EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach
|
|
- Renata Lipińska
- 6 lat temu
- Przeglądów:
Transkrypt
1 EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach Zadanie 1. (8 punktów) O rozkªadzie pewnego ryzyka S wiemy,»e: E[(S 20) + ] = 8 E[S 10 < S 20] = 13 P (S 20) = 3 4 P (S 10) = 1 4. Obliczy skªadk E[(S 10) + ]. Zadanie 2. (8 punktów) Niech T x b dzie nieujemn zmienn losow z g sto±ci f x (t) = ce ct dla t 0, opisuj c przyszªy czas»ycia x-latka. Ponadto wiadomo,»e E(T 20 ) = 50. Oblicz c oraz k=0 k q 30. Zadanie 3. (8 punktów) Rozpatrzmy zagadnienie regresji liniowej Y i = α + βx i + U i, i = 1, 2,..., n, gdzie U i s niezale»nymi zmiennymi losowymi o ±redniej zero i sko«czonej wariancji σ 2 Niech ˆα oraz ˆβ b d estymatorami, wyznaczonymi metod najmniejszych kwadratów, odpowiednio dla α i β. Korzystaj c z faktu,»e ˆβ jest nieobci»onym estymatorem parametru β wyka»,»e ˆα jest nieobci»onym estymatorem dla α. Zadanie 4. (8 punktów) Rozwa»my przestrze«funkcji ci gªych C[0, 1] okre±lonych na odcinku [0, 1] i o warto±ciach rzeczywistych, z metryk d sup (f, g) = sup{ f(x) g(x) : x [0, 1]}.
2 Niech A C[0, 1] b dzie zbiorem skªadaj cym si z funkcji przyjmuj cych co najmniej jedn dodatni warto±, tzn. A = {f C[0, 1]: x [0, 1] f(x) > 0}. 1. Czy zbiór A jest otwarty w (C[0, 1], d sup )? 2. Czy zbiór A jest domkni ty w (C[0, 1], d sup )? 3. Czy zbiór A jest zwarty w (C[0, 1], d sup )? Wszystkie odpowiedzi uzasadnij. Zadanie 5. (8 punktów) Znale¹ wszystkie mo»liwe warto±ci caªki z 2 4 z 2 (z + i) dz, γ gdy γ jest krzyw regularn, zamkni t, zorientowan dodatnio, która nie przechodzi przez 0 i i
3 EGZAMIN MAGISTERSKI, r Nauczycielska Zadanie 1. (8 punktów) Okr gi o 1 i o 2, o ±rodkach O 1, O 2, s wewn trznie styczne w pukcie S, o 1 jest okr giem wewn trznym. Ci ciwa AB okr gu o 2 jest styczna do o 1 w punkcie C, przy czym SB SA. Udowodni,»e je±li SO 1 C = 2α i SO 2 A = 2β to ASC = BSC = β α. Zadanie 2. (8 punktów) Liczby Fibonacciego zdeniowane s nast puj co: F 0 = 0, F 1 = 1, F n = F n 1 + F n 2 dla n 2. Udowodni,»e n 1 F 2i+1 = F 2n. i=0 Zadanie 3. (8 punktów) Rozpatrzmy zagadnienie regresji liniowej Y i = α + βx i + U i, i = 1, 2,..., n, gdzie U i s niezale»nymi zmiennymi losowymi o ±redniej zero i sko«czonej wariancji σ 2 Niech ˆα oraz ˆβ b d estymatorami, wyznaczonymi metod najmniejszych kwadratów, odpowiednio dla α i β. Korzystaj c z faktu,»e ˆβ jest nieobci»onym estymatorem parametru β wyka»,»e ˆα jest nieobci»onym estymatorem dla α. Zadanie 4. (8 punktów) Rozwa»my przestrze«funkcji ci gªych C[0, 1] okre±lonych na odcinku [0, 1] i o warto±ciach rzeczywistych, z metryk d sup (f, g) = sup{ f(x) g(x) : x [0, 1]}. Niech A C[0, 1] b dzie zbiorem skªadaj cym si z funkcji przyjmuj cych co najmniej jedn dodatni warto±, tzn. A = {f C[0, 1]: x [0, 1] f(x) > 0}.
4 1. Czy zbiór A jest otwarty w (C[0, 1], d sup )? 2. Czy zbiór A jest domkni ty w (C[0, 1], d sup )? 3. Czy zbiór A jest zwarty w (C[0, 1], d sup )? Wszystkie odpowiedzi uzasadnij. Zadanie 5. (8 punktów) Znale¹ wszystkie mo»liwe warto±ci caªki z 2 4 z 2 (z + i) dz, γ gdy γ jest krzyw regularn, zamkni t, zorientowan dodatnio, która nie przechodzi przez 0 i i
5 EGZAMIN MAGISTERSKI, r Zastosowania Zadanie 1. (8 punktów) Niech X j = I j Y j (j = 1, 2,...), gdzie I 1, I 2,... s niezale»ne o rozkªadzie P(I j = 0) = q j, P(I j = 1) = p j, gdzie p j 0 i p j + q j = 1 oraz Y 1, Y 2,... niezale»ne o jednakowym rozkªadzie, (±ci±le) dodatnie i niezale»ne od ci gu (I j ). (i) Napisa rozkªad zmiennej X j oraz obliczy jej ±redni i wariancj. (ii) Pokaza,»e je±li j=1 p j <, to szereg Z = j=1 X j jest zbie»ny p.n p. (iii) Obliczy EZ i VarZ. Poda warunki na sko«czono±. Zadanie 2. (8 punktów) Oblicz granic N t lim n t, gdzie N t jest procesem Poissona. Podaj rodzaj zbie»no±ci. Odpowied¹ uzasadnij. Zadanie 3. (8 punktów) Niech X 1,..., X n b dzie prób z rozkªadu o g sto±ci f(x) = λ exp{ λx}1(x > 0), λ > 0. Wyznacz estymator nieobci»ony o minimalnej wariancji parametru λ. Czy istnieje rozkªad a priori wzgl dem którego wyznaczony ENMW jest bayesowski przy kwadratowej funkcji straty? Odpowied¹ uzasadnij. Zadanie 4. (8 punktów) Rozwa»my przestrze«funkcji ci gªych C[0, 1] okre±lonych na odcinku [0, 1] i o warto±ciach rzeczywistych, z metryk d sup (f, g) = sup{ f(x) g(x) : x [0, 1]}. Niech A C[0, 1] b dzie zbiorem skªadaj cym si z funkcji przyjmuj cych co najmniej jedn dodatni warto±, tzn.
