte ędz ch uczestk. Teorę ger oprcowo wcześe ż teorę podeow decz stow o obece tegrlą e część. Przedote bdń teor ger są stuce decze, w którch kżd z ezleżch uczestków us podeowć decze. Zwkle poędz decdet stee koflkt teresów. Nczęśce stosow krteru w rozwązwu probleów tego rodzu est krteru ksowe. Słowo gr ozcz w lterturze, zrówo zbór uów reguł rozgrw gr k poedczą rozgrwkę (prtę), t. szczególą relzcę tch reguł dotczącą ede stuc.
2 Zkłd, że po zkończeu gr G kżd z grcz P,,,...,, otrzue (bądź trc) pewą lość peędz v zwą wgrą (przegrą) grcz P. Cele kżdego z grcz est kslzc ego wgre. W brdze zch grch, k p. poker, cłkowt lość peędz strco przez przegrwącch grcz est rów cłkowte lośc peędz wgrch przez wgrwącch. Przue zte, że zchodz wruek v Wrtośc wgrch v ogą bć dodte, uee bądź rówe zero, prz cz v > ozcz wgrą grcz P, v < - ego przegrą, v - wk resow z puktu wdze grcz P. Gr, dl którch zchodz powższ wruek zw gr o sue wpłt zero (gr zerow).
3 Gr klsfkue sę róweż ze względu lość grcz ożlwch ruchów. Szch są grą dwuosobową o skończoe lośc ożlwch ruchów, poker grą weloosobową róweż o skończoe lośc ruchów (oczwśce, eżel stosue sę odpowede reguł przerw gr). Poedek, w któr wlcząc ogą strzelć w dowole chwl dego przedzłu czsu est grą dwuosobową o eskończoe lośc ożlwch ruchów. Gr oż chrkterzowć ko zespołowe (kooperce) ezespołowe. W grch zespołowch grcze ogą tworzć kolce dzłć ko grup, w grch ezespołowch kżd z grcz zteresow est tlko dwdulą wgrą. Nwcześe zlezoo rozwąz dl ger dwuosobowch o sue wpłt zero.
4 Gr dwuosobowe o sue wpłt zero - kżdą ze stro zteresowch grą zw grcze, - dokłde spreczow przed rozpoczęce gr reguł decz, podstwe które grcz podeue deczę, określo dl kżde decz przecwk zw est strtegą, - strteg esz to strteg polegąc t, że grcz postw w pewe ustloe proporc zstosowć wszstke lub klk z dostępch u sposobów dzł. Jeżel grcz decdue sę ede tlko określo sposób dzł ów, że stosue strtegę czstą, - ów, że grcze rozgrwą prtę gr wówczs, gd kżd z ch podął deczę o sposobe dzł, - po kżde rozegre prt ede z grcz wpłc drugeu kwotę wkącą z obrch przez ch sposobów dzł, - wrtość gr to śred kwot prtę, którą wgrłb w dług okrese czsu ede z grcz, gdb ob stosowl swoe lepsze strtege,
5 - cerz wpłt to tblc ukzuąc w werszch kwot otrze przez grcz P (sposob dzł grcz P wróżoe są w boczku tblc) dl kżdego przętego przez ego sposobu dzł orz dl kżdego sposobu dzł grcz P (sposob dzł grcz P wróżoe są w główce tblc). Wpłt pokze są tlko dl grcz P - ze względu zerow chrkter gr wpłt dl grcz P są lczb przecw. Prz de tblc wpłt grcz P kslzue wgrą, zś grcz P lzue wgrą. Defc Mów, że określo est gr cerzow, eśl d est cerz A o wrch, które eleet są dowol lczb rzeczwst. Mcerz A zw cerzą wpłt. Eleet est suą wpłcą grczow P przez grcz P, eśl P wber strtegę -tą grcz P wber strtegę -tą.
6 Defc Przez strtegę eszą grcz P rozue wektor X T [,,..., ] lczb rzeczwstch spełącch wruek: dl,,..., orz.... Przez strtegę eszą grcz P rozue wektor Y T [,,..., ] lczb rzeczwstch spełącch wruek: dl,,..., orz.... Eleet przedstwą odpowedo częstośc/prwdopodobeństw z k grcz P wber -t sposób postępow P -t sposób postępow.
7 Defc Dl kżdego,,...,, strtegę eszą, które -t współrzęd est rów pozostłe współrzęde są rówe zero zw sę -tą strtegą czstą grcz P. Ozcz ą przez. Podobe, -t strteg czst grcz P, ozcz przez, est eszą strtegą grcz P o -te współrzęde rówe pozostłch współrzędch rówch. Defc Fukcę wpłt dl grcz P, t. wrtość oczekwą ego wgre określ ko: E( ) E(X,Y) X Y X T AY E( Y X ) gdze X Y są dowol strteg esz grcz P P, są prwdopodobeństw wboru -te strteg czste przez grcz P orz -te strteg czste przez grcz P.,
8 E(X Y) ozcz wrukową oczekwą wpłtę dl grcz P, eżel stosue o strtegę eszą X pod wruke, że grcz P stosue strtegę czstą. E(Y X) ozcz wrukową oczekwą wpłtę dl grcz P, eżel stosue o strtegę eszą Y pod wruke, że grcz P stosue strtegę czstą. Defc 5 Rozwąze gr cerzowe est pr strteg eszch * * * * * * * * X,,...,, Y,,..., [ ] [ ] lczb rzeczwst v tk, że zchodzą stępuące wruk:,,..., E( X,,..., * E( Y * Y ) v X ) v. Strtege X * Y* zw strteg optl, lczbę v wrtoścą gr.
9 Defc 6 Mów, że l-t strteg czst grcz P, reprezetow przez l-t wersz cerz A, est zdoow przez -tą strtegę czstą, eśl orz < l l -t strteg czst os wówczs zwę strteg douące. Mów, że p-t strteg czst grcz P est zdoow przez -tą strtegę czstą, eśl p orz p >. -t strteg czst, reprezetow przez -tą koluę cerz A, os wówczs zwę strteg douące.
10 Kżd grcz powe grć rcole, co ozcz tut, że powe lzowć swoe ksle strt. Krteru, zwe krteru ksow, est stdrdow krteru propoow w teor ger dl wboru strteg optle dl ger koflktowch. Prz de tblc wpłt: grcz P wber strtegę, dl które esz z wpłt est ksl () - est to tzw. dol wrtość gr, ozcz przez v, grcz P wber strtegę, dl które wększ ze strt est esz () - est to tzw. gór wrtość gr, ozcz przez v. W przpdku, gd dol gór wrtość gr są sobe rówe ów, że gr posd pukt sodłow, któr odpowd czst strtego ksow obu grcz. Ne wszstke gr będą posdć pukt sodłow. W tkch przpdkch dopuszcz wstępowe strteg eszch.
