Matematyczne Podstawy Kognitywistyki
|
|
- Konrad Przybysz
- 5 lat temu
- Przeglądów:
Transkrypt
1 Matematyczne Podstawy Kognitywistyki Dorota Leszczyńska-Jasion Kombinatoryka, ci agi liczbowe, skończone przestrzenie probabilistyczne
2 Przykłady zagadnień kombinatorycznych Rozważmy układ n miast o bardzo szczęśliwych połaczeniach lotniczych: z każdego z nich można się dostać do każdego innego bezpośrednim lotem. Na ile sposobów możemy odwiedzić wszystkie n miast, każde dokładnie raz? n!. Jest to liczba wszystkich n-wyrazowych permutacji.
3 Przykłady zagadnień kombinatorycznych Na ile sposobów możemy wylosować 5 kart z talii 52 kart, jeśli po każdym losowaniu karta trafia z powrotem do talii? Jeśli układ kart uznajemy za istotny (kolejno wylosowane karty traktowane jak elementy ciagu): 52 5 Jest to liczba wszystkich 5-wyrazowych wariacji z powtórzeniami ze zbioru 52-elementowego.
4 Przykłady zagadnień kombinatorycznych Na ile sposobów możemy wylosować 5 kart, jeśli karty pozostaja w dłoni? Jeśli układ kart uznajemy za istotny (kolejno wylosowane karty traktowane jak elementy ciagu): = 52! (52 5)! Jest to liczba wszystkich 5-wyrazowych wariacji bez powtórzeń ze zbioru 52-elementowego.
5 Przykłady zagadnień kombinatorycznych Na ile sposobów możemy wylosować 5 kart, jeśli karty pozostaja w dłoni, a ich układ uznajemy za nieistotny (wylosowane karty traktowane sa jak elementy zbioru)? 52! 47! 5! = ( ) 52 5 Jest to liczba wszystkich 5-elementowych kombinacji bez powtórzeń ze zbioru 52-elementowego.
6 Przykłady zagadnień kombinatorycznych Na ile sposobów możemy wylosować 5 kart z talii 52 kart, jeśli po każdym losowaniu karta trafia z powrotem do talii, a układ kart uznajemy za nieistotny (wylosowane karty traktowane sa jak elementy zbioru)? ( ) Jest to liczba wszystkich 5-elementowych kombinacji z powtórzeniami ze zbioru 52-elementowego. 5
7 Dwumian Newtona Przypominajac sobie, że liczba wszystkich podzbiorów zbioru n-elementowego wynosi 2 n oraz biorac pod uwagę omówiona interpretację symbolu dwumianowego Newtona, odkrywamy, że: n ( ) n = 2 n k gdzie, jak pamiętamy: n k=0 ( ) n = k k=0 ( ) n + 0 ( ) n ( ) n n
8 Dwumian Newtona Niech teraz X będzie niepustym zbiorem n-elementowym, z którego wybieramy sobie dowolny element a X. Wszystkie k-elementowe podzbiory zbioru X (gdzie n k) możemy podzielić na te, do których a nie należy i na te, do których a należy. Tworzymy w ten sposób wyczerpujacy i rozłaczny podział rodziny 2 X na 2 podrodziny. Pierwsza ma ( ) n 1 k elementów, zaś druga ma ( n 1 k 1) elementów. Druga liczbę znajdujemy zauważajac, że k-elementowych zbiorów, do których a należy jest tyle samo, co (k 1)-elementowych podzbiorów zbioru X \ {a}.
9 Dwumian Newtona Wykazaliśmy w ten sposób, że zachodzi następujaca zależność: ( ) ( ) ( ) n n 1 n 1 = + k k 1 k Zachodzi ponadto: ( ) n = 1 = 0 ( ) n n dla każdego n 0. Wykorzystujac powyższe zależności możemy zestawić wartości dwumianu Newtona w przedstawionym niżej trójkacie, zwanym trójkatem Pascala. Jeśli ponumerujemy wiersze trójkata zaczynajac od 0, to w n-tym wierszu uzyskujemy wartości ( n k) dla kolejnych k = 0, 1,..., n:
10 Trójkat Pascala ( 4 0 ( 0 ( 0) 1 ) ( 1 ( 0 1) 2 ) ( 2 ) ( 2 ( 0 1 2) 3 ) ( 3 ) ( 3 ) ( 3 ) 0 ( 1 2 3) 4 ) ( 4 ) ( 4 ) ( ) itd...
11 Trójkat Pascala itd...
12 Wzór dwumienny Newtona Wzór dwumienny Newtona to ogólna postać rozwinięcia n-tej potęgi dwumianu (x + y) n : (x + y) n = (x + y) (x + y)... (x + y) }{{} n (x + y) n = n k=0 ( ) n x k y n k k
13 Liczby Stirlinga drugiego rodzaju Niech S(n, k) oznacza liczbę podziałów zbioru n-elementowego na k części (niepustych podzbiorów). Zauważmy, że: S(n, 1) = 1 S(n, n) = 1 dla k > n, S(n, k) = 0 S(n, 0) = 0 dla n > 0 dla n > k > 1 S(n, k) = S(n 1, k 1) + k S(n 1, k)
14 Liczby Stirlinga drugiego rodzaju S(0, 0) S(1, 0) S(1, 1) S(2, 0) S(2, 1) S(2, 2) S(3, 0) S(3, 1) S(3, 2) S(3, 3) S(4, 0) S(4, 1) S(4, 2) S(4, 3) S(4, 4) itd...