6 A = {f C[0, 1]: x [0, 1] f(x) > 0}. 1. Czy zbiór A jest otwarty w (C[0, 1], d sup )? 2. Czy zbiór A jest domkni ty w (C[0, 1], d sup )? 3. Czy zbiór A jest zwarty w (C[0, 1], d sup )? Wszystkie odpowiedzi uzasadnij. Zadanie 5. (8 punktów) Znale¹ wszystkie mo»liwe warto±ci caªki z 2 4 z 2 (z + i) dz, γ gdy γ jest krzyw regularn, zamkni t, zorientowan dodatnio, która nie przechodzi przez 0 i i
7 EGZAMIN MAGISTERSKI, r Matematyka stosowana Zadanie 1. (8 punktów) Niech N(t) oznacza wielko± populacji w chwili t, której rozwój w czasie opisany jest równaniem logistycznym ( dn dt = r 1 N ) N, N(0) = N 0, K gdzie K, r i N 0 s dodatnimi staªymi. W pewnym momencie czasu populacja ta zaczyna podlega odªowom na sta- ªym poziomie E. (i) Podaj posta równania opisuj cego rozwój populacji w tak zmienionych warunkach. (ii) Wyznacz wielko± populacji, przy której rozwija si ona najszybciej. (iii) Podaj warto± maksymalnego mo»liwego odªowu, który nie powoduje wymarcia populacji. Zadanie 2. (8 punktów) System skªada si z dwóch podzespoªów A i B. Czasy do awarii podzespoªów A i B maj rozkªad wykªadniczy z parametrami, odpowiednio α 1 i α 2. Podzespoªy ulegaj awarii w sposób niezale»ny i gdy jeden z nich ulegnie awarii caªy system ulega awarii. Oblicz oczekiwany czas do awarii caªego systemu. Zadanie 3. (8 punktów) Rozpatrzmy zagadnienie regresji liniowej Y i = α + βx i + U i, i = 1, 2,..., n, gdzie U i s niezale»nymi zmiennymi losowymi o ±redniej zero i sko«czonej wariancji σ 2 Niech ˆα oraz ˆβ b d estymatorami, wyznaczonymi metod najmniejszych kwadratów, odpowiednio dla α i β. Korzystaj c z faktu,»e ˆβ jest nieobci»onym estymatorem parametru β wyka»,»e ˆα jest nieobci»onym estymatorem dla α.
8 Zadanie 4. (8 punktów) Rozwa»my przestrze«funkcji ci gªych C[0, 1] okre±lonych na odcinku [0, 1] i o warto±ciach rzeczywistych, z metryk d sup (f, g) = sup{ f(x) g(x) : x [0, 1]}. Niech A C[0, 1] b dzie zbiorem skªadaj cym si z funkcji przyjmuj cych co najmniej jedn dodatni warto±, tzn. A = {f C[0, 1]: x [0, 1] f(x) > 0}. 1. Czy zbiór A jest otwarty w (C[0, 1], d sup )? 2. Czy zbiór A jest domkni ty w (C[0, 1], d sup )? 3. Czy zbiór A jest zwarty w (C[0, 1], d sup )? Wszystkie odpowiedzi uzasadnij. Zadanie 5. (8 punktów) Znale¹ wszystkie mo»liwe warto±ci caªki z 2 4 z 2 (z + i) dz, γ gdy γ jest krzyw regularn, zamkni t, zorientowan dodatnio, która nie przechodzi przez 0 i i
9 EGZAMIN MAGISTERSKI, r Analiza danych Zadanie 1. (8 punktów) Niech X b dzie zmienn losow o rozkªadzie N(0, 1). Wyznacz funkcj charakterystyczn zmiennej losowej X. Jak posta b dzie miaªa funkcja charakterystyczna zmiennej losowej Y = ax + b, a > 0, b R? Zadanie 2. (8 punktów) Niech X 1,..., X 5 b d niezale»nymi zmiennymi losowymi o rozkªadach N(µ i, 1), i = 1,..., 5, odpowiednio. Rozwa»amy problem testowania zbioru hipotez {H 0i : µ i = 0, H 1i : µ i 0, i = 1,..., 5}. Na podstawie i-tej obserwacji werykujemy i-t hipotez. Zaobserwowano: 1.870, 2.143, 1.480, 1.950, Które z hipotez mo»na odrzuci, aby kontrolowa (i) bª d I-ego rodzaju na poziomie istotno±ci α = 0.1? (ii) F DR na poziomie 0.1? (ii) F W ER na poziomie 0.1? Odpowied¹ uzasadnij. Kwantyle Rozkªad N(0, 1) Zadanie 3. (8 punktów) Rozpatrzmy zagadnienie regresji liniowej Y i = α + βx i + U i, i = 1, 2,..., n, gdzie U i s niezale»nymi zmiennymi losowymi o ±redniej zero i sko«czonej wariancji σ 2 Niech ˆα oraz ˆβ b d estymatorami, wyznaczonymi metod najmniejszych kwadratów, odpowiednio dla α i β. Korzystaj c z faktu,»e ˆβ jest
10 nieobci»onym estymatorem parametru β wyka»,»e ˆα jest nieobci»onym estymatorem dla α. Zadanie 4. (8 punktów) Rozwa»my przestrze«funkcji ci gªych C[0, 1] okre±lonych na odcinku [0, 1] i o warto±ciach rzeczywistych, z metryk d sup (f, g) = sup{ f(x) g(x) : x [0, 1]}. Niech A C[0, 1] b dzie zbiorem skªadaj cym si z funkcji przyjmuj cych co najmniej jedn dodatni warto±, tzn. A = {f C[0, 1]: x [0, 1] f(x) > 0}. 1. Czy zbiór A jest otwarty w (C[0, 1], d sup )? 2. Czy zbiór A jest domkni ty w (C[0, 1], d sup )? 3. Czy zbiór A jest zwarty w (C[0, 1], d sup )? Wszystkie odpowiedzi uzasadnij. Zadanie 5. (8 punktów) Znale¹ wszystkie mo»liwe warto±ci caªki z 2 4 z 2 (z + i) dz, γ gdy γ jest krzyw regularn, zamkni t, zorientowan dodatnio, która nie przechodzi przez 0 i i
