Badanie prętów na wyboczenie
|
|
- Maksymilian Gajda
- 7 lat temu
- Przeglądów:
Transkrypt
1 Instytut Mechaniki i Inżynierii Obiczeniowej Wydział Mechaniczny Technoogiczny oitechnika Śąska fb.com/imiopos twitter.com/imiopos LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW Badanie prętów na wyboczenie
2 BADANIE RĘTÓW NA WYBOCZENIE 1. CEL ĆWICZENIA Doświadczane wyznaczenie zaeżności strzałki ugięcia pręta wyboczonego od wiekości przyłożonej siły i przedstawienie jej na wyesie. d Wyznaczenie wartości siły ytycznej da danego pręta korzystając z danych doświadczanych przy różnych sposobach mocowania pręta. Obiczenie modułu Younga E na podstawie wyników doświadczanych i porównania tej wartości z danymi z tabic materiałowych. Obiczenie siły ytycznej ze wzoru Euera. Obiczenie błędu wzgędnego pomiarów.. WROWADZENIE Równowaga ciał może być stateczna, niestateczna ub obojętna. Równowagą stateczną (stałą, stabiną, trwałą) nazywamy taką formę równowagi, w której ciało wychyone z położenia pierwotnego z powrotem do niego powraca (rys. 1a). Inaczej mówiąc, ruch ciała jest taki, że wychyenia dowonego punktu ciała są nie większe od początkowych. O równowadze niestatecznej (chwiejnej) mówimy wówczas, gdy ciało wychyone z położenia pierwotnego nie powraca do tego położenia, ae przechodzi do innego (rys. 1b). Jeśi ciało znajduje się w potencjanym pou sił, wówczas położeniu równowagi statecznej odpowiada minimum energii potencjanej, zaś równowadze niestatecznej odpowiada maksimum energii potencjanej. Szczegóny przypadek, gdy przy dowonie małym wychyeniu wartość energii potencjanej nie zmienia się, nazywamy równowagą obojętną (rys. 1c). g b) a) c) Rys. 1. Rodzaje równowagi ciała: a) stateczna; b) niestateczna; c) obojętna Żadne ciało praktycznie nie może pozostawać w położeniu równowagi niestatecznej, będącej stanem granicznym. Ciało przechodzi do innego możiwego położenia. rzejście to może charakteryzować się dużymi przemieszczeniami, powstaniem pastycznych odkształceń, zniszczeniem układu itp. Taką formę przejścia z jednego położenia równowagi do drugiego nazywamy utratą stateczności. W praktyce często mamy do czynienia ze zjawiskiem, gdy do przeprowadzenia układu w stan równowagi chwiejnej potrzebna jest na tye mała iość energii, że w danych warunkach może ona być dostarczona zupełnie przypadkowo (rys. ). Wówczas mówi się, że stateczność układu jest niewystarczająca.
3 BADANIE RĘTÓW NA WYBOCZENIE 3 g Rys.. Układ o małej stateczności Stateczność układu może zaeżeć nie tyko od jego geometrycznej postaci, ae i od wiekości działających sił. Jeśi np. siła obciążająca układ będzie mniejsza od pewnej charakterystycznej wartości, to stateczność będzie zachowana; przy sie większej układ znajdzie się w położeniu równowagi niestatecznej. rzejście siły przez tę szczegóną wartość powoduje zmianę równowagi układu ze statecznej na niestateczną. Tę charakterystyczną wartość siły obciążającej oeśamy mianem siły ytycznej. Obecnie w wieu konstrukcjach zasadniczymi eementami decydującymi o ich wytrzymałości są pręty ściskane siłami osiowymi, datego też zagadnienie wyboczenia pręta stanowi ważną część obiczeń inżynierskich. Wyboczenie niekoniecznie musi prowadzić do zniszczenia pręta, ae utrata stateczności najczęściej prowadzi do utraty nośności całej konstrukcji. onadto w praktyce nie przeprowadza się anaizy stanu równowagi układu po utracie stateczności i uważa się obciążenie ytyczne za szczegónie niebezpieczne. Niebezpieczeństwo utraty stateczności jest tym większe, im konstrukcja jest żejsza. Zagadnienie to jest o tye istotne i ważne, że utrata stateczności następuje nage, bez widocznych objawów poprzedzających niebezpieczny stan konstrukcji. Datego przedstawienie eksperymentanego sposobu oeśenia siły ytycznej przy wyboczeniu sprężystym i porównanie z wynikiem uzyskanym anaitycznie (wzór Euera) pozwaa na szersze rozeznanie w zagadnieniach stateczności prętów ściskanych. 3. ODSTAWY TEORETYCZNE 3.1 Utrata stateczności prętów ściskanych W przeciwieństwie do układów sztywnych w układach odkształcanych wartości występujących sił mają wpływ na rodzaj równowagi. Rozpatrywany jest nieważki pręt AB ściskany siłą osiową (rys. 3a) na tye małą, że oś pręta pozostaje prosta. Jeśi na pręt zadziała się statycznie siłą Q prostopadłą do osi pręta, to siła ta spowoduje ugięcie pręta. o cofnięciu siły Q pręt powraca do swej początkowej (prostej) postaci. Jeśi działanie siłą Q będzie działaniem dynamicznym, wówczas wywoła ona drgania pręta wokół prostej osi. Zwiększenie wartości siły powoduje początkowo jedynie wzrost oesu drgań. Jednakże po przeoczeniu pewnej charakterystycznej wartości siły, zwanej siłą ytyczną, pręt po chwiowym zadziałaniu siły Q nie powróci do swej pierwotnej postaci. o przeoczeniu przez siłę wartości ytycznej pręt znajdzie się w równowadze chwiejnej i gwałtownie przybierze nową postać równowagi stałej o osi wygiętej. Towarzyszy temu nagły wzrost przemieszczeń końca B pręta. Wygięcie pręta spowodowane przeoczeniem przez siłę ściskającą wartości ytycznej nazywamy wyboczeniem.