11 Przkłd Rozwż grę o stępuące cerz wpłt: P P 5 Wrtość dol gr, v {,, -} odpowd druge strteg czste grcz P. Wrtość gór gr, v {5,, } odpowd druge strteg czste grcz P. T T Zte pr strteg czstch X [,, ], Y [,, ] stow pukt sodłow powższe gr wrtość gr v.
12 Przkłd Rozwż grę o stępuące cerz wpłt: P P v {,}, v {,} Powższ gr e puktu sodłowego. Twerdzee o kse Jeżel dopuszcz wstępowe strteg eszch, to stee pr optlch strteg eszch zgodch z krteru ksow tk, że v v v, tz. ( X Y) ( X Y) E, E, v X Y Y X Rozwąze gr est stble, co ozcz, że żde z grcz e oże zwększć swoe wgre (lub zeszć strt) poprzez edostroą zę swoe strteg.
13 Kocepc strteg eszch est zrozuł w przpdku ger powtrzch; w przpdku ger rozgrwch edokrote wg dodtkowe terpretc. Ozcz o wbór ede czste strteg wbre losowo według dego rozkłdu prwdopodobeństw - wrtośc,..., trktowe są ko prwdopodobeństw wboru -te strteg. Oczwst est tkże terpretc rozwąz optlego gr ko pr strteg eszch w przpdkch, gd grcze e uszą dokowć wboru ede strteg spośród ltertw, le ogą stosowć wszstke z róż tężee (p. w przpdku ger rketgowch). Wrtośc,..., oż wówczs trktowć ko optle procetowe przdzł środków przezczoch wprowdzee - te strteg.
14 Twerdzee o lczbe stosowch strteg Nech ( ) ozcz lczbę strteg, ką użwć będze postępuąc optle grcz P (grcz P ). Kżd z grcz postępuąc optle użwć będze e węce strteg ż wos esz z lczb lub, t. { }, orz { },.
15 Rozwż grę, odpowdąc które cerz wpłt A c powstł przez dode do wszstkch eleetów cerz wpłt A stłe welkośc c. Pokże, że strtege optle są dl owe gr tke se k w przpdku cerz wpłt A, wrtość owe gr est rów vc. Fukc wpłt E dl gr orgle: E (X,Y)X T AY orz fukc wpłt E dl gr zodfkowe: E (X,Y)X T A c Y ( c) Ze względu otrzue: E (X,Y) c c E (X,Y) c v c. Dode stłe wrtośc c do cerz wpłt e wpłw wbór optle strteg, ze sę ede wrtość gr o c..
16 Rówowżość gr cerzowe zgde progrow lowego Rozwż dowolą grę cerzową o sue wpłt zero z cerzą wpłt A[ ]. Z defc we, że strtegą optlą dl grcz P est strteg esz X T [,,..., ], dl które orz dl wszstkch strteg czstch,..., grcz P speło est wruek co odpowd ukłdow erówośc postc tz. v dl,,..., ,..., v, v v v Podobe, dl grcz P leż zleźć tk wektor Y T [,,..., ] tką lczbę v, które dl kżde strteg czste grcz P spełą stępuąc ukłd relc:
17 ... v... v v...,..., Prwe stro ogrczeń są eze (est to ez wrtość gr v), le ogą bć zwsze sprowdzoe do wrtośc dodtch z wkorzste włsośc wkze w poprzed prgrfe, owce, eżel w cerz A wstępuą eleet uee, poprzez dode do wszstkch eleetów odpowede wrtośc c tworz cerz zodfkową A c, któr będze ł wszstke eleet dodte. Może zte prząć, że wrtość gr v est wększ od zer. Pozostą edk stępuące trudośc: o wrtość gr v est ez o zde e fukc krteru.
18 Pokże dw sposob rozwąz probleu. Perwsz sposób poleg dokou z zech według stępuącego wzoru: Zuwż, że zchodzą stępuące relce: v v v v orz /v, /v. Zwróć uwgę, że po ze zech ksl wrtość gr v osąg est wówczs, gd est l, lzc zś v odpowd edoczes kslzc.
19 Otrzue setrcze zgde dule: Zgdee perwote f()... prz ogrczech ,..., Zgdee dule g( )... prz ogrczech ,...,
20 Zte kżd gr o sue wpłt zero posd rozwąze optle orz v. Wrtość gr zdze ko odwrotość optle wrtośc fukc krteru zgde perwotego bądź dulego. Częstośc stosow strteg otrz ożąc optle wrtośc zech przez wrtość gr (bądź dzeląc przez optlą wrtość fukc krteru).
21 Przkłd : Dl gr skostruowo stępuącą cerz wpłt:. v v v v A Poewż wrtość gr e est dodt do cerz A dode stłą c. Mcerz zodfkowe gr A c przue postć:. 5 6 v v c A Wrtość zodfkowe gr est pewo dodt wększ od wrtośc gr orgle o. Kostruue prę dulch zdń progrow lowego dl zodfkowe gr:
22 Rozwąz optle obu zdń są stępuące X o Y o 7 7 o f orz wrtość fukc krteru 7. Ntost rozwąze zodfkowe gr uzsk dzeląc eleet wektorów X o Y o przez f o : X / Y /. Wrtość zodfkowe gr est rów odwrotośc f o wos: v c. Optle częstośc stosow strteg dl gr orgle są tke se k dl gr zodfkowe wrtość gr 7 orgle wos v. 7
23 Drug etod sprowdz gr do zgde progrow lowego poleg t, że w ukłdch erówośc wrtość gr v ozcz odpowedo przez przeos lewą stroę. Poewż zee te ozczą ezą wrtość gr, ogą tworzć tkże fukce celu w prze setrczch zdń dulch progrow lowego: Zgdee perwote f() lbo f() - prz ogrczech ,...,...
24 Zgdee dule g( ) lbo g( ) - prz ogrczech ,...,
25 Przkłd : Gr k w Przkłdze. Mcerz gr zodfkowe po dodu stłe c est postc:. 5 6 v v c A Modele PL dl gr zodfkowe:,, ,,, Rozwąze optle est stępuące: 75, o, 5, o, 5, o vc,5 o, 5, o, o, 5, o vc. Optle wrtośc zech to optle częstośc stosow strteg orz wrtość zodfkowe gr. Ab otrzć wrtość gr orgle leż odąć wrtość stłe c.
Rys. 1. Interpolacja funkcji (a) liniowa, (b) kwadratowa, (c) kubiczna.
terpolcj.doc Iterpolcj fukcj. Sformułowe problemu: Rs.. Iterpolcj fukcj low, b kwdrtow, c kubcz. De są rgumet,,,. orz odpowdjące m wrtośc fukcj = f, = f,, = f. Postć fukcj = f jest e z lub z. Poszukw jest
Bardziej szczegółowoPROGRAMOWANIE LINIOWE.