15 Liczby Stirlinga drugiego rodzaju itd...
16 Ciagi liczbowe: ograniczenia Ciag (a n ) n N+ nazywamy ograniczonym z góry, jeśli istnieje liczba naturalna M taka, że dla wszystkich n N + zachodzi: a n < M. Ciag (a n ) n N+ nazywamy ograniczonym z dołu, jeśli istnieje liczba naturalna M taka, że dla wszystkich n N + zachodzi: a n > M. Ci ag (a n ) n N+ nazywamy ograniczonym, jeśli istnieje liczba naturalna M taka, że dla wszystkich n N + zachodzi: a n < M.
17 Ciagi liczbowe: monotoniczność Ciag (a n ) n N+ nazywamy: rosnacym, gdy a 1 < a 2 <... < a n < a n+1 <... malejacym, gdy a 1 > a 2 >... > a n > a n+1 >... niemalejacym, gdy a 1 a 2... a n a n+1... nierosnacym, gdy a 1 a 2... a n a n+1... Ciagi, spełniajace któryś z powyższych warunków nazywamy monotonicznymi. Te, które spełniaja któryś z pierwszych dwóch powyższych warunków nazywamy ściśle monotonicznymi.
18 Zasada indukcji matematycznej zasada indukcji matematycznej Niech A będzie zbiorem. Jeżeli spełnione sa następujace dwa warunki: I. (krok poczatkowy / bazowy / wyjściowy) 1 A, II. (krok następnikowy / indukcyjny) dla każdej liczby naturalnej n, jeśli n A, to n + 1 A, to wszystkie liczby naturalne należa do A.
19 Zasada indukcji matematycznej Dowodzimy (dowód znajdziesz też w materiałach do wykładu): n = n(n+1) 2 Jeśli X jest zbiorem skończonym, to 2 X = 2 X.
20 Prawdopodobieństwo w skończonych przestrzeniach Pojęcie zdarzenia elementarnego jest pojęciem pierwotnym rachunku prawdopodobieństwa. Ogół zdarzeń elementarnych nazywamy przestrzenia zdarzeń elementarnych (przestrzenia probabilistyczna) i oznaczamy przez Ω. Przykłady: 1 Przestrzeń zdarzeń elementarnych zwiazanych z jednokrotnym rzutem kostka może być reprezentowana jako: Ω = {1, 2, 3, 4, 5, 6} 2 Przestrzeń zdarzeń elementarnych zwiazanych z losowaniem jednej kuli z urny, w której znajduja się 2 kule żółte, 2 kule czerwone i 2 kule niebieskie: Ω = {z 1, z 2, c 1, c 2, n 1, n 2 }
21 Prawdopodobieństwo w skończonych przestrzeniach Zdarzeniem w przestrzeni Ω nazywamy dowolny podzbiór zbioru Ω. Tak więc, ogół zdarzeń w ustalonej przestrzeni probabilistycznej Ω to zbiór (Ω). Zdarzeniem pewnym jest zbiór Ω. Zdarzeniem niemożliwym jest zbiór pusty. 1 Zdarzeniem sprzyjajacym wyrzuceniu parzystej liczby oczek jest A = {2, 4, 6} Ω = {1, 2, 3, 4, 5, 6}. Zdarzeniem sprzyjajacym wyrzuceniu liczby oczek podzielnej przez 5 jest B = {5} Ω. 2 Zdarzeniem przeciwnym do zdarzenia sprzyjajacego wyrzuceniu parzystej liczby oczek jest A = Ω A = {1, 3, 5}. 3 Zdarzenie polegajace na wyrzuceniu parzystej liczby oczek lub wyrzuceniu 5 możemy przedstawić jako sumę A B = {2, 4, 5, 6}. 4 Zdarzenie polegaj ace na wyrzuceniu parzystej liczby oczek i jednocześnie liczby 5 jest zdarzeniem niemożliwym, o czym poucza nas równość A B =.
22 Częstość i prawdopodobieństwo Jeśli zdarzenie elementarne ω Ω jest elementem zdarzenia A Ω, to mówimy, że zdarzenie ω jest zdarzeniem sprzyjajacym zajściu zdarzenia A. Przy założeniu, że rozważane doświadczenia sa powtarzalne oraz poszczególne zdarzenia elementarne sa od siebie niezależne, pojęcie prawdopodobieństwa zdarzeń można scharakteryzować w kategoriach częstości powtarzania się wyników doświadczeń. Jeśli w n doświadczeniach otrzymano m razy wynik odpowiadajacy zdarzeniu A, to częstość zdarzenia A wynosi m n
23 Częstość i prawdopodobieństwo Dla skończonych przestrzeni probabilistycznych Ω prawdopodobieństwem (zdarzeń) nazywamy funkcję P określona na zbiorze (Ω) taka, że: 1 P(A) 0 dla każdego A (Ω) 2 P(A B) = P(A) + P(B) dla dowolnych rozłacznych zdarzeń A oraz B 3 P(Ω) = 1 Przy założeniu, że wszystkie zdarzenia elementarne sa jednakowo prawdopodobne, prawdopodobieństwo dowolnego zdarzenia A Ω jest ilorazem liczby zdarzeń sprzyjajacych zdarzeniu A i liczby wszystkich zdarzeń elementarnych rozważanej przestrzeni: P(A) = A Ω.