4 BADANIE RĘTÓW NA WYBOCZENIE 4 B B Q M 1 3 A R = a) b) Rys. 3. a) Nieważki pręt ściskany osiowo; b) zaeżność u- Rysunek 3b przedstawia zaeżność pomiędzy przemieszczeniem u końca B pręta AB a wartością siły ściskającej. rosta 1 odpowiada sytuacji, gdy pręt prosty jest wyłącznie ściskany. o osiągnięciu przez siłę wartości ytycznej charakterystyka rozdwaja się w punkcie M. unkt ten zwany jest punktem bifurkacji (rozdwojenia). Zwiększenie wartości siły ściskającej powyżej wartości spowoduje bądź równowagę niestateczną pręta, który pozostanie nada prosty (prosta 1), bądź równowagę stateczną pręt o osi wygiętej (zywa ). Linia 0-M- zwana jest ścieżką równowagi. Założenie całkowicie osiowego ściskania jest oczywiście ideaizacją w praktyce zawsze ma się do czynienia z pewnym mimośrodem. Krzywa 3 na wyesie jest wyesem zaeżności u- przy założeniu istnienia małego początkowego mimośrodu. Im mimośród jest mniejszy, tym zywa początkowo dokładniej poywa się z prostą 1, by później uec gwałtowniejszemu zazywieniu (gwałtowniejszy wzrost przemieszczeń). 0 u 3. Sprężyste wyboczenie pręta Wyboczeniem sprężystym nazywać będziemy taki przypadek utraty stateczności, w którym siła ytyczna spowoduje powstanie naprężeń normanych mniejszych od granicy proporcjonaności R H. odstawy teoretyczne sprężystego wyboczenia prętów prostych dał Euer wyprowadzając wzór na siłę ytyczną (wyboczeniową) przy ściskaniu pręta prostego podpartego dwustronnie przegubowo (rys. 4). Jako że warunki podparcia nie oeśają uprzywiejowanego kierunku wygięcia pręta, zatem wygięcie nastąpi w płaszczyźnie najmniejszej sztywności na zginanie = min. W stanie równowagi w postaci wygiętej pojawia się dodatkowo moment gnący, którego wartość w dowonym przeoju wynosi: Równanie osi ugiętej ma postać: Mg y (1) d y M g dx ()
5 BADANIE RĘTÓW NA WYBOCZENIE 5 y x y Stąd można zapisać: x Rys. 4. ręt prosty ściskany osiowo d y rzekształcając powyższą zaeżność otrzymuje się: ub gdzie dx d y 0 y dx y (3) (4) d y k y 0 dx, (5) k (6) Otrzymano równanie różniczkowe iniowe rzędu drugiego o stałych współczynnikach, da którego poszukuje się rozwiązania w postaci: y Csin kx Dcos kx (7) Uwzgędniamy warunki brzegowe w miejscach podparcia pręta w postaci: y x0 0 (8) 0 y x (9) Z warunku (8) wynika, iż D = 0. Równanie osi ugiętej przyjmuje postać: odstawiając warunek brzegowy (9) otrzymuje się: y Csin kx (10) Csin k 0 (11) Równanie powyższe jest spełnione w następujących przypadkach: a) C = 0, wówczas da każdego x otrzymuje się y = 0 wyboczenie nie występuje, a pręt pozostaje prosty (przypadek trywiany); b) sink = 0, co jest spełnione, gdy k = n, n = 0, 1,,...
6 BADANIE RĘTÓW NA WYBOCZENIE 6 Z warunku b) otrzymuje się: Wyznaczając z powyższego równania siłę uzyskuje się: k n (1) n (13) Da n = 0 otrzymuje się = 0. Z koei podstawiając n = 1 obicza się maksymaną wartość siły ściskającej, da której możiwe jest zachowanie równowagi pręta w postaci wygiętej jest to tzw. euerowska siła ytyczna: (14) Da tej wartości siły ytycznej równanie różniczkowe osi ugiętej przyjmuje postać: y Csin x (15) Tak więc oś ugięta jest sinusoidą, przy czym C y Jeśi za k podstawi się dasze wartości (k =, k = 3 itd.), wówczas otrzymuje się: 4 k 9 k 3 itd. Oś ugięta przyjmuje wówczas postać dwu, trzech ub więcej sinusoidanych półfa (rys. 5). Te większe wartości siły ytycznej nie mają praktycznego znaczenia, gdyż już po osiągnięciu pierwszej wartości ytycznej (da n = 1) siła powoduje wygięcie pręta w kształcie jednej półfai i nie jest możiwa zmiana tego kształtu. (16) (17) a) Rys. 5. ostaci wyboczenia da a) n = ; b) n = 3 b)
7 BADANIE RĘTÓW NA WYBOCZENIE 7 W ogónym przypadku podaje się zaeżność uwzgędniającą różne sposoby podparcia: gdzie: w długość wyboczeniowa pręta;, (18) min w współczynnik zaeżny od sposobu mocowania pręta (np. da mocowania dwustronnie przegubowego = 1). Jeżei chce się wyznaczyć naprężenia ytyczne, to siłę ytyczną naeży podzieić przez poe przeoju poprzecznego pręta A. Uzyskuje się wtedy zaeżność: gdzie: Ei, (19) min min Aw w I i promień bezwładności przeoju poprzecznego pręta. A Inaczej można zapisać zaeżność (19) w postaci: gdzie: smukłość pręta: E, (0) w (1) i Graficzną interpretacją wzoru (0) jest hiperboa Euera przedstawiona na rys. 6. Na rysunku tym przedstawiono również zaes stosowaności wzoru Euera. Wzór ten może być stosowany wyłącznie w zaesie sprężystym (da H ), czemu odpowiadają wartości smukłości. gr zywa doświadczana zywa Johnsona-Ostenfeda prosta Tetmajera-Jasińskiego H zywa Euera gr Rys. 6. Zaeżność naprężeń ytycznych od smukłości pręta uegającego wyboczeniu Wartość graniczną smukłości wyznacza się z zaeżności: E () gr H