Wykłd 6 Progrowe lowe. Zstosow ekoocze. PROGRAMOWANIE LINIOWE. ZASTOSOWANIA EKONOMICZNE. CENY DUALNE. ANALIZA WRAŻLIWOŚCI.. RACHUNEK EKONOMICZNY. ZASADY RACJONALNEGO GOSPODAROWANIA. Rchuek ekooczy - porówe
Bardziej szczegółowoProjekt 3 3. APROKSYMACJA FUNKCJI
Projekt 3 3. APROKSYMACJA FUNKCJI 3. Krter proksmcj. Złóżm że () jest ukcją cągłą w przedzle [ b ]. Zlezee przblże (proksmcj) poleg wzczeu współczków pewego welomu P() któr będze dobrze przblżł w tm przedzle
Bardziej szczegółowoRegresja liniowa. (metoda najmniejszych kwadratów, metoda wyrównawcza, metoda Gaussa)
Regresj low (metod jmejszch kwdrtów, metod wrówwcz, metod Guss) stot metod postult Guss współczk prostej kostrukcj prostej teoretczej trsformcj fukcj elowch przkłd Regresj low czm poleg? Jeśl merzoe dwe
Bardziej szczegółowo1. Określ monotoniczność podanych funkcji, miejsce zerowe oraz punkt przecięcia się jej wykresu z osią OY
. Określ ootoiczość podch fukcji, iejsce zerowe orz pukt przecięci się jej wkresu z osią OY ) 8 ) 8 c) Określjąc ootoiczość fukcji liiowej = + korzst z stępującej włsości: Jeżeli > to fukcj liiow jest
Bardziej szczegółowodr Michał Konopczyński Ekonomia matematyczna ćwiczenia
dr Mchł Koopczńsk Ekoom mtemtcz ćwcze. Ltertur obowązkow Eml Pek red. Podstw ekoom mtemtczej. Mterł do ćwczeń MD r 5 AE Pozń.. Ltertur uzupełjąc Eml Pek Ekoom mtemtcz AE Pozń. Alph C. Chg Podstw ekoom
Bardziej szczegółowom) (2.2) p) (2.3) r) (2.4)
Ekooetra dr ż. Zbgew Tarapata Wkład r : Postace zadań prograowaa lowego grafcza etoda rozwązwaa zadań PL POSTACIE ZADAŃ PROGRAMOWANIA LINIOWEGO Zadae decze w któr wszstke relace są lowe oraz wszstke zee
Bardziej szczegółowoSpójne przestrzenie metryczne
Spóe pzeszee ecze De. Pzeszeń eczą zw spóą eżel e d sę e pzedswć w posc s dwóc zoów epsc owc ozłączc. - pzeszeń spó ~ owe Icze es zoe spó eżel dl dowolc pów czl see cągł c : : = = see dog łącząc Tw. ągł
Bardziej szczegółowoRównania liniowe. gdzie. Automatyka i Robotyka Algebra -Wykład 8- dr Adam Ćmiel,
utomtyk Robotyk lgebr -Wykłd - dr dm Ćmel cmel@ghedupl Równn lnowe Nech V W będą przestrzenm lnowym nd tym smym cłem K T: V W przeksztłcenem lnowym Rozwżmy równne lnowe T(v)w Powyższe równne nzywmy równnem
Bardziej szczegółowo1. Relacja preferencji
dr Mchał Koopczyńsk EKONOMIA MATEMATYCZNA Wykłady, 2, 3 (a podstawe skryptu r 65) Relaca preferec koszyk towarów: przestrzeń towarów: R + = { x R x 0} x = ( x,, x ) X X R+ x 0 x 0 =, 2,, x~y xf y x y x
Bardziej szczegółowoWybrane rozkłady prawdopodobieństwa użyteczne w statystyce
ttstk Wkłd 5 Ad Ćel A3-A4 3 cel@gh.ed.pl Wre rozkłd prwdopodoeństw żtecze w sttstce Rozkłd ch-kwdrt o stopch swood - to rozkłd s kwdrtów ezleżch zech losowch o stdrzow rozkłdze orl tz......d. rozkłd o
Bardziej szczegółowoWykład 9. Podejmowanie decyzji w warunkach niepewności
Wkłd 9. Podejowie deczji w wrukch ieewości E L l E E F E F l S 0 0 ; R D D F F D i F() - wrtość zieej losowej - zbiór ciągł f - fukcj gęstości rozkłdu rwdoodobieństw zieej losowej Wówczs: d f E L l d
Bardziej szczegółowoWYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:
YZNACZNIKI Do opisu pewnh oiektów nie wstrz użć liz. ie n przkłd, że do opisni sił nleż użć wektor. Sił to przeież nie tlko wielkość le i jej punkt przłożeni, zwrot orz kierunek dziłni. Zte jedną lizą
Bardziej szczegółowoMetody numeryczne. Wykład nr 5: Aproksymacja i interpolacja. dr Piotr Fronczak
Metod umerze Wkłd r 5: Aproksmj terpolj dr Potr Frozk Aproksmj terpolj Aproksmj rówem lowm Błąd dopsow E - Fukj dwóh zmeh Fukj E m mmum dl tkh wrtoś, dl którh pohode ząstkowe względem zerują sę: E E Jest
Bardziej szczegółowoZaawansowane metody numeryczne
Zaawasowae metod umercze Programowae lowe (problem dual, program low w lczbach całkowtch) Dualość est kluczowm poęcem programowaa lowego. Pozwala a udowodee że otrzmwae rozwązaa są optmale. Zagadee duale
Bardziej szczegółowoMetody numeryczne procedury
Metod umercze procedur podstwe [Mrc et. l. 997] orz [Broszte et. l. 004] dr ż. Pweł Zlews Adem Mors w Szczece Iterpolc welomow: Zde terpolc poleg zlezeu pewe uc tór przlż dą ucę. Dl uc ze są prz tm wrtośc
Bardziej szczegółowo6. *21!" 4 % rezerwy matematycznej. oraz (ii) $ :;!" "+!"!4 oraz "" % & "!4! " )$!"!4 1 1!4 )$$$ " ' ""
Memy fow 09..000 r. 6. *!" ( orz ( 4 % rezerwy memycze $ :;!" "+!"!4 orz "" % & "!4! " $!"!4!4 $$$ " ' "" V w dowole chwl d e wzorem V 0 0. &! "! "" 4 < ; ;!" 4 $%: ; $% ; = > %4( $;% 7 4'8 A..85 B..90
Bardziej szczegółowoCałkowanie numeryczne Zadanie: obliczyć przybliżenie całki (1) używając wartości funkcji f(x) w punktach równoodległych. Przyjmujemy (2) (3) (4) x n
lkowe_um- łkowe umercze Zde: olczć przlżee cłk ( ) d () użwjąc wrtośc ukcj () w puktc rówoodległc. Przjmujem (), gdze,,, () () tąd / (5) Metod prostokątów d / (6) gdze / / (7) -- :9: /6 lkowe_um- td. td.