24 Częstość i prawdopodobieństwo Wyżej określone pojęcie prawdopodobieństwa ma m.in. następujace własności: 1 P( ) = 0. 2 Jeśli A B, to P(A) P(B). 3 P(A) 1 dla każdego A Ω. 4 P(A ) = 1 P(A). 5 P(A B) = P(A) + P(B) P(A B). Np. niech Ω = {(r, r, r), (r, r, o), (r, o, r), (r, o, o), (o, r, r), (o, r, o), (o, o, r), (o, o, o)} reprezentuje trzykrotny rzut moneta. Zdarzenie A polega na wyrzuceniu za pierwszym razem orła, a przy tym 2 razy orła i 1 raz reszki. Wówczas: zatem A = {(o, r, o), (o, o, r)}, A = 2, Ω = 8, P(A) = 1 4
25 Prawdopodobieństwo warunkowe Prawdopodobieństwo zajścia zdarzenia A pod warunkiem, że zaszło zdarzenie B, oznaczane przez P(A B), wyraża się wzorem: przy założeniu, że P(B) > 0. P(A B) = P(A B), P(B) Niech, jak wyżej, Ω = {(r, r, r), (r, r, o), (r, o, r), (r, o, o), (o, r, r), (o, r, o), (o, o, r), (o, o, o)} reprezentuje trzykrotny rzut moneta. Szukamy prawdopodobieństwa zajścia zdarzenia A = {(o, r, o), (o, o, r)} pod warunkiem, że za pierwszym razem wyrzucono orła, tzn. pod warunkiem zajścia zdarzenia B = {(o, r, r), (o, r, o), (o, o, r), (o, o, o)}. P(A B) = = 1 2.
26 Niezależność zdarzeń, prawdopodobieństwo całkowite, wzór Bayesa Zdarzenia A i B sa niezależne, jeśli: P(A B) = P(A) P(B). Jeśli zdarzenia A 1, A 2,..., A n stanowia podział przestrzeni Ω oraz P(A i ) > 0 dla wszystkich 1 i n, to dla dowolnego zdarzenia B Ω zachodzi równość: P(B) = P(A 1 ) P(B A 1 ) + P(A 2 ) P(B A 2 ) P(A n ) P(B A n ). która nazywamy wzorem na prawdopodobieństwo całkowite.
27 Niezależność zdarzeń, prawdopodobieństwo całkowite, wzór Bayesa Niech zdarzenia A 1, A 2,..., A n stanowia podział przestrzeni Ω oraz P(A i ) > 0 dla wszystkich 1 i n. Przypuśćmy, że zaszło zdarzenie B. Jakie jest prawdopodobieństwo, że przyczyna zajścia zdarzenia B było zdarzenie A i? Odpowiedź podaje wzór Bayesa: P(A i B) = P(B A i ) P(A i ) P(A 1 ) P(B A 1 ) + P(A 2 ) P(B A 2 ) P(A n ) P(B A n ).
28 Schemat Bernoulliego Rozważmy doświadczenie, w którym otrzymać możemy: A lub A (np. rzut moneta). Załóżmy też, że możemy to doświadczenie powtarzać dowolna liczbę razy oraz że prawdopodobieństwo zajścia zdarzenia jest stałe. Niech np. P(A) = p. Wtedy P(A ) = 1 p. Możemy jedno ze zdarzeń, np. A, nazwać sukcesem, a pozostałe, tu: A, porażka. Jakie jest prawdopodobieństwo, że w serii n doświadczeń dokładnie k razy uzyskamy sukces?
29 Schemat Bernoulliego Prawdopodobieństwo, iż w serii n prób odnieśliśmy k sukcesów (zaszło A) oraz n k porażek (zaszło A ) wynosi p k (1 p) n k. k sukcesów w n-elementowej serii możemy uzyskać na ( ) n k sposobów, zatem prawdopodobieństwo uzyskania dokładnie k sukcesów w serii n niezależnych prób (przy prawdopodobieństwie sukcesu równym p), oznaczane przez P(n, k, p) jest równe: ( ) n P(n, k, p) = p k (1 p) n k. k Wzór ten nazywamy wzorem Bernoulliego.
30 Co muszę ZZZ... Wariacje, permutacje, kombinacje. Trójkat Pascala. Wzór dwumianowy. Liczby Stirlinga. Ciagi liczbowe: ograniczenie i rodzaje monotoniczności. Dowody z wykorzystaniem indukcji matematycznej. Skończona przestrzeń probabilistyczna. Prawdopodobieństwo wyznaczone przez częstość. Własności funkcji prawdopodobieństwa. Prawdopodobieństwo warunkowe. Niezależność zdarzeń. Prawdopodobieństwo całkowite. Wzór Bayesa. Schemat Bernoulliego.
Podstawy nauk przyrodniczych Matematyka
Podstawy nauk przyrodniczych Matematyka Elementy rachunku prawdopodobieństwa dr inż. Małgorzata Szeląg Zakład Genetyki Molekularnej Człowieka tel. 61 829 59 04 malgorzata.szelag@amu.edu.pl Pokój 1.118
Rachunek prawdopodobieństwa
Rachunek prawdopodobieństwa Sebastian Rymarczyk srymarczyk@afm.edu.pl Tematyka zajęć 1. Elementy kombinatoryki. 2. Definicje prawdopodobieństwa. 3. Własności prawdopodobieństwa. 4. Zmienne losowe, parametry
WYKŁAD 4: KOMBINATORYKA. CIAGI LICZBOWE. SKOŃCZONE PRZESTRZENIE PROBABILISTYCZNE.