8 BADANIE RĘTÓW NA WYBOCZENIE 8 W zaesie sprężysto-pastycznym (posprężystym) stosuje się przeważnie jedną z dwóch aproksymacji: 1) prostą Tetmajera-Jasińskiego: ) paraboą Johnsona-Ostenfeda: A B (3) a b (4) Współczynniki materiałowe A i B oraz a i b wyznacza się da danego materiału pręta odpowiednio z zaeżności: A R Re RH RH B E a R e e R b 4E W iteraturze można spotkać gotowe tabice współczynników A, B oraz a i b da różnych materiałów. W przypadku obiczeń wytrzymałościowych na wyboczenie naeży zawsze sprawdzić, w jakim przedziae mieści się smukłość pręta i w zaeżności od tego stosować odpowiednie wzory. Jeżei gr, to można stosować wzór Euera (18) na siłę ytyczną. Jeżei < gr, to naeży stosować wzory do wyboczenia sprężysto-pastycznego, czyi odpowiednio: aproksymację prostą Tetmajera-Jasińskiego (3) ub paraboą Johnsona-Ostenfeda (4). Naeży ponadto zwrócić uwagę, że smukłość pręta zaeży tyko od wiekości geometrycznych pręta (1), zaś smukłość graniczna gr zaeży tyko od własności materiałowych (). e (5) 3.3 Wyboczenie pręta o wstępnej zywiźnie Rozważany jest pręt zamocowany obustronnie przegubowo jak na rys. 7. x y y y 1 y 0 x Rys. 7. Wyboczenie pręta o wstępnej zywiźnie
9 BADANIE RĘTÓW NA WYBOCZENIE 9 Zakłada się, że pręt (np. na skutek wieootnego przeprowadzania na nim doświadczenia) nie jest prosty, ecz posiada pewną niewieką zywiznę. Niech oś tego pręta przed przyłożeniem siły będzie zywą, którą można opisać równaniem: y0 y0 x, x 0, (6) rzyłożenie do pręta osiowej siły spowoduje, że każdy punkt osi o współrzędnej x przemieści się o wiekość y 1 (x). Tak więc zywą będącą teraz osią pręta można zapisać w postaci: Równanie osi ugiętej beki ma postać: gdzie: czyi: y x y x y x (7) 1 0 d y M g dx, (8) M y ( y y ), (9) g 1 0 d y 1 0 dx (30) y y o podzieeniu obu stron przez i uporządkowaniu otrzymuje się: gdzie: d y K y 1 K y0 dx, (31) K (3) Zajmijmy się obecnie osią pręta przed odkształceniem. Wiadomo, że oś pręta wyboczonego można opisać równaniem: y0 Csin x, (33) gdzie: C y y (34) 0 W pręcie pierwotnie prostym wskutek wieootnego przeprowadzania na nim doświadczenia, podczas którego jego oś wyginała się zgodnie z równaniem (33), powstały pewne niewiekie odkształcenia trwałe. Jest zatem uzasadnione przyjąć, że po pewnym czasie oś prosta stała się zywą o równaniu (33) oczywiście y 0 jest bardzo małe. odstawiając zaeżność (33) do równania (31) otrzymuje się: d y K y 1 K y0sin dx x (35) Zgodnie z metodą przewidywań da zwyczajnych niejednorodnych równań różniczkowych o stałych współczynnikach rozwiązania równania (35) poszukuje się w postaci anaogicznej do jego prawej strony. Rozwiązanie to powinno spełniać ponadto warunki brzegowe, które w tym przypadku przyjmują postać: y 0 y 0 (36) 1 1
10 BADANIE RĘTÓW NA WYBOCZENIE 10 Łatwo sprawdzić, że funkcja oeśona równaniem: y1( x) csin x (37) spełnia warunki (36). Wystarczy zatem dobrać parametr c tak, aby spełniała ona również równanie (35). odstawiając (37) do (35) otrzymuje się po uporządkowaniu: ck x x sin K y 0 sin Aby równanie powyższe było tożsamością, musi być spełniony warunek: Wprowadza się oznaczenie: c K K y0 y0 1 K (38) (39) K (40) Uwzgędniając powyższe oznaczenie w równaniu (39) otrzymuje się: c y 1 Tak więc rozwiązaniem równania (35) jest funkcja: rzyrost strzałki ugięcia wynosi: 0 (41) sin x y1 y0 (4) 1 y x y y Całkowitą strzałkę ugięcia można oeśić z zaeżności: y0 y y0 y1 y0 y0 1 1 Uwzgędniając oznaczenie (40) w powyższej zaeżności otrzymuje się: ub y y 0 y 0 1 (43) (44) (45) y1 y1 y0 (46) y1 Równanie to jest iniowe ze wzgędu na zmienne y 1 oraz, co można przedstawić na wyesie (rys. 8). Tangens kąta nachyenia prostej na wyesie jest równy : q tg (47) p
11 BADANIE RĘTÓW NA WYBOCZENIE 11 y 1 q p y 1 Rys. 8. Graficzne przedstawienie zaeżności (46) 4. RZEBIEG ĆWICZENIA Ćwiczenie przeprowadzane jest na stanowisku przedstawionym na rys. 9. Umożiwia ono obciążanie osiowe ściskające pręta, jak również obciążanie w kierunku bocznym zginanie. Rys. 9. Schemat stanowiska do badania prętów na wyboczenie Sposób przeprowadzenia ćwiczenia zostanie przedstawiony w trakcie zajęć aboratoryjnych.
12 BADANIE RĘTÓW NA WYBOCZENIE 1 Tabea 1 zawiera dane wszystkich prętów, które mogą być wykorzystywanych podczas przeprowadzania badań. Tab. 1. ręty stosowane w ćwiczeniu Oznaczenie Materiał E [Ga] Długość [mm] Szerokość b [mm] Grubość h [mm] Sposób zamocowania S1 S S3 S4 S5 Sta narzędziowa 90MnCrV8 Sta narzędziowa 90MnCrV8 Sta narzędziowa 90MnCrV8 Sta narzędziowa 90MnCrV8 Sta narzędziowa 90MnCrV rzegub/przegub rzegub/przegub rzegub/przegub rzegub/przegub rzegub/przegub S6 Sta narzędziowa 90MnCrV Utwierdzenie sztywne/ przegub S7 S8 S9 Sta narzędziowa 90MnCrV8 Stop auminium AMgSiO0.5 F Mosiądz CuZn40b Utwierdzenie sztywne/ utwierdzenie sztywne rzegub/przegub rzegub/przegub S10 Miedź E-Cu rzegub/przegub S11 Kompozyt rzegub/przegub 5. ORACOWANIE WYNIKÓW I WYTYCZNE DO SRAWOZDANIA Sprawozdanie powinno zawierać: I. Ce ćwiczenia II. Krótki wstęp teoretyczny III. Szkic i opis stanowiska pomiarowego, uwzgędniając badane pręty (materiał, przeój, długość, E) IV. rotokół pomiarowy V. Część obiczeniową, w której naeży: 1. Wyiczyć główne centrane momenty bezwładności przeoju (przeojów) i znaeźć wartość I min.. Da wszystkich zastosowanych prętów i sposobów mocowania: wyiczyć teoretyczną wartość siły ytycznej z zaeżności (18) przyjmując założenia o materiae prętów z tabei poniżej;