Bardziej szczegółowoUWAGI O ROZKŁADZIE FUNKCJI ZMIENNEJ LOSOWEJ.
L.Kowls - Uwg o rozłdz uc zm losow UWAI O ROZKŁADZIE UNKCJI ZMIENNEJ LOSOWEJ. - d zm losow cągł o gęstośc. Y g g - borlows tz. g - B BR dl B BR Wzczć gęstość g zm losow Y. Jśl g - ścśl mootocz różczowl
Bardziej szczegółowoZAGADNIENIE TRANSPORTOWE
ZAGADNIENIE TRANSPORTOWE ZT.. Zagadee trasportowe w postac tablcy Z m puktów (odpowedo A,...,A m ) wysyłamy edorody produkt w loścach a,...,a m do puktów odboru (odpowedo B,...,B ), gdze est odberay w
Bardziej szczegółowo11/22/2014 STRATEGIE MIESZANE - MOTYWACJA. ROZWAśMY PRZYKŁAD:
//4 Gry o sue zero - gry rozgrywae w strategach eszaych STRATEGIE IESZANE - OTYWACJA. ROZWAśY PRZYKŁAD: 5 DEFINICJA..6 Strategą eszaą π gracza P azyway kaŝdy rozkład prawdopodobeństwa określoy a zborze
Bardziej szczegółowo11. Aproksymacja metodą najmniejszych kwadratów
. Aproksmcj metodą jmejszch kwdrtów W ukch przrodczch wkoujem często ekspermet polegjące pomrch pr welkośc, które, jk przpuszczm, są ze sobą powąze jkąś zleżoścą fukcją =f(, p. wdłużee spręż w zleżośc
Bardziej szczegółowoProces decyzyjny: 1. Sformułuj jasno problem decyzyjny. 2. Wylicz wszystkie możliwe decyzje. 3. Zidentyfikuj wszystkie możliwe stany natury.
Proces decyzyny: 1. Sformułu sno problem decyzyny. 2. Wylcz wszyste możlwe decyze. 3. Zdentyfu wszyste możlwe stny ntury. 4. Oreśl wypłtę dl wszystch możlwych sytuc, ( tzn. ombnc decyz / stn ntury ). 5.
Bardziej szczegółowoMACIERZE I DZIAŁANIA NA MACIERZACH. Niech ustalone będzie ciało i dwie liczby naturalne,.
CIERZE I ZIŁNI N CIERZCH Nech usloe będze cło dwe lczby urle, cerzą o wyrzch z cł wymrch zywmy kżdą fukcję cerz ką zpsujemy w posc belk ) cerz zpsujemy róweż wele ych sposobów, w zleżośc od ego jką jej
Bardziej szczegółowoPodprzestrzenie macierzowe
Podprzestrzee macerzowe werdzee: Dla dwóch macerzy A B o tych samych wymarach zachodz: ( ) ( ) wersz a) R A R B A ~ B Dowód: wersz a) A ~ B stee P taka że PA B 3 0 A 4 3 0 0 E A B 0 0 0 E B 3 6 4 0 0 0
Bardziej szczegółowo[ ] Pochodne cząstkowe funkcji złożonych.
EI-Iork-Wkł - r Ćel cel@.g.e.pl De. Mów że kc es kls D eżel pos w kż pkce zbor D wszske pocoe cząskowe cągłe czl es F- różczkowl w kż pkce zbor E. Pocoe cząskowe wższc rzęów. Rozwż kcę rzeczwsą zec : R
Bardziej szczegółowoSpójne przestrzenie metryczne
lz Włd 5 d d Ćel cel@gedpl Spóe pzeszee ecze De Pzeszeń eczą ρ zw spóą eżel e d sę e pzedswć w psc s dwóc zów epsc wc złączc ρ - pzeszeń spó ~ we Icze es ze spó eżel dl dwlc pów czl see cągł c γ : : γ
Bardziej szczegółowoBADANIE DRGAŃ RELAKSACYJNYCH
BADANIE DRGAŃ RELAKSACYJNYCH Ops ukłdu pomrowego Ukłd pomrow skłd sę z podstwowch częśc: dego geertor drgń relkscjch, zslcz geertor, geertor odese (drgń hrmoczch), oscloskopu. Pokz rsuku schemt deow geertor
Bardziej szczegółowoSformułowanie zagadnienia. c c. Analiza zagadnienia dla przypadku m = 4 i n = 3. B 2. c A. c A
ZGDNIENIE TRNSPORTOWE Sformułowne zgdnen Przypuśćmy, że z m punktów odprwy,, K, m m być wysłny w lośh,, K, m ednorodny produkt do n punktów przyęć,, K, n. odboru przymuą produkt w lośh b, b, K, bn. Kżdy
Bardziej szczegółowo- macierz o n wierszach i k kolumnach. Macierz jest diagonalna jeśli jest kwadratowa i po za główną przekątną (diagonala) są
Powtórzeie z Algebry 1. Mcierz A k 1 11 1 1k 1 k k - mcierz o wierszch i k kolumch Mcierz est kwdrtow eśli m tyle smo wierszy co kolum ( = k). Mcierz est digol eśli est kwdrtow i po z główą przekątą (digol)
Bardziej szczegółowoAlgorytmy metod numerycznych. Monika Chruścicka
Algoryty etod ueryczych Mok Chruścck Ktolck Uwersytet Luelsk J Pwł II Wydzł Nuk Społeczych, Istytut Ekoo Streszczee Artykuł zwer chrkterystykę etod ueryczych orz podstwowych lgorytów etod ueryczych. Przedstwoe
Bardziej szczegółowoInstytut Automatyki i Informatyki Stosowanej Politechniki Warszawskiej
Isttt Atomt Iformt Stosowe Poltech Wrszwse Algortm predce w wers ltcze z efetwm mechzmem względ ogrczeń wść Potr Mrs Pl prezetc. Wstęp. Algortm reglc predce 3. Uwzględe ogrczeń łoŝoch sgł sterąc 4. Uwzględe
Bardziej szczegółowo7. Szeregi funkcyjne
7 Szeregi ukcyje Podstwowe deiicje i twierdzei Niech u,,,, X o wrtościch w przestrzei Y będą ukcjmi określoymi zbiorze X Mówimy, że szereg ukcyjy u jest zbieży puktowo do sumy, jeżeli ciąg sum częściowych
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA Woskowe sttstcze - egesj koelcj teść Wpowdzee Regesj koelcj low dwóch zmech Regesj koelcj elow - tsfomcj zmech Regesj koelcj welokot Wpowdzee Jedostk zoowośc sttstczej mogą ć chktezowe
Bardziej szczegółowoŚrodek masy i geometryczne momenty bezwładności figur płaskich 1