2. (8 punktów) 3. (8 punktów) 4. (8 punktów) 5. (8 punktów) EGZAMIN MAGISTERSKI, Matematyka w ekonomii i ubezpieczeniach
Matematyka w ekonomii i ubezpieczeniach 1. (8 punktów) Znajd¹ rozwi zanie poni»szego zagadnienia programowania liniowego: Zmaksymalizowa x 1 2x 2 + x 3 x 5 przy ograniczeniach x 1 3x 2 + x 3 + 2x 5 = 8
5. (8 punktów) EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach
Matematyka w ekonomii i ubezpieczeniach ( Niezale»ne szkody maja rozkªady P (X i = k) = exp( 1)/k!, P (Y i = k) = 4+k ) k (1/3) 5 (/3) k, k = 0, 1,.... Niech S = X 1 +... + X 500 + Y 1 +... + Y 500. Skªadka
3. (8 punktów) EGZAMIN MAGISTERSKI, Biomatematyka
EGZAMIN MAGISTERSKI, 26.06.2017 Biomatematyka 1. (8 punktów) Rozwój wielko±ci pewnej populacji jest opisany równaniem: dn dt = rn(t) (1 + an(t), b gdzie N(t) jest wielko±ci populacji w chwili t, natomiast
EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach. a) (6 pkt.) oblicz intensywno± pªaconych skªadek;
EGZAMIN MAGISTERSKI, 26.06.2019r Matematyka w ekonomii i ubezpieczeniach 1. (8 punktów) Dwa niezale»ne portfele S 1, S 2 maj zªo»one rozkªady Poissona. S 1 CP oisson(2, F ), S 2 CP oisson(2, G), gdzie
Zadanie 1. (8 punktów) Dana jest nast puj ca macierz: M =
Matematyka w ekonomii i ubezpieczeniach 1. (8 punktów) Dana jest nast puj ca macierz: M = 2 14 2 10 8 0 10 8. a) Znajd¹ rozwi zanie dwuosobowej gry o sumie zero maj cej powy»sz macierz wypªat. b) Przyjmuj
Biostatystyka, # 5 /Weterynaria I/
Biostatystyka, # 5 /Weterynaria I/ dr n. mat. Zdzisªaw Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowa«Matematyki i Informatyki ul. Gª boka 28, bud. CIW, p. 221 e-mail: zdzislaw.otachel@up.lublin.pl
EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach
EGZAMIN MAGISTERSKI, 12.09.2018r Matematyka w ekonomii i ubezpieczeniach Zadanie 1. (8 punktów) W modelu rezerwy R n = u + n (W 1 + + W n ) wiemy,»e W i s iid o rozkªadzie geometrycznym na 0, 1, 2,...
Elementarna statystyka Wnioskowanie o regresji (Inference 2 czerwca for regression) / 13
Elementarna statystyka Wnioskowanie o regresji (Inference for regression) Alexander Bendikov Uniwersytet Wrocªawski 2 czerwca 2016 Elementarna statystyka Wnioskowanie o regresji (Inference 2 czerwca for
Rozwini cia asymptotyczne dla mocy testów przybli»onych
Rozwini cia asymptotyczne dla mocy testów przybli»onych Piotr Majerski, Zbigniew Szkutnik AGH Kraków Wisªa 2010 P. Majerski, Z. Szkutnik, AGH () Rozwini cia mocy testów przybli»onych Wisªa 2010 1 / 22
Metody probablistyczne i statystyka stosowana
Politechnika Wrocªawska - Wydziaª Podstawowych Problemów Techniki - 011 Metody probablistyczne i statystyka stosowana prowadz cy: dr hab. in». Krzysztof Szajowski opracowanie: Tomasz Kusienicki* κ 17801
Biostatystyka, # 4 /Weterynaria I/
Biostatystyka, # 4 /Weterynaria I/ dr n. mat. Zdzisªaw Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowa«Matematyki i Informatyki ul. Gª boka 28, bud. CIW, p. 221 e-mail: zdzislaw.otachel@up.lublin.pl
EGZAMIN MAGISTERSKI, Biomatematyka
Biomatematyka 91...... Zadanie 1. (8 punktów) Liczebność pewnej populacji jest opisana równaniem różniczkowym: dn = r N(α N)(N β), (1) dt w którym, N(t) oznacza liczebność populacji w chwili t, a r > 0
Statystyka matematyczna - ZSTA LMO
Statystyka matematyczna - ZSTA LMO Šukasz Smaga Wydziaª Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza w Poznaniu Wykªad 1 Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 1 1 / 28 Kontakt Dr Šukasz
1 Lista 6 1. LISTA Obliczy JSN renty z doªu dla (30)-latka na 3 lata w wysoko±ci Obliczenia zrobi dla TT -PL97m oraz i = 4%.