13 BADANIE RĘTÓW NA WYBOCZENIE 13 VI. y1 sporządzić wyes zaeżności y1 f ; wyznaczyć z wyesu doświadczaną wartość siły ytycznej obiczyć wzgędny błąd pomiaru 100% ; d d ; oeśić rodzaj materiału, z którego wykonano badany pręt wyiczyć ze wzoru (18) moduł Younga E podstawiając jako siłę ytyczną. Wnioski z ćwiczenia d 6. RZYKŁADOWE YTANIA KONTROLNE 1. Omów rodzaje równowagi.. Co to jest: stateczność, utrata stateczności, siła ytyczna? 3. Co nazywamy wyboczeniem (sprężystym) pręta? 4. Co to jest siła ytyczna? 5. Omów wzór Euera na siłę ytyczną. 6. Jak jest zaes stosowania wzoru Euera? 7. Jak można wyiczyć siłę ytyczną w zaesie posprężystym? 8. Co to jest smukłość pręta? Jak wyznacza się smukłość graniczną? 7. LITERATURA 1. Beuch W., Burczyński T., Fedeiński., John A., Kokot G., Kuś W.: Laboratorium z wytrzymałości materiałów. Wyd. oitechniki Śąskiej, Sypt nr 85, Giwice, 00.. Bąk R., Burczyński T.: Wytrzymałość materiałów z eementami ujęcia komputerowego, WNT, Warszawa Dyąg Z., Jakubowicz A., Orłoś Z.: Wytrzymałość materiałów, t. I-II, WNT, Warszawa Timoshenko S..: Teoria stateczności prętów, Arkady Czy wiesz, że Instytut Mechaniki i Inżynierii Obiczeniowej oferuje pięć specjaności prowadzonych na II stopniu studiów, na kierunkach Mechanika i Budowa Maszyn, Automatyka i Robotyka oraz Mechatronika. Więcej dowiesz się na stronie:
14 Instytut Mechaniki i Inżynierii Obiczeniowej Wydział Mechaniczny Technoogiczny, oitechnika Śąska ROTOKÓŁ Z ĆWICZENIA BADANIE STATECZNOŚCI RĘTÓW Kierunek: Grupa: Sekcja: Data wykonania ćwiczenia: rowadzący: odpis I II III Oznaczenie pręta Oznaczenie pręta Oznaczenie pręta Rodzaj materiału Rodzaj materiału Rodzaj materiału Moduł Younga E [Ga] Długość pręta [mm] Szerokość pręta b [mm] Grubość pręta h [mm] Moduł Younga E [Ga] Długość pręta [mm] Szerokość pręta b [mm] Grubość pręta h [mm] Moduł Younga E [Ga] Długość pręta [mm] Szerokość pręta b [mm] Grubość pręta h [mm] Mocowanie góra: Mocowanie góra: Mocowanie góra: Mocowanie dół: Mocowanie dół: Mocowanie dół: Lp [N] f [mm] Lp [N] f [mm] Lp [N] f [mm]
Badanie prętów na wyboczenie
Instytut Mechaniki i Inżynierii Obiczeniowej Wydział Mechaniczny Technoogiczny oitechnika Śąska www.imio.pos.p fb.com/imiopos twitter.com/imiopos LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW Badanie prętów na
Bardziej szczegółowoBADANIE PRĘTÓW NA WYBOCZENIE
Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki Wydział Mechaniczny Technoogiczny oitechnika Śąska LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW BADANIE RĘTÓW NA WYBOCZENIE BADANIE RĘTÓW NA WYBOCZENIE
Bardziej szczegółowoLABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW. Ćwiczenie 8 WYBOCZENIE PRĘTÓW ŚCISKANYCH Cel ćwiczenia
LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW Ćwiczenie 8 WYBOCZENIE RĘTÓW ŚCISKANYCH 8.1. Ce ćwiczenia Ceem ćwiczenia jest doświadczane wyznaczenie siły krytycznej pręta ściskanego podpartego przegubowo na obu
Bardziej szczegółowoLaboratorium Wytrzymałości Materiałów. Wyboczenie
KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium Wytrzymałości Materiałów Wyboczenie Opracował : dr inż. Leus Mariusz Szczecin 014 r. 1. Cel ćwiczenia
Bardziej szczegółowoWyboczenie ściskanego pręta
Wszelkie prawa zastrzeżone Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: 1. Wstęp Wyboczenie ściskanego pręta oprac. dr inż. Ludomir J. Jankowski Zagadnienie wyboczenia
Bardziej szczegółowoPolitechnika Białostocka
Politechnika Białostocka WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA Katedra Geotechniki i Mechaniki Konstrukcji Wytrzymałość Materiałów Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 5 Temat ćwiczenia:
Bardziej szczegółowoWytrzymałość Materiałów
Wytrzymałość Materiałów Stateczność prętów prostych Równowaga, utrata stateczności, siła krytyczna, wyboczenie w zakresie liniowo sprężystym i poza liniowo sprężystym, projektowanie elementów konstrukcyjnych
Bardziej szczegółowoUTRATA STATECZNOŚCI. O charakterze układu decyduje wielkośćobciążenia. powrót do pierwotnego położenia. stabilnego do stanu niestabilnego.
Metody obiczeniowe w biomechanice UTRATA STATECZNOŚCI STATECZNOŚĆ odpornośćna małe zaburzenia. Układ stabiny po małym odchyeniu od stanu równowagi powrót do pierwotnego położenia. Układ niestabiny po małym
Bardziej szczegółowom Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):
Ruch drgający -. Ruch drgający Ciało jest sprężyste, jeżei odzyskuje pierwotny kształt po ustaniu działania siły, która ten kształt zmieniła. Właściwość sprężystości jest ograniczona, to znaczy, że przy
Bardziej szczegółowoWYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ GAUSSA
Ćwiczenie WYZNACZANIE MOUŁU SZTYWNOŚCI METOĄ YNAMICZNĄ GAUSSA.1. Wiadomości ogóne Pod wpływem sił zewnętrznych ciała stałe uegają odkształceniom tzn. zmieniają swoje wymiary oraz kształt. Jeżei po usunięciu
Bardziej szczegółowoNOŚNOŚĆ GRANICZNA
4. NOŚNOŚĆ GRANICZNA 4. 4. NOŚNOŚĆ GRANICZNA 4.. Wstęp Nośność graniczna wartość obciążenia, przy którym konstrukcja traci zdoność do jego przenoszenia i staje się układem geometrycznie zmiennym. Zastosowanie
Bardziej szczegółowoPrzykłady (twierdzenie A. Castigliano)
23 Przykłady (twierdzenie A. Castigiano) Zadanie 8.4.1 Obiczyć maksymane ugięcie beki przedstawionej na rysunku (8.2). Do obiczeń przyjąć następujące dane: q = 1 kn m, = 1 [m], E = 2 17 [Pa], d = 4 [cm],
Bardziej szczegółowoLaboratorium Dynamiki Maszyn
Laboratorium Dynamiki Maszyn Laboratorium nr 5 Temat: Badania eksperymentane drgań wzdłużnych i giętnych układów mechanicznych Ce ćwiczenia:. Zbudować mode o jednym stopniu swobody da zadanego układu mechanicznego.