Środek ms geometrzne moment bezwłdnoś fgur płskh Środek ms fgur płskej Zleżnoś n współrzędne środk ms, fgur płskej złożonej z fgur regulrnh rs.. możem zpsć w nstępują sposób: gdze:. pole powerzhn -tej
Bardziej szczegółowoWykład Podejmowanie decyzji w warunkach niepewności
Wkłd Podejowie deczji w wrukch ieewości Rozwż rzkłd: M sieć I koli które leż zoderizowć. Istieje J writów oderizcji i kżd z ich o koszcie c ij jeśli i-t koli jest oderizow j-t sosób (i = I j = J). Urobek
Bardziej szczegółowoRozwiązanie niektórych zadań treningowych do I kolokwium sem. zimowy, 2018/19
Rozwąze ektóryh zdń tregowyh do I kolokwum sem. zmowy, 8/9 Zd.. V = ost, = 98 K W wrukh dtyzyh Q = ΔU =. Końową temperturę zjdzemy rozwązują rówe ΔU =. Zm eerg wewętrzej zhodz wskutek rekj hemzej jlepej
Bardziej szczegółowoMetody numeryczne w przykładach
Metody umerycze w przyłdch Podręcz Poltech Lubels Poltech Lubels Wydzł Eletrotech Iformty ul. Ndbystrzyc 38A -68 Lubl Bet Pńczy Edyt Łus J Sor Teres Guz Metody umerycze w przyłdch Poltech Lubels Lubl Recezet:
Bardziej szczegółowoFUNKCJE DWÓCH ZMIENNYCH
FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam
Bardziej szczegółowoJózef Beluch Akademia Górniczo-Hutnicza w Krakowie. Wpływ wag współrzędnych na wyniki transformacji Helmerta
Józef Beluch Akadema Górczo-Hutcza w Krakowe płw wag współrzędch a wk trasformacj Helmerta . zór a trasformację współrzędch sposobem Helmerta: = c + b = d + a + a b () 2 2. Dwa modele wzaczea parametrów
Bardziej szczegółowoWykład 1 Pojęcie funkcji, nieskończone ciągi liczbowe, dziedzina funkcji, wykres funkcji, funkcje elementarne, funkcje złożone, funkcje odwrotne.
Wykłd Pojęcie fukcji, ieskończoe ciągi liczbowe, dziedzi fukcji, wykres fukcji, fukcje elemetre, fukcje złożoe, fukcje odwrote.. Fukcje Defiicj.. Mówimy, że w zbiorze liczb X jest określo pew fukcj f,
Bardziej szczegółowoEkoenergetyka Matematyka 1. Wykład 8. CIĄGI LICZBOWE
Ekoeergetk Mtemtk 1. Wkłd 8. CIĄGI LICZBOWE Defiicj (ciąg liczbow) Ciągiem liczbowm zwm fukcję odwzorowującą zbiór liczb turlch w zbiór liczb rzeczwistch. Wrtość tej fukcji dl liczb turlej zwm -tm wrzem
Bardziej szczegółowoZastosowanie działań na hipersześcianach binarnych w diagnostyce sieci komputerowych
toowe dłń hpereścch brych w dgotyce ec komputerowych Formle, -wymrowym hpereścem brym ywmy grf wykły o węłch których kżdy opy jet ym wektorem brym (,..., ),( {, }, ) or o krwędch, łącących te węły, których
Bardziej szczegółowoIndukcja matematyczna
Iducja matematycza Twerdzee. zasada ducj matematyczej Nech T ozacza pewą tezę o lczbe aturalej. Jeżel dla pewej lczby aturalej 0 teza T 0 jest prawdzwa dla ażdej lczby aturalej 0 z prawdzwośc tezy T wya
Bardziej szczegółowo( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu.
Elementy rchunku prwdopodoeństw f 0 f() - gęstość rozkłdu prwdopodoeństw X f d P< < = f( d ) F = f( tdt ) - dystryunt rozkłdu E( X) = tf( t) dt - wrtość średn D ( X) = E( X ) E( X) - wrncj = f () F ()
Bardziej szczegółowoPolitechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Poltechnk Gdńsk Wydzł Elektrotechnk Automtyk Ktedr Inżyner Systemów Sterown Teor sterown Podstwy lgebry mcerzy Mterły pomocncze do ćwczeń lbortoryjnych 1 Część 3 Oprcowne: Kzmerz Duznkewcz, dr hb. nż.
Bardziej szczegółowoNr: 1. Metody obliczeniowe - Budownictwo semestr 2 - wykład nr 1. Metody obliczeniowe
Nr: Metody olczeowe - Budowctwo semestr - wyłd r Metody olczeowe Metody umerycze - sposoy rozwąz zd mtemtyczego z pomocą operc lczch t, y zde mogło yć rozwąze przez omputer. Rozwązywe ułdów rówń lowych.
Bardziej szczegółowoAlgebra WYKŁAD 5 ALGEBRA 1
lger WYKŁD 5 LGEBR Defiicj Mcierzą ieosoliwą zywmy mcierz kwdrtową, której wyzczik jest róży od zer. Mcierzą osoliwą zywmy mcierz, której wyzczik jest rówy zeru. Defiicj Mcierz odwrot Mcierzą odwrotą do
Bardziej szczegółowoinstrukcja do ćwiczenia 5.1 Badanie wyboczenia pręta ściskanego
5.Bde wocze pręt śckego UT-H Rdom Ittut Mechk Stoowej Eergetk Lortorum Wtrzmłośc Mterłów trukcj do ćwcze 5. Bde wocze pręt śckego I ) C E L Ć W I C Z E N I A Celem ćwcze jet dośwdczle wzczee metodą Southwell
Bardziej szczegółowoProjekt 2 2. Wielomiany interpolujące
Proekt Weloma terpoluące Rodzae welomaów terpoluącc uma edomaów Nec w przedzale a, b określoa będze fukca f: ec będze ustaloc m wartośc argumetu :,,, m, m L prz czm: < < L < < m m Pukt o tc odcztac azwa
Bardziej szczegółowoMETODY NUMERYCZNE. Wykład 3. Plan. Aproksymacja. Aproksymacja Interpolacja wielomianowa Przykłady. Jaki jest dopuszczalny błąd wyniku?
METODY NUMERYCZNE Wkłd. dr h.ż. Ktrz Zkrzewsk, prof.agh Met.Numer. wkłd Pl Aproksmc Iterpolc welomow Przkłd Met.Numer. wkłd Aproksmc Metod umercze zmuą sę rozwązwem zdń mtemtczch z pomocą dzłń rtmetczch.