MATEMATYCZNE PODSTAWY KOGNITYWISTYKI WYKŁAD 4: KOMBINATORYKA. CIAGI LICZBOWE. SKOŃCZONE PRZESTRZENIE PROBABILISTYCZNE. KOGNITYWISTYKA UAM, 016 017 JERZY POGONOWSKI Zakład Logiki i Kognitywistyki UAM pogon@amu.edu.pl
Prawdopodobieństwo
Prawdopodobieństwo http://www.matemaks.pl/ Wstęp do rachunku prawdopodobieństwa http://www.matemaks.pl/wstep-do-rachunku-prawdopodobienstwa.html Rachunek prawdopodobieństwa pomaga obliczyć szansę zaistnienia
Prawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018
Katedra Matematyki i Ekonomii Matematycznej SGH 16 października 2018 Definicja σ-algebry Definicja Niech Ω oznacza zbiór niepusty. Rodzinę M podzbiorów zbioru Ω nazywamy σ-algebrą (lub σ-ciałem) wtedy
Statystyka w analizie i planowaniu eksperymentu
5 marca 2011 Zasady 10 wyk ladów; egzamin pisemny; Literatura 1 A. Lomnicki Wprowadzenie do statystyki dla przyrodników PWN 1999. 2 W. Krysicki, J. Bartos, W. Dyczka, K. Królikowska, M. Wasilewski Rachunek
Podstawy metod probabilistycznych. dr Adam Kiersztyn
Podstawy metod probabilistycznych dr Adam Kiersztyn Przestrzeń zdarzeń elementarnych i zdarzenia losowe. Zjawiskiem lub doświadczeniem losowym nazywamy taki proces, którego przebiegu i ostatecznego wyniku
Rachunek prawdopodobieństwa- wykład 2
Rachunek prawdopodobieństwa- wykład 2 Pojęcie dyskretnej przestrzeni probabilistycznej i określenie prawdopodobieństwa w tej przestrzeni dr Marcin Ziółkowski Instytut Matematyki i Informatyki Uniwersytet
Wstęp. Kurs w skrócie
Mariola Zalewska Zakład Metod Matematycznych i Statystycznych Zarządzania Wydział Zarządzania Uniwersystet Warszawski I rok DSM Rachunek Prawdopodobieństwa Wstęp Kombinatoryka Niezależność zdarzeń, Twierdzenie
STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Wybrane litery alfabetu greckiego α alfa β beta Γ γ gamma δ delta ɛ, ε epsilon η eta Θ θ theta
Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska)
Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska) Twierdzenie (o mnożeniu) Podstawowe pojęcia i wzory kombinatoryczne. Niech,, będą zbiorami mającymi odpowiednio,,
Statystyka matematyczna
Statystyka matematyczna Wykład 2 Magdalena Alama-Bućko 5 marca 2018 Magdalena Alama-Bućko Statystyka matematyczna 5 marca 2018 1 / 14 Prawdopodobieństwo klasyczne Ω - zbiór wszystkich zdarzeń elementarnych
Wykład 2. Prawdopodobieństwo i elementy kombinatoryki
Wstęp do probabilistyki i statystyki Wykład 2. Prawdopodobieństwo i elementy kombinatoryki dr hab.inż. Katarzyna Zakrzewska, prof.agh Katedra Elektroniki, AGH e-mail: zak@agh.edu.pl http://home.agh.edu.pl/~zak
Probabilistyczne podstawy statystyki matematycznej. Dr inż. Małgorzata Michalcewicz-Kaniowska
Probabilistyczne podstawy statystyki matematycznej Dr inż. Małgorzata Michalcewicz-Kaniowska 1 Zdarzenia losowe, algebra zdarzeń Do podstawowych pojęć w rachunku prawdopodobieństwa zaliczamy: doświadczenie
WYKŁAD 1. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Instytut Matematyki Uniwersytet Warszawski
WYKŁAD 1 Witold Bednorz, Paweł Wolff Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Wprowadzenie Gry hazardowe Wprowadzenie Gry hazardowe Klasyczna definicja prawdopodobieństwa.
P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt.
P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt. Lekcja 2 Temat: Podstawowe pojęcia związane z prawdopodobieństwem. Str. 10-21 1. Doświadczenie losowe jest to doświadczenie,
Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego
Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Rachunek Prawdopodobieństwa Brian Wynne podał następującą typologię zagrożeń znanych i niewiadomych: 1. ryzyko to wiadome nam przyszłe zagrożenia,
Statystyka matematyczna
Statystyka matematyczna Wykład 1 Magdalena Alama-Bućko 20 lutego 2017 Magdalena Alama-Bućko Statystyka matematyczna 20 lutego 2017 1 / 21 Wykład : 10h (przez 10 tygodni po 45 minut) Ćwiczenia : 15h (45
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera
Wykład 1: Przestrzeń probabilistyczna. Prawdopodobieństwo klasyczne. Prawdopodobieństwo geometryczne.