Bardziej szczegółowo11. WŁASNOŚCI SPRĘŻYSTE CIAŁ
11. WŁANOŚCI PRĘŻYTE CIAŁ Efektem działania siły może być przyspieszanie ciała, ae może być także jego deformacja. Przykładami tego ostatniego są np.: rozciąganie gumy a także zginanie ub rozciąganie pręta.
Bardziej szczegółowoIntegralność konstrukcji
1 Integraność konstrukcji Wykład Nr 2 Inżynierska i rzeczywista krzywa rozciągania Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji http://zwmik.imir.agh.edu.p/dydaktyka/imir/index.htm
Bardziej szczegółowoPolitechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH. Doświadczalne sprawdzenie zasady superpozycji
Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Doświadczalne sprawdzenie zasady superpozycji Numer ćwiczenia: 8 Laboratorium
Bardziej szczegółowoWstęp. Numeryczne Modelowanie Układów Ciągłych Podstawy Metody Elementów Skończonych. Warunki brzegowe. Elementy
Wstęp Numeryczne Modeowanie Układów Ciągłych Podstawy Metody Eementów Skończonych Metoda Eementów Skończonych służy do rozwiązywania probemów początkowo-brzegowych, opisywanych równaniami różniczkowymi
Bardziej szczegółowoWykresy momentów gnących: belki i proste ramy płaskie Praca domowa
ODSTAWY WYTRZYMAŁOŚCI MATERIAŁÓW (OWYM) Wykresy momentów gnących: beki i proste ramy płaskie raca domowa Automatyka i Robotyka, sem. 3. Dr inŝ.. Anna Dąbrowska-Tkaczyk LITERATURA 1. Lewiński J., Wiczyński
Bardziej szczegółowoPodstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany
Bardziej szczegółowoLABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych
LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach
Bardziej szczegółowoWytrzymałość materiałów Strength of materials
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/201 Wytrzymałość materiałów Strength of materials A. USYTUOWANIE MODUŁU W
Bardziej szczegółowoSił Si y y w ewnętrzne (1)(1 Mamy my bry r łę y łę mate t r e iralną obc ob iążon ż ą u kła k de d m e si m ł si ł
echanika ogóna Wykład nr 5 Statyczna wyznaczaność układu. Siły wewnętrzne. 1 Stopień statycznej wyznaczaności Stopień zewnętrznej statycznej wyznaczaności n: Beka: n=rgrs; Rama: n=r3ogrs; rs; Kratownica:
Bardziej szczegółowoLiczba godzin Liczba tygodni w tygodniu w semestrze
15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: mechatronika systemów energetycznych Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze
Bardziej szczegółowoWyznaczanie modułu Younga metodą strzałki ugięcia
Ćwiczenie M12 Wyznaczanie modułu Younga metodą strzałki ugięcia M12.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu Younga różnych materiałów poprzez badanie strzałki ugięcia wykonanych
Bardziej szczegółowoSTATYCZNA PRÓBA SKRĘCANIA
Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie STATYCZNA PRÓBA SKRĘCANIA Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Skręcanie pręta występuje w przypadku
Bardziej szczegółowoPolitechnika Białostocka
Politechnika Białostocka WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA Katedra Geotechniki i Mechaniki Konstrukcji Wytrzymałość Materiałów Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 6 Temat ćwiczenia:
Bardziej szczegółowoPolitechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH
Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Próba skręcania pręta o przekroju okrągłym Numer ćwiczenia: 4 Laboratorium z
Bardziej szczegółowo2ql [cm] Przykład Obliczenie wartości obciażenia granicznego układu belkowo-słupowego
Przykład 10.. Obiczenie wartości obciażenia granicznego układu bekowo-słupowego Obiczyć wartość obciążenia granicznego gr działającego na poniższy układ. 1 1 σ p = 00 MPa = m 1-1 - - 1 8 1 [cm] Do obiczeń
Bardziej szczegółowoAl.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III
KATEDRA MECHANIKI MATERIAŁÓW POLITECHNIKA ŁÓDZKA DEPARTMENT OF MECHANICS OF MATERIALS TECHNICAL UNIVERSITY OF ŁÓDŹ Al.Politechniki 6, 93-590 Łódź, Poland, Tel/Fax (48) (42) 631 35 51 Mechanika Budowli
Bardziej szczegółowoAiR_WM_3/11 Wytrzymałość Materiałów Strength of Materials
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 013/014 AiR_WM_3/11 Wytrzymałość Materiałów Strength of Materials A. USYTUOWANIE
Bardziej szczegółowoPodstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia
Wytrzymałość materiałów dział mechaniki obejmujący badania teoretyczne i doświadczalne procesów odkształceń i niszczenia ciał pod wpływem różnego rodzaju oddziaływań (obciążeń) Podstawowe pojęcia wytrzymałości
Bardziej szczegółowoMateriały dydaktyczne. Semestr IV. Laboratorium
Materiały dydaktyczne Wytrzymałość materiałów Semestr IV Laboratorium 1 Temat: Statyczna zwykła próba rozciągania metali. Praktyczne przeprowadzenie statycznej próby rozciągania metali, oraz zapoznanie
Bardziej szczegółowoZ-LOG-0133 Wytrzymałość materiałów Strength of materials
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-LOG-0133 Wytrzymałość materiałów Strength of materials A. USYTUOWANIE
Bardziej szczegółowoLABORATORIUM Z WYTRZYMAŁOŚCI MATERIAŁÓW
Praca zbiorowa pod redakcją: Tadeusza BURCZYŃSKIEGO, Witolda BELUCHA, Antoniego JOHNA LABORATORIUM Z WYTRZYMAŁOŚCI MATERIAŁÓW Autorzy: Witold Beluch, Tadeusz Burczyński, Piotr Fedeliński, Antoni John,
Bardziej szczegółowoPrzykład 7.3. Belka jednoprzęsłowa z dwoma wspornikami
Przykład.. eka jednoprzęsłowa z dwoma wspornikami Narysować wykresy sił przekrojowych da poniższej beki. α Rozwiązanie Rozwiązywanie zadania rozpocząć naeży od oznaczenia punktów charakterystycznych, składowych
Bardziej szczegółowoMechanika i Budowa Maszyn