Bardziej szczegółowoę ó ó Ź Ż ę Ż ę ż ó ę Ź ó ż ć ż ę ó ó Ż ć ę ę ę Ż Ż ó ć ę Ą ż ę ó ę ę ć ć ż ó Ż Ź Ż ó Ż Ż ć ż ę ó Ż ż óż ęż ć ó ż Ż ę ę ę ż
Ś ó ż ż ó ó Ż ó ó ż ę Ż ż ę ó ę Ż Ż ć ó ó ę ó Ż ę Ź ó Ż ę ę ę ó ó ż ę ż ó ęż ę ó ó Ź Ż ę Ż ę ż ó ę Ź ó ż ć ż ę ó ó Ż ć ę ę ę Ż Ż ó ć ę Ą ż ę ó ę ę ć ć ż ó Ż Ź Ż ó Ż Ż ć ż ę ó Ż ż óż ęż ć ó ż Ż ę ę ę ż
Bardziej szczegółowoZESTAW ZADAŃ Z INFORMATYKI
(Wpsue zdaąc przed rozpoczęcem prac) KOD ZDAJĄCEGO ZESTAW ZADAŃ Z INFORMATYKI CZĘŚĆ II (dla pozomu rozszerzonego) GRUDZIEŃ ROK 004 Czas prac 50 mnut Instrukca dla zdaącego. Proszę sprawdzć, cz zestaw zadań
Bardziej szczegółowotermodynamika fenomenologiczna p, VT V, teoria kinetyczno-molekularna <v 2 > termodynamika statystyczna n(v) to jest długi czas, zachodzi
fzka statstczna stan makroskopow układ - skończon obszar przestrzenn (w szczególnośc zolowan) termodnamka fenomenologczna p, VT V, teora knetczno-molekularna termodnamka statstczna n(v) stan makroskopow
Bardziej szczegółowoMetoda szeregów potęgowych dla równań różniczkowych zwyczajnych liniowych. Równanie różniczkowe zwyczajne liniowe drugiego rzędu ma postać
met_szer_potegowyh-.doowyh Metod szeregów potęgowyh dl rówń różizkowyh zwyzjyh liiowyh Rówie różizkowe zwyzje liiowe drugiego rzędu m postć d u d f du d gu h ( Złóżmy, że rozwiązie rówi ( może yć przedstwioe
Bardziej szczegółowoFUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA.
Oprownie: Elżiet Mlnowsk FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA. Określeni podstwowe: Jeżeli kżdej lizie x z pewnego zioru lizowego X przporządkown jest dokłdnie jedn liz, to mówim,
Bardziej szczegółowoteorii optymalizacji
Poltechka Gdańska Wydzał Oceaotechk Okrętowctwa St. II stop. se. I Podstawy teor optyalzac wykład 7 M. H. Ghae Ma 5 Podstawy teor optyalzac Oceaotechka II stop. se. I 5 Podstawy teor optyalzac Oceaotechka
Bardziej szczegółowoKomisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa
Mtemtyk finnsow 12.03.2012 r. Komisj Egzmincyjn dl Akturiuszy LIX Egzmin dl Akturiuszy z 12 mrc 2012 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 100 minut
Bardziej szczegółowoRozkłady prawdopodobieństwa 1
Rozkłdy rwdoodoeństw Rozkłdy rwdoodoeństw. Rozkłdy dyskrete cągłe. W rzydku rozkłdu dyskretego określmy wrtośc rwdoodoeństw dl rzelczlej skończoej lu eskończoej lczy wrtośc zmeej losowej. N.... wszystke
Bardziej szczegółowoDOPASOWANIE ZALEŻNOŚCI LINIOWEJ DO WYNIKÓW POMIARÓW
DOPAOWANIE ZALEŻNOŚCI LINIOWEJ DO WYNIKÓW POMIARÓW Jedm stotch gdeń l dch pomroch jest dopsoe leżośc teoretcej do kó pomró. Dotc oo stucj gd dokoo ser pomró pr elkośc które są e soą poąe leżoścą f... m
Bardziej szczegółowoOBLICZANIE GEOMETRYCZNYCH MOMENTÓW BEZWŁADNOŚCI FIGUR PŁASKICH, TWIERDZENIE STEINERA LABORATORIUM RACHUNKOWE
OBLICZNIE GEOMETRYCZNYCH MOMENTÓW BEZWŁDNOŚCI FIGUR PŁSKICH, TWIERDZENIE STEINER LBORTORIUM RCHUNKOWE Prz oblczeach wtrzmałoścowch dotczącch ektórch przpadków obcążea (p. zgae) potrzeba jest zajomość pewch
Bardziej szczegółowoż ć Ś Ń ż ż ż ć ę ę Ą ę ę Ł Ść ż ż ę ź ę ż
Ł ę ź ę ż ę ć ęż ę ę Ł ć ę ę ż ć Ś Ń ż ż ż ć ę ę Ą ę ę Ł Ść ż ż ę ź ę ż ż ż ę ę ż ć ę ę Ń ę ę ż ę ę żę ż ć ę ć ę ę ć ę ć Ź ż ć ę ę ę Ą ę ę ę ź ę ż ę Ó ż ę ę ż ć ć ź ż ę ę ę ż ę ż ć ę ę ż ę ę ż ż ć ę ę
Bardziej szczegółowoINSTYTUT ENERGOELEKTRYKI POLITECHNIKI WROCŁAWSKIEJ Raport serii SPRAWOZDANIA Nr LABORATORIUM TEORII I TEHCNIKI STEROWANIA INSTRUKCJA LABORATORYJNA
prwch rękops do żytk słżboweo ISTYTUT RGOLKTRYKI POLITCHIKI WROCŁAWSKIJ Rport ser SPRAWODAIA r LABORATORIUM TORII I THCIKI STROWAIA ISTRUKCJA LABORATORYJA ĆWICI r 9 Sterowe optymle dyskretym obektem dymcym
Bardziej szczegółowoScenariusz lekcji matematyki w klasie II LO
Autor: Jerzy Wilk Sceriusz lekcji mtemtyki w klsie II LO oprcowy w oprciu o podręczik i zbiór zdń z mtemtyki utorów M. Bryński, N. Dróbk, K. Szymński Ksztłceie w zkresie rozszerzoym Czs trwi: jed godzi
Bardziej szczegółowoŻ Ę ć Ć ć ć Ą