1. LISTA 6 1 1 Lista 6 1.1 Obliczy JSN renty z doªu dla (30)-latka na 3 lata w wysoko±ci 3000. Obliczenia zrobi dla TT -PL97m oraz i = 4%. 1.2 Obliczy JSN dla nast puj cej renty dla (30)-latka: je±li»yje
In»ynierskie zastosowania statystyki wiczenia
Uwagi: 27012014 poprawiono kilka literówek, zwi zanych z przedziaªami ufno±ci dla wariancji i odchylenia standardowego In»ynierskie zastosowania statystyki wiczenia Przedziaªy wiarygodno±ci, testowanie
Ekonometria. wiczenia 2 Werykacja modelu liniowego. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej
Ekonometria wiczenia 2 Werykacja modelu liniowego (2) Ekonometria 1 / 33 Plan wicze«1 Wprowadzenie 2 Ocena dopasowania R-kwadrat Skorygowany R-kwadrat i kryteria informacyjne 3 Ocena istotno±ci zmiennych
Statystyka matematyczna - ZSTA LMO
Statystyka matematyczna - ZSTA LMO Šukasz Smaga Wydziaª Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza w Poznaniu Wykªad 4 Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 4 1 / 18 Wykªad 4 - zagadnienia
EGZAMIN MAGISTERSKI, czerwiec 2015 Biomatematyka
Biomatematyka Rozpatrzmy chorobę, która rozprzestrzenia się za pośrednictwem nosicieli, u których nie występują jej symptomy. Niech C(t) oznacza liczbę nosicieli w chwili t. Zakładamy, że nosiciele są
1 Lista 6 1. LISTA Obliczy JSN renty z doªu dla (30)-latka na 3 lata w wysoko±ci Obliczenia zrobi dla TT -PL97m oraz i = 4%.
1. LISTA 6 1 1 Lista 6 1.1 Obliczy JSN renty z doªu dla (30)-latka na 3 lata w wysoko±ci 3000. Obliczenia zrobi dla TT -PL97m oraz i = 4%. 1.2 Obliczy JSN dla nast puj cej renty dla (30)-latka: je±li»yje
EGZAMIN MAGISTERSKI, Biomatematyka
Biomatematyka 90...... Zadanie 1. (8 punktów) Załóżmy, że w diploidalnej populacji, dla której zachodzi prawo Hardy ego- Weinberga dla loci o dwóch allelach A i a proporcja osobników o genotypie AA wynosi
MODELE LINIOWE i MIESZANE
MODELE LINIOWE i MIESZANE WYKŠAD 5 13 kwiecie«2018 1 / 48 Plan wykªadu 1. Metody Monte Carlo we wnioskowaniu statystycznym 2. Pakiet R 2 / 48 Metody Monte Carlo we wnioskowaniu statystycznym 3 / 48 Zaªó»my,»e
Matematyka ubezpieczeń majątkowych r.
Zadanie. W pewnej populacji kierowców każdego jej członka charakteryzują trzy zmienne: K liczba przejeżdżanych kilometrów (w tysiącach rocznie) NP liczba szkód w ciągu roku, w których kierowca jest stroną
Zadania. 4 grudnia k=1
Zadania 4 grudnia 205 Zadanie. Poka»,»e dla dowolnych liczb zespolonych z,..., z n istnieje zbiór B {,..., n}, taki,»e n z k π z k. k B Zadanie 2. Jakie warunki musz speªnia ci gi a n i b n, aby istniaªy
Elementy Modelowania Matematycznego Wykªad 1 Prawdopodobie«stwo
Spis tre±ci Elementy Modelowania Matematycznego Wykªad 1 Prawdopodobie«stwo Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis tre±ci Spis tre±ci 1 2 3 4 5 Spis tre±ci Spis tre±ci 1 2 3 4
Zadania z rachunku prawdopodobie«stwa
STATYSTYKA 2 rok, informatyka,. Zadania z rachunku prawdopodobie«stwa 1. Niech A B C = Ω, P (B) = 2P (A), P (C) = 3P (A), P (A B) = P (A C) = P (B C). Pokaza,»e 1 P (A) 1. Pokaza,»e oba ograniczenia mog
Agata Boratyńska Statystyka aktuarialna... 1
Agata Boratyńska Statystyka aktuarialna... 1 ZADANIA NA ĆWICZENIA Z TEORII WIAROGODNOŚCI Zad. 1. Niech X 1, X 2,..., X n będą niezależnymi zmiennymi losowymi z rozkładu wykładniczego o wartości oczekiwanej
1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci
Zebraª do celów edukacyjnych od wykªadowców PK, z ró»nych podr czników Maciej Zakarczemny 1 Przypomnienie wiadomo±ci ze szkoªy ±redniej Rozwi zywanie prostych równa«i nierówno±ci dotycz cych funkcji elementarnych,
Liniowe zadania najmniejszych kwadratów
Rozdziaª 9 Liniowe zadania najmniejszych kwadratów Liniowe zadania najmniejszych kwadratów polega na znalezieniu x R n, który minimalizuje Ax b 2 dla danej macierzy A R m,n i wektora b R m. Zauwa»my,»e
Estymacja parametru gªadko±ci przy u»yciu falek splajnowych
Estymacja parametru gªadko±ci przy u»yciu falek splajnowych Politechnika Gda«ska Wydziaª Fizyki Technicznej i Matematyki Stosowanej Wisªa, 3-7.12.2012 Przestrze«Biesowa Przestrze«Biesowa B s p,q, 1 p,
Ekonometria Bayesowska
Ekonometria Bayesowska Wykªad 9: Metody numeryczne: MCMC Andrzej Torój 1 / 17 Plan wykªadu Wprowadzenie 1 Wprowadzenie 3 / 17 Plan prezentacji Wprowadzenie 1 Wprowadzenie 3 3 / 17 Zastosowanie metod numerycznych
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 4 / 9 Przekształcenia zmiennej losowej X
Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =.