Mechanika i Budowa Maszyn Materiały pomocnicze do ćwiczeń Wyznaczanie sił wewnętrznych w belkach statycznie wyznaczalnych Andrzej J. Zmysłowski Andrzej J. Zmysłowski Wyznaczanie sił wewnętrznych w belkach
Bardziej szczegółowoZ-LOGN Wytrzymałość materiałów Strength of materials
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-LOGN1-0133 Wytrzymałość materiałów Strength of materials A. USYTUOWANIE
Bardziej szczegółowoTemat 2 (2 godziny) : Próba statyczna ściskania metali
Temat 2 (2 godziny) : Próba statyczna ściskania metali 2.1. Wstęp Próba statyczna ściskania jest podstawowym sposobem badania materiałów kruchych takich jak żeliwo czy beton, które mają znacznie lepsze
Bardziej szczegółowoDRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
Bardziej szczegółowoRozciąganie i ściskanie prętów naprężenia normalne, przemieszczenia 2
Rozciąganie i ściskanie prętów naprężenia normane, przemieszczenia W przypadku rozciągania/ściskania pręta jego obciążenie stanowi zbiór sił czynnych wzdłuż osi pręta (oś x ). a rys..a przedstawiono przykład
Bardziej szczegółowoRozdział 3: Badanie i interpretacja drgań na płaszczyźnie fazowej. Część 1 Odwzorowanie drgań oscylatora liniowego na płaszczyźnie fazowej
WYKŁAD 5 Rozdział 3: Badanie i interpretacja drgań na płaszczyźnie fazowej Część 1 Odwzorowanie drgań oscyatora iniowego na płaszczyźnie fazowej 3.1. Płaszczyzna fazowa, trajektoria fazowa, obraz fazowy
Bardziej szczegółowoZestaw pytań z konstrukcji i mechaniki
Zestaw pytań z konstrukcji i mechaniki 1. Układ sił na przedstawionym rysunku a) jest w równowadze b) jest w równowadze jeśli jest to układ dowolny c) nie jest w równowadze d) na podstawie tego rysunku
Bardziej szczegółowoPrzykład 9.2. Wyboczenie słupa o dwóch przęsłach utwierdzonego w fundamencie
rzykład 9.. Wyboczenie słupa o dwóch przęsłach utwierdzonego w undamencie Wyznaczyć wartość krytyczną siły obciążającej głowicę słupa, dla słupa przebiegającego w sposób ciągły przez dwie kondygnacje budynku.
Bardziej szczegółowoDoświadczalne sprawdzenie twierdzeń Bettiego i Maxwella LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny Politechnika Śląska www.imio.polsl.pl fb.com/imiopolsl twitter.com/imiopolsl LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW Doświadczalne
Bardziej szczegółowoMechanika i wytrzymałość materiałów Kod przedmiotu
Mechanika i wytrzymałość materiałów - opis przedmiotu Informacje ogólne Nazwa przedmiotu Mechanika i wytrzymałość materiałów Kod przedmiotu 06.9-WM-IB-P-22_15W_pNadGenRDG4C Wydział Kierunek Wydział Mechaniczny
Bardziej szczegółowoMateriały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron)
Jerzy Wyrwał Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron) Uwaga. Załączone materiały są pomyślane jako pomoc do zrozumienia informacji podawanych na wykładzie. Zatem ich
Bardziej szczegółowoINSTRUKCJA DO CWICZENIA NR 5
INTRUKCJA DO CWICZENIA NR 5 Temat ćwiczenia: tatyczna próba ściskania materiałów kruchych Celem ćwiczenia jest wykonanie próby statycznego ściskania materiałów kruchych, na podstawie której można określić
Bardziej szczegółowo2P 2P 5P. 2 l 2 l 2 2l 2l
Przykład 10.. Obiczenie obciażenia granicznego Obiczyć obciążenie graniczne P gr da poniższej beki. Przekrój poprzeczny i granica pastyczności są stałe. Graniczny moment pastyczny, przy którym następuje
Bardziej szczegółowoZginanie proste belek
Zginanie belki występuje w przypadku obciążenia działającego prostopadle do osi belki Zginanie proste występuje w przypadku obciążenia działającego w płaszczyźnie głównej zx Siły przekrojowe w belkach
Bardziej szczegółowo17. 17. Modele materiałów
7. MODELE MATERIAŁÓW 7. 7. Modele materiałów 7.. Wprowadzenie Podstawowym modelem w mechanice jest model ośrodka ciągłego. Przyjmuje się, że materia wypełnia przestrzeń w sposób ciągły. Możliwe jest wyznaczenie
Bardziej szczegółowoWytrzymałość materiałów Strength of materials
Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu (taki jak w USOS) Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego
Bardziej szczegółowoTemat: Mimośrodowe ściskanie i rozciąganie
Wytrzymałość Materiałów II 2016 1 Przykładowe tematy egzaminacyjne kursu Wytrzymałość Materiałów II Temat: Mimośrodowe ściskanie i rozciąganie 1. Dany jest pręt obciążony mimośrodowo siłą P. Oblicz naprężenia
Bardziej szczegółowoĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI
Łukasz Faściszewski, gr. KBI2, sem. 2, Nr albumu: 75 201; rok akademicki 2010/11. ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI Stateczność ram wersja komputerowa 1. Schemat statyczny ramy i dane materiałowe
Bardziej szczegółowoĆw. 4. Wyznaczanie modułu Younga z ugięcia
KATEDRA FIZYKI STOSOWANEJ P R A C O W N I A F I Z Y K I Ćw.. Wyznaczanie modułu Younga z ugięcia Wprowadzenie Ze wzgędu na budowę struktury cząsteczkowej, ciała stałe możemy podzieić na amorficzne oraz
Bardziej szczegółowoMechanika i wytrzymałość materiałów instrukcja do ćwiczenia laboratoryjnego
Mechanika i wytrzymałość materiałów instrukcja do ćwiczenia laboratoryjnego Cel ćwiczenia STATYCZNA PRÓBA ŚCISKANIA autor: dr inż. Marta Kozuń, dr inż. Ludomir Jankowski 1. Zapoznanie się ze sposobem przeprowadzania
Bardziej szczegółowoWytrzymałość materiałów. Budowa i eksploatacja maszyn I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr../2 z dnia.... 202r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu (taki jak w USOS) Nazwa modułu Wytrzymałość materiałów Nazwa modułu w języku angielskim Strength
Bardziej szczegółowoPOMIAR STRZAŁKI UGIĘCIA DŹWIGARA NOŚNEGO SUWNICY JEDNODŹWIGAROWEJ