Rachunek prawdopodobieństwa MAP1151 Wydział Elektroniki, rok akad. 2011/12, sem. letni Wykładowca: dr hab. A. Jurlewicz Wykład 1: Przestrzeń probabilistyczna. Prawdopodobieństwo klasyczne. Prawdopodobieństwo
Moneta 1 Moneta 2 Kostka O, R O,R 1,2,3,4,5, Moneta 1 Moneta 2 Kostka O O ( )
Nowa matura kombinatoryka i rachunek prawdopodobieństwa Zadania zamknięte (0 1 pkt) 1. Doświadczenie losowe polega na rzucie dwiema symetrycznymi monetami i sześcienną kostką do gry. Prawdopodobieństwo
Biostatystyka, # 2 /Weterynaria I/
Biostatystyka, # 2 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a bud. Agro II, e-mail: zdzislaw.otachel@up.lublin.pl
RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA
RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA Doświadczenia losowe Rachunek prawdopodobieństwa zajmuje się zdarzeniami jakie zachodzą, gdy przeprowadzamy doświadczenia losowe. Mówimy, że doświadczenie jest
Metody probabilistyczne
Metody probabilistyczne 1. Prawdopodobieństwo klasyczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 03.10.2017 1 / 19 Rys historyczny Francja, XVII w.: gry hazardowe
Spotkanie olimpijskie nr lutego 2013 Kombinatoryka i rachunek prawdopodobieństwa
Spotkanie olimpijskie nr 5 16 lutego 2013 Kombinatoryka i rachunek prawdopodobieństwa Kombinatoryka Jadwiga Słowik Reguła mnożenia Jeśli wybór polega na podjęciu k decyzji, przy czym pierwszą decyzję możemy
Statystyka matematyczna
Statystyka matematyczna Wykład 1 Magdalena Alama-Bućko 26 lutego 2018 Magdalena Alama-Bućko Statystyka matematyczna 26 lutego 2018 1 / 16 Wykład : 10h (przez 10 tygodni po 45 minut) zaliczenie wykładu
Ćwiczenia z metodyki nauczania rachunku prawdopodobieństwa
Ćwiczenia z metodyki nauczania rachunku prawdopodobieństwa 25 marca 209 Zadanie. W urnie jest b kul białych i c kul czarnych. Losujemy n kul bez zwracania. Jakie jest prawdopodobieństwo, że pierwsza kula
( ) ( ) Przykład: Z trzech danych elementów: a, b, c, można utworzyć trzy następujące 2-elementowe kombinacje: ( ) ( ) ( ).
KOMBINATORYKA Kombinatoryka zajmuje się wyznaczaniem liczby elementów zbiorów skończonych utworzonych zgodnie z określonymi zasadami. Do podstawowych pojęć kombinatorycznych należą: PERMUTACJE Silnia.
Zdarzenia losowe i prawdopodobieństwo
Rozdział 1 Zdarzenia losowe i prawdopodobieństwo 1.1 Klasyfikacja zdarzeń Zdarzenie elementarne pojęcie aprioryczne, które nie może być zdefiniowane. Odpowiednik pojęcia punkt w geometrii. Zdarzenie elementarne
Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 1
Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 1 Przygotowując wykład korzystam głównie z książki Jakubowski, Sztencel Wstęp do teorii prawdopodobieństwa. Jakubowski, Sztencel:
Rachunek prawdopodobieństwa Rozdział 1. Wstęp
Rachunek prawdopodobieństwa Rozdział 1. Wstęp 1.1. Prawdopodobieństwo klasyczne Katarzyna Rybarczyk-Krzywdzińska Definicja Zadaliśmy pytanie. Bolek, Lolek i Tola wstąpili do kasyna. Dla każdego z nich
WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady
WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena
Przestrzeń probabilistyczna
Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty zbiór Σ rodzina podzbiorów tego zbioru P funkcja określona na Σ, zwana prawdopodobieństwem. Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty
Prawdopodobieństwo. jest ilościową miarą niepewności
Prawdopodobieństwo jest ilościową miarą niepewności Eksperyment - zdarzenie elementarne Eksperymentem nazywamy proces, który prowadzi do jednego z możliwych wyników. Nazywamy je wynikami obserwacji, zdarzeniami
Rachunek prawdopodobieństwa dla informatyków
Rachunek prawdopodobieństwa dla informatyków Adam Roman Instytut Informatyki UJ Wykład 1 rys historyczny zdarzenia i ich prawdopodobieństwa aksjomaty i reguły prawdopodobieństwa prawdopodobieństwo warunkowe
Statystyka matematyczna
Statystyka matematyczna Wykład 1 Magdalena Alama-Bućko 25 lutego 2019 Magdalena Alama-Bućko Statystyka matematyczna 25 lutego 2019 1 / 18 Wykład : 10h (przez 10 tygodni po 45 minut) Ćwiczenia : 15h (45
Rachunek prawdopodobieństwa i statystyka matematyczna. Leszek Adamczyk Wykłady dla kierunku Fizyka Medyczna w semestrze letnim 2016/2017
Rachunek prawdopodobieństwa i statystyka matematyczna Leszek Adamczyk Wykłady dla kierunku Fizyka Medyczna w semestrze letnim 2016/2017 1 1 Wstęp Rachunek prawdopodobieństwa i statystyka to: działy matematyki
PRAWDOPODOBIEŃSTWO I KOMBINATORYKA
PRAWDOPODOBIEŃSTWO I KOMBINATORYKA ZADANIE ( PKT) Z urny zawierajacej kule w dwóch kolorach wybieramy losowo dwie. Prawdopodobieństwo wylosowania co najmniej jednej kuli białej jest równe 8, a prawdopodobieństwo
Zmienna losowa. Rozkład skokowy
Temat: Zmienna losowa. Rozkład skokowy Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga * - materiał nadobowiązkowy Anna Rajfura, Matematyka i statystyka matematyczna na kierunku Rolnictwo SGGW 1 Zagadnienia
p k (1 p) n k. k c. dokładnie 10 razy została wylosowana kula amarantowa, ale nie za pierwszym ani drugim razem;
05DRAP - Niezależność zdarzeń, schemat Bernoulliego Definicja.. Zdarzenia A i B nazywamy niezależnymi, jeżeli zachodzi równość P(A B) = P(A) P(B). Definicja. 2. Zdarzenia A,..., A n nazywamy niezależnymi
RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub
RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub 1. W grupie jest 15 kobiet i 18 mężczyzn. Losujemy jedną osobę
Rachunku prawdopodobieństwa: rys historyczny, aksjomatyka, prawdopodobieństwo warunkowe,
Rachunku prawdopodobieństwa: rys historyczny, aksjomatyka, prawdopodobieństwo warunkowe, niezależność zdarzeń dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu Semestr letni
Wybrane treści z rachunku prawdopodobieństwa w kontekście medycznym. M.Zalewska
Wybrane treści z rachunku prawdopodobieństwa w kontekście medycznym M.Zalewska Podstawowe pojęcia Doświadczenie losowe obserwacja zjawiska, którego przebiegu nie umiemy w pełni przewidzieć. Możemy oceniać
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. L. Kowalski, Statystyka, 2005
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. Literatura: Marek Cieciura, Janusz Zacharski, Metody probabilistyczne w ujęciu praktycznym, L. Kowalski, Statystyka, 2005 R.Leitner, J.Zacharski, "Zarys matematyki
Doświadczenie i zdarzenie losowe
Doświadczenie i zdarzenie losowe Doświadczenie losowe jest to takie doświadczenie, które jest powtarzalne w takich samych warunkach lub zbliżonych, a którego wyniku nie można przewidzieć jednoznacznie.