Prawdopodobieństwo i statystyka 3..00 r. Zadanie Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX 4 i EY 6. Rozważamy zmienną losową Z. X + Y Wtedy (A) EZ 0,
STATYSTYCZNE MODELOWANIE DANYCH BIOLOGICZNYCH
STATYSTYCZNE MODELOWANIE DANYCH BIOLOGICZNYCH WYKŠAD 4 03 listopad 2014 1 / 47 Plan wykªadu 1. Testowanie zaªo»e«o proporcjonalnym hazardzie w modelu Cox'a 2. Wybór zmiennych do modelu Cox'a 3. Meta analiza
Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 6
Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 6 Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu Model mieszany
Materiaªy do Repetytorium z matematyki
Materiaªy do Repetytorium z matematyki 0/0 Dziaªania na liczbach wymiernych i niewymiernych wiczenie Obliczy + 4 + 4 5. ( + ) ( 4 + 4 5). ( : ) ( : 4) 4 5 6. 7. { [ 7 4 ( 0 7) ] ( } : 5) : 0 75 ( 8) (
Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a).
Rozwi zania zada«z egzaminu podstawowego z Analizy matematycznej 2.3A (24/5). Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a). Zadanie P/4. Metod operatorow rozwi
Zadanie 1. Liczba szkód w każdym z trzech kolejnych lat dla pewnego ubezpieczonego ma rozkład równomierny:
Matematyka ubezpieczeń majątkowych 5.2.2008 r. Zadanie. Liczba szkód w każdym z trzech kolejnych lat dla pewnego ubezpieczonego ma rozkład równomierny: Pr ( N = k) = 0 dla k = 0,, K, 9. Liczby szkód w
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ Dana jest populacja generalna, w której dwuwymiarowa cecha (zmienna losowa) (X, Y ) ma pewien dwuwymiarowy rozk lad. Miara korelacji liniowej dla zmiennych (X, Y
Parametr Λ w populacji ubezpieczonych ma rozkład dany na półosi dodatniej gęstością: 3 f
Zadanie. W kolejnych latach t =,,,... ubezpieczony charakteryzujący się parametrem ryzyka Λ generuje N t szkód. Dla danego Λ = λ zmienne N, N, N,... są warunkowo niezależne i mają (brzegowe) rozkłady Poissona:
AM II /2019 (gr. 2 i 3) zadania przygotowawcze do I kolokwium
AM II.1 2018/2019 (gr. 2 i 3) zadania przygotowawcze do I kolokwium Normy w R n, iloczyn skalarny sprawd¹ czy dana funkcja jest norm sprawd¹, czy dany zbiór jest kul w jakiej± normie i oblicz norm wybranego
*** Teoria popytu konsumenta *** I. Pole preferencji konsumenta 1. Przestrze«towarów 2. Relacja preferencji konsumenta 3. Optymalny koszyk towarów
*** Teoria popytu konsumenta *** I. Pole preferencji konsumenta 1. Przestrze«towarów 2. Relacja preferencji konsumenta 3. Optymalny koszyk towarów I.1 Przestrze«towarów Podstawowe poj cia Rynek towarów
Kurs z matematyki - zadania
Kurs z matematyki - zadania Miara łukowa kąta Zadanie Miary kątów wyrażone w stopniach zapisać w radianach: a) 0, b) 80, c) 90, d), e) 0, f) 0, g) 0, h), i) 0, j) 70, k), l) 80, m) 080, n), o) 0 Zadanie
Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS
Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS przykładowe zadania na. kolokwium czerwca 6r. Poniżej podany jest przykładowy zestaw zadań. Podczas kolokwium na ich rozwiązanie przeznaczone będzie ok. 85
N ma rozkład Poissona z wartością oczekiwaną równą 100 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach:
Zadanie. O niezależnych zmiennych losowych N, M M, M 2, 3 wiemy, że: N ma rozkład Poissona z wartością oczekiwaną równą 00 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach: 2, 3 Pr( M = )
Dynamiczne wªasno±ci algorytmu propagacji przekona«
BP propagacji przekona«4. Interdyscyplinarne Warsztaty Matematyczne Wydziaª Fizyki Politechnika Warszawska B dlewo, 26 maja, 2013 BP 1 2 3 4 5 6 BP Rysunek: Zbiór zmiennych losowych. BP Rysunek: Zbiór
MUMIO Lab 6 (składki, kontrakt stop-loss)
MUMIO Lab 6 (składki, kontrakt stop-loss) 1. (6p.) Niech X oznacza ryzyko (zmienn a losow a o własności P (X 0) = 1), a H( ) niech oznacza formułȩ kalkulacji składki (przyporz adkowuj ac a każdemu ryzyku
Ekonometria - wykªad 8
Ekonometria - wykªad 8 3.1 Specykacja i werykacja modelu liniowego dobór zmiennych obja±niaj cych - cz ± 1 Barbara Jasiulis-Goªdyn 11.04.2014, 25.04.2014 2013/2014 Wprowadzenie Ideologia Y zmienna obja±niana
EGZAMIN DYPLOMOWY, część II, Biomatematyka
Biomatematyka Niech X n oznacza proporcję pozycji w nici DNA, które po n replikacjach są obsadzone takimi samymi nukleotydami, jak w chwili początkowej, tak więc X 0 = 1. Zakładamy, że w każdej replikacji