INSTYTUT KONSTRUKCJI MASZYN KIERUNEK: TRANSPORT SPECJALNOŚĆ: SYSTEMY I URZĄDZENIA TRANSPORTOWE PRZEDMIOT: SYSTEMU I URZĄDZENIA TRANSPORTU BLISKIEGO LABORATORIUM POMIAR STRZAŁKI UGIĘCIA DŹWIGARA NOŚNEGO
Bardziej szczegółowoĆ w i c z e n i e K 4
Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa
Bardziej szczegółowoWyznaczenie reakcji belki statycznie niewyznaczalnej
Wyznaczenie reakcji belki statycznie niewyznaczalnej Opracował : dr inż. Konrad Konowalski Szczecin 2015 r *) opracowano na podstawie skryptu [1] 1. Cel ćwiczenia Celem ćwiczenia jest sprawdzenie doświadczalne
Bardziej szczegółowoSTATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH
Część. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH.. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH Rozwiązując układy niewyznaczalne dowolnie obciążone, bardzo często pomijaliśmy wpływ sił normalnych i
Bardziej szczegółowoRozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6
ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch 6 Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs. 6.. s. 6. rzed przstąpieniem
Bardziej szczegółowoWYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA
Ćwiczenie 58 WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA 58.1. Wiadomości ogólne Pod działaniem sił zewnętrznych ciała stałe ulegają odkształceniom, czyli zmieniają kształt. Zmianę odległości między
Bardziej szczegółowoWprowadzenie do Techniki. Materiały pomocnicze do projektowania z przedmiotu: Ćwiczenie nr 2 Przykład obliczenia
Materiały pomocnicze do projektowania z przedmiotu: Wprowadzenie do Techniki Ćwiczenie nr 2 Przykład obliczenia Opracował: dr inż. Andrzej J. Zmysłowski Katedra Podstaw Systemów Technicznych Wydział Organizacji
Bardziej szczegółowoWyznaczanie współczynnika sprężystości sprężyn i ich układów
Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie
Bardziej szczegółowoSpis treści. Wstęp Część I STATYKA
Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.
Bardziej szczegółowoPolitechnika Śląska w Gliwicach Wydział Organizacji i Zarządzania Katedra Podstaw Systemów Technicznych
Przedmiot: Mechanika stosowana Liczba godzin zajęć dydaktycznych: Politechnika Śląska w Gliwicach Wydział Organizacji i Zarządzania Katedra Podstaw Systemów Technicznych Studia magisterskie: wykład 30
Bardziej szczegółowoWyznaczanie modułu sztywności metodą Gaussa
Ćwiczenie M13 Wyznaczanie modułu sztywności metodą Gaussa M13.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu sztywności stali metodą dynamiczną Gaussa. M13.2. Zagadnienia związane z
Bardziej szczegółowoPROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA
POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA Dla zadanego układu należy 1) Dowolną metodą znaleźć rozkład sił normalnych
Bardziej szczegółowo2.2 Wyznaczanie modułu Younga na podstawie ścisłej próby rozciągania
UT-H Radom Instytut Mechaniki Stosowanej i Energetyki Laboratorium Wytrzymałości Materiałów instrukcja do ćwiczenia 2.2 Wyznaczanie modułu Younga na podstawie ścisłej próby rozciągania I ) C E L Ć W I
Bardziej szczegółowo( ) Płaskie ramy i łuki paraboliczne. η =. Rozważania ograniczymy do łuków o osi parabolicznej, opisanej funkcją
..7. Płaskie ramy i łuki paraboiczne Wstęp W bieżącym podpunkcie omówimy kika przykładów zastosowania metody sił do obiczeń sił wewnętrznych w płaskich ramach i łukach paraboicznych statycznie niewyznaczanych,
Bardziej szczegółowo5. Indeksy materiałowe
5. Indeksy materiałowe 5.1. Obciążenia i odkształcenia Na poprzednich zajęciach poznaliśmy różne możliwe typy obciążenia materiału. Na bieżących, skupimy się na zagadnieniu projektowania materiałów tak,
Bardziej szczegółowoWytrzymałość materiałów. Wzornictwo przemysłowe I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr../1 z dnia.... 01r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu (taki jak w USOS) Nazwa modułu Wytrzymałość materiałów Nazwa modułu w języku angielskim Strength
Bardziej szczegółowoWYZNACZANIE MODUŁU YOUNGA PRZEZ ZGINANIE
ĆWICZENIE 4 WYZNACZANIE MODUŁU YOUNGA PRZEZ ZGINANIE Wprowadzenie Pręt umocowany na końcach pod wpływem obciążeniem ulega wygięciu. własnego ciężaru lub pod Rys. 4.1. W górnej warstwie pręta następuje
Bardziej szczegółowoPODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH
1 Przedmowa Okładka CZĘŚĆ PIERWSZA. SPIS PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH 1. STAN NAPRĘŻENIA 1.1. SIŁY POWIERZCHNIOWE I OBJĘTOŚCIOWE 1.2. WEKTOR NAPRĘŻENIA 1.3. STAN NAPRĘŻENIA W PUNKCIE 1.4. RÓWNANIA
Bardziej szczegółowoRÓWNANIA RÓŻNICZKOWE WYKŁAD 4
RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 Obszar określoności równania Jeżeli występująca w równaniu y' f ( x, y) funkcja f jest ciągła, to równanie posiada rozwiązanie. Jeżeli f jest nieokreślona w punkcie (x 0,
Bardziej szczegółowoRozwiązanie stateczności ramy MES
Rozwiązanie stateczności ramy MES Rozwiążemy stateczność ramy pokazanej na Rys.. λkn EA24.5 kn EI4kNm 2 d 5,r 5 d 6,r 6 2 d 4,r 4 4.m e e2 d 3,r 3 d,r X d 9,r 9 3 d 7,r 7 3.m d 2,r 2 d 8,r 8 Y Rysunek
Bardziej szczegółowoKATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI. Laboratorium. Mechaniki Technicznej
KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI Laboratorium Mechaniki Technicznej Ćwiczenie 4 Badanie masowych momentów bezwładności Ce ćwiczenia Wyznaczanie masowego momentu bezwładności bryły metodą
Bardziej szczegółowoPrzykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił.
Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy Obliczyć wektor główny i moment główny tego układu sił. Wektor główny układu sił jest równy Moment główny układu wynosi Przykład
Bardziej szczegółowoZaawansowane metody numeryczne
Wykład 7 a szeregi Fouriera (zarówno w przypadku ciągłym, jak i dyskretnym) jest szczegónym przypadkiem aproksymacji funkcjami ortogonanymi. Anaitycznie rozwiązanie zadania aproksymacji trygonometrycznej
Bardziej szczegółowoPytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie
Bardziej szczegółowo6. ZWIĄZKI FIZYCZNE Wstęp
6. ZWIĄZKI FIZYCZN 1 6. 6. ZWIĄZKI FIZYCZN 6.1. Wstęp Aby rozwiązać jakiekolwiek zadanie mechaniki ośrodka ciągłego musimy dysponować 15 niezależnymi równaniami, gdyż tyle mamy niewiadomych: trzy składowe
Bardziej szczegółowo700 [kg/m 3 ] * 0,012 [m] = 8,4. Suma (g): 0,138 Ze względu na ciężar wykończenia obciążenie stałe powiększono o 1%:
Producent: Ryterna modul Typ: Moduł kontenerowy PB1 (długość: 6058 mm, szerokość: 2438 mm, wysokość: 2800 mm) Autor opracowania: inż. Radosław Noga (na podstawie opracowań producenta) 1. Stan graniczny
Bardziej szczegółowoStateczność ramy. Wersja komputerowa
Zakład Mechaniki Budowli Prowadzący: dr hab. inż. Przemysław Litewka Ćwiczenie projektowe 2 Stateczność ramy. Wersja komputerowa Daniel Sworek gr. KB2 Rok akademicki 1/11 Semestr 2, II Grupa: KB2 Daniel
Bardziej szczegółowoLINIOWA MECHANIKA PĘKANIA
Podstawowe informacje nt. LINIOW MECHNIK PĘKNI Wytrzymałość materiałów II J. German KONCEPCJ CŁKI J 1 Podstawy teoretyczne Sprężyste (iniowo b nieiniowo), jednorodne i anizotropowe continm materiane o
Bardziej szczegółowoStateczność ramy - wersja komputerowa
Stateczność ramy - wersja komputerowa Cel ćwiczenia : - Obliczenie wartości obciążenia krytycznego i narysowanie postaci wyboczenia. utraty stateczności - Obliczenie przemieszczenia i sił przekrojowych
Bardziej szczegółowoSPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY.
ĆWICZENIE 5 SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY. Wprowadzenie Odkształcenie, którego doznaje ciało pod działaniem
Bardziej szczegółowoRodzaje obciążeń, odkształceń i naprężeń
Rodzaje obciążeń, odkształceń i naprężeń 1. Podział obciążeń i odkształceń Oddziaływania na konstrukcję, w zależności od sposobu działania sił, mogą być statyczne lun dynamiczne. Obciążenia statyczne występują
Bardziej szczegółowoĆ w i c z e n i e K 3
Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa
Bardziej szczegółowoĆWICZENIE 15 WYZNACZANIE (K IC )
POLITECHNIKA WROCŁAWSKA Imię i Nazwisko... WYDZIAŁ MECHANICZNY Wydzia ł... Wydziałowy Zakład Wytrzymałości Materiałów Rok... Grupa... Laboratorium Wytrzymałości Materiałów Data ćwiczenia... ĆWICZENIE 15
Bardziej szczegółowoWSTĘP DO TEORII PLASTYCZNOŚCI
13. WSTĘP DO TORII PLASTYCZNOŚCI 1 13. 13. WSTĘP DO TORII PLASTYCZNOŚCI 13.1. TORIA PLASTYCZNOŚCI Teoria plastyczności zajmuje się analizą stanów naprężeń ciał, w których w wyniku działania obciążeń powstają
Bardziej szczegółowoCzęść 2 8. METODA CROSSA 1 8. METODA CROSSA Wprowadzenie
Część. ETOA CROSSA 1.. ETOA CROSSA.1. Wprowadzenie etoda Crossa pozwaa w łatwy sposób okreśić wartości sił wewnętrznych w układach niewyznaczanych, jednak dokładność obiczeń zaeży od iczby przeprowadzonych
Bardziej szczegółowoMetody badań materiałów konstrukcyjnych
Wyznaczanie stałych materiałowych Nr ćwiczenia: 1 Wyznaczyć stałe materiałowe dla zadanych materiałów. Maszyna wytrzymałościowa INSTRON 3367. Stanowisko do badania wytrzymałości na skręcanie. Skalibrować
Bardziej szczegółowoMechanika Analityczna i Drgania
Mechanika naityczna i rgania Zasada prac przygotowanych dr inż. Sebastian akuła Wydział nżynierii Mechanicznej i Robotyki Katedra Mechaniki i Wibroakustyki mai: spakua@agh.edu.p dr inż. Sebastian akuła
Bardziej szczegółowoPrzykład 1.8. Wyznaczanie obciąŝenia granicznego dla układu prętowego metodą kinematyczną i statyczną
Przykład 1.8. Wyznaczanie obciąŝenia granicznego dla układu prętowego metodą kinematyczną i statyczną Analizując równowagę układu w stanie granicznym wyznaczyć obciąŝenie graniczne dla zadanych wartości
Bardziej szczegółowoDr inż. Janusz Dębiński
Wytrzymałość materiałów ćwiczenia projektowe 5. Projekt numer 5 przykład 5.. Temat projektu Na rysunku 5.a przedstawiono belkę swobodnie podpartą wykorzystywaną w projekcie numer 5 z wytrzymałości materiałów.
Bardziej szczegółowoKarta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu:
Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia Przedmiot: Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: MT 1 N 0 3 19-0_1 Rok: II Semestr: 3 Forma studiów:
Bardziej szczegółowoDefi f nicja n aprę r żeń
Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie
Bardziej szczegółowoWytrzymałość Materiałów II studia zaoczne inżynierskie I stopnia kierunek studiów Budownictwo, sem. IV materiały pomocnicze do ćwiczeń
Wytrzymałość Materiałów II studia zaoczne inżynierskie I stopnia kierunek studiów Budownictwo, sem. IV materiały pomocnicze do ćwiczeń opracowanie: mgr inż. Jolanta Bondarczuk-Siwicka, mgr inż. Andrzej
Bardziej szczegółowoWYDZIAŁ LABORATORIUM FIZYCZNE
1 W S E i Z W WARSZAWE WYDZAŁ LABORAORUM FZYCZNE Ćwiczenie Nr 1 emat: WYZNACZNE PRZYSPESZENA ZEMSKEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO Warszawa 9 WYZNACZANE PRZYSPESZENA ZEMSKEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO
Bardziej szczegółowo