Wykład 13. Podstawowe pojęcia rachunku prawdopodobieństwa
Wykład 13. Podstawowe pojęcia rachunku prawdopodobieństwa dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu semestr zimowy, rok akademicki 2015 2016 Doświadczenie losowe Doświadczenie
Kombinatoryka i rachunek prawdopodobieństwa
Kombinatoryka i rachunek prawdopodobieństwa Jerzy Rutkowski Kombinatoryka i rachunek prawdopodobieństwa 2. Elementy kombinatoryki 2.1. Permutacje Definicja 1. Niech n N. Permutacją n-elementowego zbioru
Matematyka podstawowa X. Rachunek prawdopodobieństwa
Matematyka podstawowa X Rachunek prawdopodobieństwa Zadania wprowadzające: 1. Rzucasz trzy razy monetą a) Napisz zbiór wszystkich wyników tego doświadczenia losowego. Ile ich jest? Wyrzuciłeś większą liczbę
i=7 X i. Zachodzi EX i = P(X i = 1) = 1 2, i {1, 2,..., 11} oraz EX ix j = P(X i = 1, X j = 1) = 1 7 VarS 2 2 = 14 3 ( 5 2 =
Kombinatoryka W tej serii zadań można znaleźć pojawiające się na egzaminach zadania dotyczące problemu wyznaczania prostych parametrów rozkładu w przypadku zgadnień kombinatorycznych. Zadania te wymagają
Kombinatoryka i rachunek prawdopodobieństwa
Kombinatoryka i rachunek prawdopodobieństwa Kombinatoryka i rachunek prawdopodobieństwa Jerzy Rutkowski 2. Elementy kombinatoryki 2.. Permutacje Teoria Definicja. Niech n N. Permutacją n-elementowego zbioru
Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.
Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. 3.1 Prawdopodobieństwo warunkowe Katarzyna Rybarczyk-Krzywdzińska Przykład 1 Alicja wylosowała jedną kartę z
Wykład 11: Podstawowe pojęcia rachunku prawdopodobieństwa
Wykład : Podstawowe pojęcia rachunku prawdopodobieństwa dr Mariusz Grządziel 3 maja 203 Doświadczenie losowe Doświadczenie nazywamy losowym, jeśli: może być powtarzane (w zasadzie) w tych samych warunkach;
Rzucamy dwa razy sprawiedliwą, sześcienną kostką do gry. Oblicz prawdopodobieństwo otrzymania:
Statystyka Ubezpieczeniowa Część 1. Rachunek prawdopodobieństwa: - prawdopodobieństwo klasyczne - zdarzenia niezależne - prawdopodobieństwo warunkowe - prawdopodobieństwo całkowite - wzór Bayesa Schemat
Matematyka z el. statystyki, # 2 /Geodezja i kartografia II/
Matematyka z el. statystyki, # 2 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a bud. Agro II, e-mail: zdzislaw.otachel@up.lublin.pl
Rachunek prawdopodobieństwa i statystyka
Rachunek prawdopodobieństwa i statystyka Przestrzeń probabilistyczna Niech Ω będzie dowolnym zbiorem, zwanym przestrzenią zdarzeń elementarnych. Elementy ω tej przestrzeni nazywamy zdarzeniami elementarnymi.
Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.
Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. 3.1 Prawdopodobieństwo warunkowe Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2016/2017 Przykład 1 Alicja
P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A)
Wykład 3 Niezależność zdarzeń, schemat Bernoulliego Kiedy dwa zdarzenia są niezależne? Gdy wiedza o tym, czy B zaszło, czy nie, NIE MA WPŁYWU na oszacowanie prawdopodobieństwa zdarzenia A: P (A B) = P
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3.