Arkusz maturalny. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne
Arkusz maturalny Šukasz Dawidowski Powtórki maturalne 25 kwietnia 2016r. Odwrotno±ci liczby rzeczywistej 1. 9 8 2. 0, (1) 3. 8 9 4. 0, (8) 3 4 4 4 1 jest liczba Odwrotno±ci liczby rzeczywistej 3 4 4 4
EGZAMIN MAGISTERSKI, Matematyka w ekonomii i ubezpieczeniach. x i 0,
Matematyka w ekonomii i ubezpieczeniach Wiedząc, że wektor x 0 = (0,3,0,0,4) jest rozwiązaniem optymalnym zagadnienia programowania liniowego: zminimalizować 3x 1 +2x 2 +5x 3 +3x 4 +4x 5, przy ograniczeniach
Stacjonarne szeregi czasowe
e-mail:e.kozlovski@pollub.pl Spis tre±ci 1 Denicja 1 Szereg {x t } 1 t N nazywamy ±ci±le stacjonarnym (stacjonarnym w w»szym sensie), je»eli dla dowolnych m, t 1, t 2,..., t m, τ ª czny rozkªad prawdopodobie«stwa
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 3..007 r. Zadanie. Każde z ryzyk pochodzących z pewnej populacji charakteryzuje się tym że przy danej wartości λ parametru ryzyka Λ rozkład wartości szkód z tego ryzyka
Prawdopodobieństwo i statystyka r.
Prawdopodobieństwo i statystyka 9.06.999 r. Zadanie. Rzucamy pięcioma kośćmi do gry. Następnie rzucamy ponownie tymi kośćmi, na których nie wypadły szóstki. W trzeciej rundzie rzucamy tymi kośćmi, na których
1. Przedstaw w postaci algebraicznej liczby zespolone: 2. Narysuj zbiory punktów na pªaszczy¹nie:
ZADANIA Z MATEMATYKI Zestaw. Przedstaw w postaci algebraicznej liczby zespolone: (3 + j)(5 j) 3 j +j (5 + j) (3 + j) 3. Narysuj zbiory punktów na pªaszczy¹nie: +j +j 3 Re z = Im z = 5 z ( j) = z j z +
Estymatory nieobciążone
Estymatory nieobciążone Zadanie 1. Pobieramy próbkę X 1,..., X n niezależnych obserwacji z rozkładu Poissona o nieznanym parametrze λ. Szacujemy p 0 = e λ za pomocą estymatora ˆp 0 = e X, gdzie X jest
= µ. Niech ponadto. M( s) oznacza funkcję tworzącą momenty. zmiennej T( x), dla pewnego wieku x, w populacji A. Wówczas e x wyraża się wzorem: 1
1. W populacji B natężenie wymierania µ ( B ) x jest większe od natężenia wymierania ( A) µ x w populacji A, jednostajnie o µ > 0, dla każdego wieku x tzn. ( B) ( A) µ µ x = µ. Niech ponadto x M( s) oznacza
Zadanie 1. Ilość szkód N ma rozkład o prawdopodobieństwach spełniających zależność rekurencyjną:
Zadanie. Ilość szkód N ma rozkład o prawdopodobieństwach spełniających zależność rekurencyjną: Pr Pr ( = k) ( N = k ) N = + k, k =,,,... Jeśli wiemy, że szkód wynosi: k= Pr( N = k) =, to prawdopodobieństwo,
Rachunek caªkowy funkcji wielu zmiennych
Rachunek caªkowy funkcji wielu zmiennych I. Malinowska, Z. Šagodowski Politechnika Lubelska 8 czerwca 2015 Caªka iterowana podwójna Denicja Je»eli funkcja f jest ci gªa na prostok cie P = {(x, y) : a x
EGZAMIN MAGISTERSKI, czerwiec 2014 Matematyka w ekonomii i ubezpieczeniach
Matematyka w ekonomii i ubezpieczeniach Sprawdź, czy wektor x 0 = (0,5,,0,0) jest rozwiązaniem dopuszczalnym zagadnienia programowania liniowego: Zminimalizować 3x 1 +x +x 3 +4x 4 +6x 5, przy ograniczeniach
Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach
Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach Teoria obowi zuje z wykªadu, dlatego te» zostan tutaj przedstawione tylko podstawowe denicje, twierdzenia i wzory. Denicja 1. Równanie
Algebra Liniowa 2. Zadania do samodzielnych wicze«wydziaª Elektroniki, I rok Karina Olszak i Zbigniew Olszak
Algebra Liniowa 2 Zadania do samodzielnych wicze«wydziaª Elektroniki, I rok Karina Olszak i Zbigniew Olszak Podobie«stwo macierzy, diagonalizacja macierzy 1. Znale¹ macierze przeksztaªcenia liniowego T
Strategie zabezpieczaj ce
04062008 Plan prezentacji Model binarny Model Black Scholesa Bismut- Elworthy -Li formuła Model binarny i opcja call Niech cena akcji w chwili pocz tkowej wynosi S 0 = 21 Zaªó»my,»e ceny akcji po trzech
E. Sadowska-Owczorz Statystyka i probabilistyka - zadania kwiecie«2018
1. Jest 50 pyta«egzaminacyjnych. Na ka»dej wylosowanej przez zdaj cego kartce napisane s trzy pytania. (a) Ile mo»e by ró»nych kartek? (b) Oblicz prawdopodobie«stwo,»e zdajacy odpowie co najmniej na jedno
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 13 i 14 1 / 15 MODEL BAYESOWSKI, przykład wstępny Statystyka
1 Poj cia pomocnicze. Przykªad 1. A A d
Poj cia pomocnicze Otoczeniem punktu x nazywamy dowolny zbiór otwarty zawieraj cy punkt x. Najcz ±ciej rozwa»amy otoczenia kuliste, tj. kule o danym promieniu ε i ±rodku x. S siedztwem punktu x nazywamy