Ś Ł Ż Ą Ż Ę ć Ć ć ć Ą ŚĘ Ż ź Ś Ż Ś Ś Ń Ę Ą Ś Ł Ś Ł Ż Ż ź ż Ą Ś Ż Ż Ś Ł Ą Ą Ó Ż Ż ż ć Ż ż ć ż Ó Ż ż ć ż ć ż Ą Ę ż Ó Ó ż ż Ó ć Ż ć Ż ć ć ź Ę Ę Ę ć Ż Ź Ż ż ć ż Ź Ę Ż ż ć Ś ć Ż Ę ż Ę ż ż ż Ż ż ż ż ż ĘŁ ż ż
Bardziej szczegółowoSprawdzenie stateczności skarpy wykopu pod składowisko odpadów komunalnych
Sprawdzee stateczośc skarpy wykopu pod składowsko odpadów koualych Ustalee wartośc współczyka stateczośc wykoae zostae uproszczoą etodą Bshopa, w oparcu o poższą forułę: [ W s( α )] ( φ ) ( φ ) W ta F
Bardziej szczegółowoBadania Operacyjne (dualnośc w programowaniu liniowym)
Badaa Operacye (dualośc w programowau lowym) Zadae programowaa lowego (PL) w postac stadardowe a maksmum () c x = max, podczas gdy spełoe są erówośc () ax = b ( m ), x 0 ( ) Zadae programowaa lowego (PL)
Bardziej szczegółowoć ć ż ć ź ż ż ź ź ŚĆ Ź ź ć Ź ź ź ź ź Ś Ą Ć Ć ć Ź ź
Ł Ł ć ć Ś Ź Ć Ś ć ć ż ć ź ż ż ź ź ŚĆ Ź ź ć Ź ź ź ź ź Ś Ą Ć Ć ć Ź ź Ś Ć Ć Ś ź Ć ż ż ź ż Ć ć ż Ć Ć ż ż ź Ć Ś Ś ż ż ć ż ż Ć ż Ć Ś Ś Ź Ć Ę ż Ś Ć ć ć ź ź Ś Ć Ś Ć Ł Ś Ź Ś ć ż Ś Ć ć Ś ż ÓŹ Ś Ś Ź Ś Ś Ć ż ż Ś ż
Bardziej szczegółowoRÓWNANIA RÓŻNICZKOWE WYKŁAD 7
RÓWNANIA RÓŻNIZKOWE WYKŁAD 7 Deiicj Ukłdem rówń różiczkowch rzędu pierwszego w posci ormlej zwm ukłd rówń o iewidomch > zmie iezleż. Uwg Jeżeli = o zzwczj piszem x zmis orz g zmis jeżeli = o piszem x z
Bardziej szczegółowo[ ] I UKŁAD RÓWNAŃ Definicja 1 Układ m równań liniowych z n niewiadomymi x 1, x 2,., x n : II ROZW. UKŁADU RÓWNAŃ PRZY POMOCY MACIERZY ODWROTNEJ
I UKŁAD RÓNAŃ Defiicj Ukłd rówń liiowych z iewidoyi,,., : Defiicj Postć cierzow ukłdu rówń: A, lu krócej A, gdzie: A,,. Mcierz A zywy cierzą ukłdu rówń, wektor zywy wektore wyrzów wolych (koluą wyrzów
Bardziej szczegółowoI. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH
pitgors.d.pl I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: licz turle N : N 0,,,,,,..., N,,,,,... licz cłkowite C : C...,,,, 0,,,,... Kżdą liczę wierą oż przedstwić z poocą ułk dziesiętego
Bardziej szczegółowoRóżniczkowanie funkcji rzeczywistych wielu zmiennych. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski
Różczkowae fukcj rzeczywstych welu zmeych rzeczywstych Matematyka Studum doktoracke KAE SGH Semestr let 8/9 R. Łochowsk Pochoda fukcj jedej zmeej e spojrzee Nech f : ( α, β ) R, α, β R, α < β Fukcja f
Bardziej szczegółowoć Ę ó ż ć
Ą Ł ż ż Ę ó ó ó ć ó ć ó ż ó ó ż ó ć Ę ó ż ć ó ź ó ó ó ć ó ć ó ć ó ó ó ó ó Ę ó ó ó ż ó Ę ó ó ż ó óż ó ó ć ć ż ó Ą ó ó ć ó ó ó ó ó ż ó ó ó ó Ą ó ó ć ó ó ź ć ó ó ó ó ć ó Ę ó ż ż ó ó ż ż ó ó ó ć ó ć ó ć ó
Bardziej szczegółowo11/22/2014. Jeśli stała c jest równa zero to takie gry nazywamy grami o sumie zerowej.
/22/24 Dwuosobowe gry o sume zero DO NAUCZENIA I ZAPAMIĘTANIA: Defnca zaps ger o sume zero, adaptaca ogólnych defnc. Punkt sodłowy Twerdzena o zwązkach punktu sodłowego z koncepcam rozwązań PRZYPOMNIENIE:
Bardziej szczegółowoAutomatyka i Robotyka Analiza Wykład 27 dr Adam Ćmiel
Automty Rooty Az Wyłd 7 dr Adm Ćme cme@gh.edu.p Szereg Fourer Przypomee. Rozwżmy przestrzeń eudesową VR, tórej eemetm (putm, wetorm )są eemetowe cąg cz rzeczywstych p.,..., ) y y,..., y ). W przestrze
Bardziej szczegółowoPROJEKT DOCELOWEJ ORGANIZACJI RUCHU DLA ZADANIA: PRZEBUDOWA UL PIASTÓW ŚLĄSKICH (OD UL. DZIERŻONIA DO UL. KOPALNIANEJ) W MYSŁOWICACH
P r o j e k t d o c e l o w e j o r g a n i z a c j i r u c h u d l a z a d a n i a : " P r z e b u d o w a u l. P i a s t ó w Śl ą s k i c h ( o d u l. D z i e r ż o n i a d o u l. K o p a l n i a n e
Bardziej szczegółowoaij - wygrana gracza I bij - wygrana gracza II
M.Mszczsk KBO UŁ, Badana operacjne I (cz.) (wkład B 7) GRY KONFLIKTOWE GRY -OSOBOWE O SUMIE WYPŁT ZERO I. DEFINICJE TWIERDZENI Konflktowe gr dwuosobowe opsuje macerz wpłat ( a ) [ ] mxn j,b j gdze: aj
Bardziej szczegółowoZESZYTY NAUKOWE NR 11(83) AKADEMII MORSKIEJ W SZCZECINIE. Fuzja danych nawigacyjnych w przestrzeni filtru Kalmana
ISSN 733-867 ZESZ NAUKOWE NR (83) AKADEMII MORSKIEJ W SZCZECINIE IV MIĘDZNARODOWA KONFERENCJA NAUKOWO-ECHNICZNA E X L O - S H I 6 Andrzej Stteczny, Andrzej Lsj, Chfn Mohmmd Fzj dnych nwgcyjnych w przestrzen