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3. ZMIENNA LOSOWA JEDNOWYMIAROWA. Zmienną losową X nazywamy funkcję (praktycznie każdą) przyporządkowującą zdarzeniom elementarnym liczby rzeczywiste. X : Ω R (dokładniej:
KURS PRAWDOPODOBIEŃSTWO
KURS PRAWDOPODOBIEŃSTWO Lekcja 3 Definicja prawdopodobieństwa Kołmogorowa. Prawdopodobieństwa warunkowe i niezależne. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko
RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA
Wydział: WiLiŚ, Transport, sem.2 dr Jolanta Dymkowska RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA Przestrzeń probabilistyczna Modelem matematycznym (tj. teoretycznym, wyidealizowanym,
Wykład 2. Prawdopodobieństwo i elementy kombinatoryki
Wstęp do probabilistyki i statystyki Wykład 2. Prawdopodobieństwo i elementy kombinatoryki dr inż. Krystyna Schneider, Katedra Elektroniki, AGH e-mail: kryschna@agh.edu.pl http://home.agh.edu.pl/~kryschna
Zdarzenie losowe (zdarzenie)
Zdarzenie losowe (zdarzenie) Ćw. 1. Ze zbioru cyfr (l, 2,3,..., 9} losowo wybieramy jedną. a) Wypisz zdarzenia elementarne, sprzyjające: zdarzeniu A, że wybrano liczbę parzystą zdarzeniu B, że wybrano
III. ZMIENNE LOSOWE JEDNOWYMIAROWE
III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 2 i 3 1 / 19 Zmienna losowa Definicja Dana jest przestrzeń probabilistyczna
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I (SGH)
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I (SGH) Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 1 1 / 24 Warunki zaliczenia 1 Do egzaminu dopuszczeni wszyscy, którzy uczęszczali na
Rachunek prawdopodobieństwa i kombinatoryka. Rachunek prawdopodobieństwa. Podstawowe pojęcia rachunku prawdopodobieństwa
Rachunek prawdopodobieństwa i kombinatoryka Spis treści Rachunek prawdopodobieństwa Podstawowe pojęcia rachunku prawdopodobieństwa Liczba wyników doświadczenia losowego. Reguła mnożenia i reguła dodawania
Matematyka dla biologów Zajęcia nr 11.
Matematyka dla biologów Zajęcia nr 11. Rachunek prawdopodobieństwa Dariusz Wrzosek Zajęcia nr 11. 19-grudnia 2018 1 / 27 Aksjomaty rachunku prawdopodobieństwa (przypomnienie) Niech Ω, zbiór majacy skończenie
Elementy Rachunek prawdopodobieństwa
Elementy rachunku prawdopodobieństwa Rachunek prawdopodobieństwa zajmuje się analizą praw rządzących zdarzeniami losowymi Pojęciami pierwotnymi są: zdarzenie elementarne ω oraz zbiór zdarzeń elementarnych
Podstawy Teorii Prawdopodobieństwa
Statystyka Opisowa z Demografią oraz Biostatystyka Podstawy Teorii Prawdopodobieństwa Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag
Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym
Edward Stachowski Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym W podstawie programowej obowiązującej na egzaminie maturalnym od 05r pojawiły się nowe treści programowe Wśród
02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w
02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w A Zadania na ćwiczenia Zadanie A.1. Niech Ω = R oraz F będzie σ-ciałem generowanym przez rodzinę wszystkich przedziałów otwartych typu (,
W2 Podstawy rachunku prawdopodobieństwa (przypomnienie)
W2 Podstawy rachunku prawdopodobieństwa (przypomnienie) Henryk Maciejewski Jacek Jarnicki Marek Woda www.zsk.iiar.pwr.edu.pl Rachunek prawdopodobieństwa - przypomnienie 1. Zdarzenia 2. Prawdopodobieństwo
Metody probabilistyczne
Metody probabilistyczne 5. Zmienne losowe: wprowadzenie Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 8..208 / 42 Motywacja Często bardziej niż same zdarzenia losowe
R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo.
R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo. Zadanie 1. Wyznacz średnią arytmetyczną, dominantę i medianę zestawu danych: 1, 5, 3, 2, 2, 4, 4, 6, 7, 1, 1, 4, 5, 5, 3. Zadanie 2. W zestawie danych
{( ) ( ) ( ) ( )( ) ( )( ) ( RRR)
.. KLASYCZNA DEFINICJA PRAWDOPODOBIEŃSTWA Klasyczna definicja prawdopodobieństwa JeŜeli jest skończonym zbiorem zdarzeń elementarnych jednakowo prawdopodobnych i A, to liczbę A nazywamy prawdopodobieństwem
Metody probabilistyczne
Metody probabilistyczne. Twierdzenia graniczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 20.2.208 / 26 Motywacja Rzucamy wielokrotnie uczciwą monetą i zliczamy
Metody probabilistyczne
Metody probabilistyczne 2. Aksjomatyczna definicja prawdopodobieństwa Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 10.10.2017 1 / 33 Klasyczna definicja prawdopodobieństwa
Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 2
Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 2 Przygotowując wykład korzystam głównie z książki Jakubowski, Sztencel Wstęp do teorii prawdopodobieństwa. Prawdopodobieństwo geometryczne
Statystyka Astronomiczna
Statystyka Astronomiczna czyli zastosowania statystyki w astronomii historycznie astronomowie mieli wkład w rozwój dyscypliny Rachunek prawdopodobieństwa - gałąź matematyki Statystyka - metoda oceny właściwości
W. Guzicki Próbna matura, grudzień 2014 r. poziom rozszerzony 1
W. Guzicki Próbna matura, grudzień 20 r. poziom rozszerzony Próbna matura rozszerzona (jesień 20 r.) Zadanie kilka innych rozwiązań Wojciech Guzicki Zadanie. Oblicz prawdopodobieństwo warunkowe, że w trzykrotnym
a. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.);
03DRAP - Przykłady przestrzeni probabilistycznych A Zadania na ćwiczenia Zadanie A1 (wskazówka: pierwsze ćwicznia i rozdział 23 przykł 1 i 2) Zbuduj model przestrzeni klasycznej (czyli takiej, w której
c) Zaszły oba zdarzenia A i B; d) Zaszło zdarzenie A i nie zaszło zdarzenie B;
Rachunek prawdopodobieństwa rozwiązywanie zadań 1. Rzucamy dwa razy symetryczną sześcienną kostką do gry. Zapisujemy liczbę oczek, jakie wypadły w obu rzutach. Wypisz zdarzenia elementarne tego doświadczenia.