Metoda najmniejszych kwadratów
Metoda najmniejszych kwadratów Przykład wstępny. W ekonomicznej teorii produkcji rozważa się funkcję produkcji Cobba Douglasa: z = AL α K β gdzie z oznacza wielkość produkcji, L jest nakładem pracy, K
Metody analizy funkcji przeżycia
Metody analizy funkcji przeżycia Page 1 of 26 1. 1.1. Analiza czasu przeżycia Badamy czas T jaki musi upłynąć, by nastąpiło pewne interesujące nas zdarzenie. Najbardziej typowym przykładem takiej analizy
EGZAMIN MAGISTERSKI, czerwiec 2016 Matematyka w ekonomii i ubezpieczeniach
Matematyka w ekonomii i ubezpieczeniach Dana jest następująca macierz wypłat gry o sumie zero: Podaj rozwiązanie tej gry. M = 3 2 2 2 3 4 5 2 3 3 2 2 4 2 0 3 3 3 Kredyt ma być spłacany na początku roku
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 0.0.005 r. Zadanie. Likwidacja szkody zaistniałej w roku t następuje: w tym samym roku z prawdopodobieństwem 0 3, w następnym roku z prawdopodobieństwem 0 3, 8 w roku
Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k =
Matematyka ubezpieczeń majątkowych 0.0.006 r. Zadanie. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k 5 Pr( N = k) =, k = 0,,,... 6 6 Wartości kolejnych szkód Y, Y,, są i.i.d.,
Elementarna statystyka
Elementarna statystyka Alexander Bendikov 26 marca 2017 Klasyczny model: eksperyment o jednakowo prawdopodobnych wynikach Zaªo»enia: 1 Przestrze«próbek S ma sko«czenie wiele wyników ω 1, ω 2,..., ω n,
O ŚREDNIEJ ARYTMETYCZNEJ I MEDIANIE
Ryszard Zieliński, IMPAN Warszawa O ŚREDNIEJ ARYTMETYCZNEJ I MEDIANIE XXXIX Ogólnopolska Konferencja Zastosowań Matematyki Zakopane-Kościelisko 7-14 września 2010 r Model statystyczny pomiaru: wynik pomiaru
Wst p do ekonometrii II
Wst p do ekonometrii II Wykªad 1: Modele ADL. Analiza COMFAC. Uogólniona MNK (1) WdE II 1 / 36 Plan wykªadu 1 Restrykcje COMFAC w modelach ADL ADL(1,1) ADL(2,2) 2 Uogólniona MNK Idea UMNK Znajdowanie macierzy
1 0 Je»eli wybierzemy baz A = ((1, 1), (2, 1)) to M(f) A A =. 0 2 Daje to znacznie lepszy opis endomorzmu f.
GAL II 2012-2013 A Strojnowski str1 Wykªad 1 Ten semestr rozpoczniemy badaniem endomorzmów sko«czenie wymiarowych przestrzeni liniowych Denicja 11 Niech V b dzie przestrzeni liniow nad ciaªem K 1) Przeksztaªceniem
Funkcje wielu zmiennych
dr Krzysztof yjewski Analiza matematyczna 2; MatematykaS-I 0 lic 21 maja 2018 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(, y b dzie okre±lona przynajmniej na otoczeniu punktu
EGZAMIN MAGISTERSKI, 18 września 2013 Biomatematyka
Biomatematyka Liczebność populacji pewnego gatunku jest modelowana przez równanie różnicowe w którym N k stałymi. rn 2 n N n+1 =, A+Nn 2 oznacza liczebność populacji w k tej generacji, a r i A są dodatnimi
Matematyka 1. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski
Matematyka 1 Šukasz Dawidowski Instytut Matematyki, Uniwersytet l ski Pochodna funkcji Niech a, b R, a < b. Niech f : (a, b) R b dzie funkcj oraz x, x 0 (a, b) b d ró»nymi punktami przedziaªu (a, b). Wyra»enie
EGZAMIN MAGISTERSKI, Biomatematyka
Biomatematyka 90...... Zadanie 1. (8 punktów) Liczebność pewnej populacji ryb jest opisana następującym równaniem Rickera: N n+1 = α N n exp( βn n ), (1) w którym N n oznacza liczebność populacji w n tej
Zadanie 1. Zadanie 2. Zadanie 3
Zadanie R to rata miesi czna, odsetki w k-tej racie to ods k = R( v 8 k ), a spªata kapitaªu wyra»a si wzorem kap k = Rv 8 k, gdzie v = (, 5) /6. Dany jest ukªad nierówno±ci z którego wynika Rv 8 N R(
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 4.04.0 r. Zadanie. Przy danej wartości λ parametru ryzyka Λ liczby szkód generowane przez ubezpieczającego się w kolejnych latach to niezależne zmienne losowe o rozkładzie
2. L(a u) = al( u) dla dowolnych u U i a R. Uwaga 1. Warunki 1., 2. mo»na zast pi jednym warunkiem: L(a u + b v) = al( u) + bl( v)
Przeksztaªcenia liniowe Def 1 Przeksztaªceniem liniowym (homomorzmem liniowym) rzeczywistych przestrzeni liniowych U i V nazywamy dowoln funkcj L : U V speªniaj c warunki: 1 L( u + v) = L( u) + L( v) dla
Matematyka z elementami statystyki
Matematyka z elementami statystyki Šukasz Dawidowski Instytut Matematyki, Uniwersytet l ski Korelacja Zale»no± funkcyjna wraz ze wzrostem jednej zmiennej nast puje ±ci±le okre±lona zmiana druiej zmiennej.