Bardziej szczegółowoĆ Ź ć Ę ć Ę Ć Ź Ź Ć
Ź Ć Ć Ź ć Ę ć Ę Ć Ź Ź Ć Ł Ą Ę Ć ć ćź ć Ź Ź Ź Ź Ą Ć ć Ł Ł Ł Ę ć ć Ź Ą ć Ę ć Ź Ź Ź Ź ć Ź Ź ć Ź ć Ł ć Ą Ć Ć Ć ć Ź Ą Ź ć Ź Ł Ł Ć Ź Ą ć Ć ć ć ć ć Ć Ć ć Ć ć ć Ł Ę Ź ć Ć ć Ź Ź Ć Ź Ź ć ć Ź ć Ź Ź Ź Ą Ę Ń Ź Ć Ą
Bardziej szczegółowoWektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1
Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem
Bardziej szczegółowoź ć ó ó ó ó Ż Ę ó ó Ę Ę Ą ń Ę ń
Ł ó óż ź Ł ó ó ó ó ć ć ć ć ć Ś ó ó ó ó ó ó Ż Ą ń ź ć ó ó ó ó Ż Ę ó ó Ę Ę Ą ń Ę ń Ń Ą Ą Ą ŁŁ Ą ń Ł ó ó ó ó Ź ć ó ó ó ć Ą ó Ł ń ó ź ć Ź ć ź Ę Ę Ź ź ź Ż ź Ź Ń ź ć ź ć Ź ć Ź ć Ż ć ź ć ź ć ź ź ć Ą Ź ć ć ć ź
Bardziej szczegółowoNiepewność pomiaru Wybrane podstawowe zagadnienia
Nepewość po Wbe podstwowe zgde Tdesz M.Moled Isttt Fzk Uwestet Szzeńsk Zj. 3 Mędzodow Kowej Oe Nepewoś Po GUM Gde to the Epesso of Uett Meseet ISO Swtzeld 995. Pzewodk jest obee bezpłte dostęp potl BIPM
Bardziej szczegółowo( ) ( ) 0. ( x) )... są wielomianami stopnia m = n + r + 1. INTERPOLACJA HERMITE A. Gdzie hkihk
INERPOLCJ N czy poleg zde terpolc? Zde terpolc est wyzczee przyblżoyc wrtośc fukc w puktc e będącyc węzł orz oszcowe błędu tyc przyblżoyc wrtośc.w ty celu leży zleźć fukce p( zwą fukcą terpolcyą którą
Bardziej szczegółowo06 Model planowania sieci dostaw 1Po_1Pr_KT+KM
Nr Tytuł: Autor: 06 Model plaowaa sec dostaw 1Po_1Pr_KT+KM Potr SAWICKI Zakład Systeów Trasportowych WIT PP potr.sawck@put.poza.pl potr.sawck.pracowk.put.poza.pl www.facebook.co/potr.sawck.put Przedot:
Bardziej szczegółowoŁ ó ó Ż ż ó Ń Ń Ł ó ż Ę ż
Ł Ł Ń Ń Ł ó ó Ż ż ó Ń Ń Ł ó ż Ę ż Ł Ś Ł Ś Ś ó ż ć ó ó óż ó ć ó ć ż ć ż Ć ż ż ć ó ó ó ó Ś ó ż ż ŚĆ ż ż ż Ś ż ó ó ó ó Ą Ć ż ó ó ż ó Ę ż ó ó ó Ś ć ż ż ć ó Ę ć Ś ó ż ć ż ć ż ć ż Ę ó ż ż ź ó Ę Ę ó ó ż ó ó ć
Bardziej szczegółowoMichał Pazdanowski Instytut Technologii Informacyjnych w Inżynierii Lądowej Wydział Inżynierii Lądowej Politechnika Krakowska.
chł zdows Istytut echolog Iforcyych w Iżyer ądowe Wydzł Iżyer ądowe oltech Krows Iterpolc Iterpolc oże być trtow o szczególy przypde prosyc polegący ty że fuc prosyow fuc prosyuąc przyuą te se wrtośc w
Bardziej szczegółowoZADANIA ZAMKNIĘTE. A. o 25% B. o 50% C. o 44% D. o 56% A. B. C. 7 D..
ZADANIA ZAMKNIĘTE W zadaniach 1 25 wybierz jedną poprawną odpowiedź. Zadanie 1. (1 pkt.) Ce ę pralki o iżo o o %, a po dwó h iesią a h ową e ę o iżo o jesz ze o %. W w iku o u o iżek e a pralki z iejsz
Bardziej szczegółowoi = 0, 1, 2 i = 0, 1 33,115 1,698 0,087 0,005!0,002 34,813 1,785 0,092 0,003 36,598 1,877 0,095 38,475 1,972 40,447 i = 0, 1, 2, 3
35 Iterpoaca Herte a 3 f ( x f ( x,,, 3, 4 f ( x,,, 3 f ( x,, 3 f ( x, 4 f ( x 33,5,698,87,5!, 34,83,785,9,3 36,598,877,95 38,475,97 4,447 Na podstawe wzoru (38 ay zate 87,, 5, L4 ( t 335, +, 698t+ t(
Bardziej szczegółowoMODELE TEORII GIER. Modelowanie matematyczne. dr inż. Zbigniew Tarapata Wykład nr 5: Modele teorii gier
MODELE TEORII GIER Podejmowne decyzj nwestycyjnych często jest dokonywne w sytucjch, w których ne wdomo, jk będze stn otoczen lub też, jką decyzję podejmą nn decydenc, mjący wpływ n wynk decyzj przez ns
Bardziej szczegółowoAnaliza Matematyczna Ćwiczenia. J. de Lucas
Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y
Bardziej szczegółowoZMIENNE LOSOWE WIELOWYMIAROWE
L.Kowals Zmee losowe welowmarowe ( ΩS P ZMIENNE LOSOWE WIELOWMIAROWE - ustaloa przestrzeń probablstcza. (... - zmea losowa - wmarowa (wetor losow cąg losow. : Ω R (fuca borelowsa P : Β R [0 - rozład zmee
Bardziej szczegółowoUkład Liniowych Równań Algebraicznych
chł Pzowsk Isttut echoog Iformcch w Iżer ąowe Wzł Iżer ąowe Potechk Krkowsk Ukł owch Rówń gebrczch Z owm ukłem rówń gebrczch mm o cze w stuc, g wszstke zmee wstępuące w rówch ukłu wstępuą ee w perwsze
Bardziej szczegółowoPRZEPŁYWY MIĘDZYGAŁĘZIOWE. tablica przepływów międzygałęziowych
PRZEPŁYWY IĘDZYGŁĘZIOWE. [] Jeą z meto lzy zleŝośc wystęuących w rocesch tworze ozłu roukc mterle są metoy rzeływów męzygłezowych (lzy kłów wyków, lzy utoutut). zł Elemetrym osem ukłu est tut tzw. tlc
Bardziej szczegółowo