c. dokładnie 10 razy została wylosowana kula antracytowa, ale nie za pierwszym ani drugim razem;
05DRAP - Niezależność zdarzeń, schemat Bernoulliego A Zadania na ćwiczenia Zadanie A.. Niech Ω = {ω, ω 2, ω, ω, ω 5 } i P({ω }) = 8, P({ω 2}) = P({ω }) = P({ω }) = 6 oraz P({ω 5}) = 5 6. Niech A = {ω,
Uczeń: -podaje przykłady ciągów liczbowych skończonych i nieskończonych oraz rysuje wykresy ciągów
Wymagania edukacyjne PRZEDMIOT: Matematyka KLASA: III Th ZAKRES: zakres podstawowy Poziom wymagań Lp. Dział programu Konieczny-K Podstawowy-P Rozszerzający-R Dopełniający-D Uczeń: 1. Ciągi liczbowe. -zna
Statystyka podstawowe wzory i definicje
1 Statystyka podstawowe wzory i definicje Średnia arytmetyczna to suma wszystkich liczb (a 1, a 2,, a n) podzielona przez ich ilość (n) Przykład 1 Dany jest zbiór liczb {6, 8, 11, 2, 5, 3}. Oblicz średnią
Wykład 2 Zmienne losowe i ich rozkłady
Wykład 2 Zmienne losowe i ich rozkłady Magdalena Frąszczak Wrocław, 11.10.2017r Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe Doświadczenie
Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru
Wymagania kl. 3. Zakres podstawowy i rozszerzony
Wymagania kl. 3 Zakres podstawowy i rozszerzony Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za
Matematyka dyskretna. Andrzej Łachwa, UJ, /10
Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 10/10 Podziały i liczby Stirlinga Liczba Stirlinga dla cykli (często nazywana liczbą Stirlinga pierwszego rodzaju) to liczba permutacji
PDM 3. Zakres podstawowy i rozszerzony. Plan wynikowy. STEREOMETRIA (22 godz.) W zakresie TREŚCI PODSTAWOWYCH uczeń potrafi:
PDM 3 Zakres podstawowy i rozszerzony Plan wynikowy STEREOMETRIA ( godz.) Proste i płaszczyzny w przestrzeni Kąt nachylenia prostej do płaszczyzny wskazać płaszczyzny równoległe i płaszczyzny prostopadłe
Indukcja matematyczna, zasada minimum i maksimum. 17 lutego 2017
Indukcja matematyczna, zasada minimum i maksimum 17 lutego 2017 Liczby naturalne - Aksjomatyka Peano (bez zera) Aksjomatyka liczb naturalnych N jest nazwą zbioru liczb naturalnych, 1 jest nazwą elementu
Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.
Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. 3.2. Niezależność zdarzeń Katarzyna Rybarczyk-Krzywdzińska Niezależność dwóch zdarzeń Intuicja Zdarzenia losowe
Wykład 4, 5 i 6. Elementy rachunku prawdopodobieństwa i kombinatoryki w fizyce statystycznej
Wykład 4, 5 i 6 Elementy rachunku prawdopodobieństwa i kombinatoryki w fizyce statystycznej dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak
= 10 9 = Ile jest wszystkich dwucyfrowych liczb naturalnych podzielnych przez 3? A. 12 B. 24 C. 29 D. 30. Sposób I = 30.
Kombinatoryka i rachunek prawdopodobieństwa Zadania zamknięte (0 1 pkt) 1. Flagę, taką jak pokazano na rysunku, należy zszyć z trzech jednakowej szerokości pasów kolorowej tkaniny. Oba pasy zewnętrzne
Pojęcie przestrzeni probabilistycznej
Pojęcie przestrzeni probabilistycznej Definicja (przestrzeni probabilistycznej) Uporządkowany układ < Ω, S, P> nazywamy przestrzenią probabilistyczną jeśli (Ω) Ω jest niepustym zbiorem zwanym przestrzenia
WYKŁAD 3. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki
WYKŁAD 3 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Schemmat Bernouliego Rzucamy 10 razy moneta, próba Bernouliego jest pojedynczy
METODY PROBABILISTYCZNE I STATYSTYKA
Andrzej Marciniak METODY PROBABILISTYCZNE I STATYSTYKA Wykłady dla studentów kierunku informatyka Państwowej Wyższej Szkoły Zawodowej w Kaliszu Wykłady są przeznaczone wyłącznie do indywidualnego użytku
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 4 część I 2 Kombinatoryka Wariacje z powtórzeniami Permutacje Wariacje bez powtórzeń Kombinacje Łączenie
Rachunek Prawdopodobieństwa i Statystyka Matematyczna
Rachunek rawdopodobieństwa i Statystyka Matematyczna rowadzący: prof. dr hab. inż. Ireneusz Jóźwiak Zestaw nr. Opracowanie: Grzegorz Drzymała 4996 Grzegorz Dziemidowicz 49965 drian Gawor 49985 Zadanie..
Kombinatoryka. Reguła dodawania. Reguła dodawania
Kombinatoryka Dział matematyki, który zajmuje się obliczaniem liczebności zbiorów bądź długości ciągów, które łączą w określony sposób elementy należące do skończonego zbioru (teoria zliczania). W jakich