Modele wielorównaniowe. Estymacja parametrów
Modele wielorównaniowe. Estymacja parametrów Ekonometria Szeregów Czasowych SGH Estymacja 1 / 47 Plan wykªadu 1 Po±rednia MNK 2 Metoda zmiennych instrumentalnych 3 Podwójna MNK 4 Estymatory klasy k 5 MNW
dla t ściślejsze ograniczenie na prawdopodobieństwo otrzymujemy przyjmując k = 1, zaś dla t > t ściślejsze ograniczenie otrzymujemy przyjmując k = 2.
Zadanie. Dla dowolnej zmiennej losowej X o wartości oczekiwanej μ, wariancji momencie centralnym μ k rzędu k zachodzą nierówności (typu Czebyszewa): ( X μ k Pr > μ + t σ ) 0. k k t σ *
Podstawy statystycznego modelowania danych Analiza prze»ycia
Podstawy statystycznego modelowania danych Analiza prze»ycia Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu 1. Wprowadzenie 2. Hazard rate
Ekonometria Bayesowska
Ekonometria Bayesowska Wykªad 8: Restrykcje na parametry w postaci nierówno±ci: analiza bayesowska (8) Ekonometria Bayesowska 1 / 21 Plan wykªadu 1 Restrykcje nierówno±ciowe: podej±cie klasyczne a bayesowskie
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 4 1 / 23 ZAGADNIENIE ESTYMACJI Zagadnienie
Ekonometria. wiczenia 4 Prognozowanie. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej
Ekonometria wiczenia 4 Prognozowanie (4) Ekonometria 1 / 18 Plan wicze«1 Prognoza punktowa i przedziaªowa 2 Ocena prognozy ex post 3 Stabilno± i sezonowo± Sezonowo± zadanie (4) Ekonometria 2 / 18 Plan
Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 1
Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 1 Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu Analiza wariancji
Wykªad 4. Funkcje wielu zmiennych.
Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 4. Funkcje wielu zmiennych. Zbiory na pªaszczy¹nie i w przestrzeni.
Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.
Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja
Egzamin z ekonometrii - wersja ogólna
Egzamin z ekonometrii - wersja ogólna 27-0-202 Pytania teoretyczne. Dlaczego w modelu nie powinno si umieszcza staªej i wszystkich zmiennych zero-jedynkowych, zwi zanych z poziomami zmiennej dyskretnej?
Rozdziaª 4. Jednowymiarowe modele szeregów czasowych
Rozdziaª 4. Jednowymiarowe modele szeregów czasowych MODELOWANIE POLSKIEJ GOSPODARKI z R MPGzR (rozdz. 4) Modele ARMA 1 / 24 Jednowymiarowe modele szeregów czasowych Jednowymiarowe modele szeregów czasowych:
1 Bª dy i arytmetyka zmiennopozycyjna
1 Bª dy i arytmetyka zmiennopozycyjna Liczby w pami ci komputera przedstawiamy w ukªadzie dwójkowym w postaci zmiennopozycyjnej Oznacza to,»e s one postaci ±m c, 01 m < 1, c min c c max, (1) gdzie m nazywamy
Informatyka. z przedmiotu RACHUNEK PRAWDOPODOBIE STWA
Informatyka Zbiór przykªadowych prac kontrolnych oraz przykªadowych zada«egzaminacyjnych z przedmiotu RACHUNEK PRAWDOPODOBIE STWA Sprawdzian 1, M09-02 Zadanie 1 (1p) W rzucie dwiema kostkami obliczy prawdopodobie«stwo
Hipotezy proste. (1 + a)x a, dla 0 < x < 1, 0, poza tym.
Hipotezy proste Zadanie 1. Niech X ma funkcję gęstości f a (x) = (1 + a)x a, dla 0 < x < 1, Testujemy H 0 : a = 1 przeciwko H 1 : a = 2. Dysponujemy pojedynczą obserwacją X. Wyznaczyć obszar krytyczny
Rozdziaª 5. Modele wektorowej autoregresji
Rozdziaª 5. Modele wektorowej autoregresji MODELOWANIE POLSKIEJ GOSPODARKI z R MPGzR (rozdz. 5) Modele VAR 1 / 32 Wielowymiarowe modele szeregów czasowych Modele VAR uwzgl dniaj wzajemne powi zania mi
JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1
J zyki formalne i operacje na j zykach J zyki formalne s abstrakcyjnie zbiorami sªów nad alfabetem sko«czonym Σ. J zyk formalny L to opis pewnego problemu decyzyjnego: sªowa to kody instancji (wej±cia)
STATYSTYKA MATEMATYCZNA WYKŁAD grudnia 2009
STATYSTYKA MATEMATYCZNA WYKŁAD 10 14 grudnia 2009 PARAMETRY POŁOŻENIA Przypomnienie: Model statystyczny pomiaru: wynik pomiaru X = µ + ε 1. ε jest zmienną losową 2. E(ε) = 0 pomiar nieobciążony, pomiar
Statystyczna analiza danych w programie STATISTICA. Dariusz Gozdowski. Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW
Statystyczna analiza danych w programie STATISTICA ( 4 (wykład Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Regresja prosta liniowa Regresja prosta jest