Kombinatoryka. Jerzy Rutkowski. Teoria. P n = n!. (1) Zadania obowiązkowe
|
|
- Anna Milewska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Kombinatoryka Jerzy Rutkowski 2. Elementy kombinatoryki 2.1. Permutacje Definicja 1. Niech n N. Permutacją n-elementowego zbioru A nazywamy dowolną funkcję różnowartościową f : {1,..., n} A. Innymi słowy: permutacją n-elementowego zbioru A nazywamy dowolny n-elementowy ciąg różnych elementów zbioru A. Uwaga 2. Zamiast mówić o permutacjach n-elementowego zbioru {a 1,..., a n } mówimy też o permutacjach elementów a 1,..., a n. Przykład. Wszystkimi permutacjami zbioru A = {a, b, c} są ciągi (a, b, c), (a, c, b), (b, a, c), (b, c, a), (c, a, b), (c, b, a). Twierdzenie 4. Liczba wszystkich permutacji zbioru n-elementowego jest równa n!. Liczbę wszystkich permutacji zbioru n-elementowego oznacza się czasami przez P n. Zgodnie z powyższym twierdzeniem zachodzi równość P n = n!. (1) Zadanie 1. Wypisać wszystkie permutacje liczb 1, 2 i. Szkic rozwiązania. Wypisując kolejno po dwie permutacje o pierwszym wyrazie 1, o pierwszym wyrazie 2 i o pierwszym wyrazie, otrzymujemy wszystkie permutacje liczb 1, 2 i. Zatem wszystkimi permutacjami tych liczb są ciągi: (1, 2, ), (1,, 2), (2, 1, ), (2,, 1), (, 1, 2), (, 2, 1). Zadanie 2. Obliczyć liczbę różnych słów (sensownych lub nie), które można uzyskać w wyniku przestawiania liter w słowie sasanka. Szkic rozwiązania. Odnotujmy wpierw, że siedmioliterowe słowo sasanka tworzą litery a, 2 litery s i po jednej literze k i n. Ponumerujmy kolejne litery tego słowa liczbami od 1 do 7. Liczba permutacji tych numerów jest równa 7!, a każdej takiej permutacji odpowiada pewne słowo utworzone z wyżej wymienionych liter. Jednakże liczba takich permutacji numerów, którym odpowiada to samo słowo jest równa! 2!. Bowiem dwom permutacjom odpowiada to samo słowo wtedy i tylko wtedy, gdy liczby 5 (numery litery n) w obu tych permutacjach są na tym samym miejscu, liczby 6 (numery litery k) są na tym samym miejscu, zbiory numerów miejsc, na których występują liczby 1 i (numery liter s) są równe oraz zbiory numerów miejsc, na których występują liczby 2, 4 i 7 (numery liter a) są równe. Wynika stąd, że jeśli N oznacza szukaną liczbę słów, to zachodzą równości N = 7!! 2! = ! = 420.! 2 Zadanie. Obliczyć liczbę takich permutacji liter a, b, c, d, e i f, których pierwszym wyrazem permutacji jest c. Szkic rozwiązania. Ponieważ każdą z rozpatrywanych permutacji można utożsamiać z odpowiednią permutacją pięciu liter a, b, d, e i f występujących po literze c, więc szukana liczba permutacji jest równa 5! czyli
2 Zadanie 4. Wypisać wszystkie permutacje liczb 1, 2, i 4. Szkic rozwiązania. Aby otrzymać wszystkie 24 permutacje liczb 1, 2, i 4, wypisujemy kolejno po sześć permutacji o pierwszym wyrazie 1, o pierwszym wyrazie 2 itd.: (1, 2,, 4), (1, 2, 4, ), (1,, 2, 4), (1,, 4, 2), (1, 4, 2, ), (1, 4,, 2), (2, 1,, 4), (2, 1, 4, ), (2,, 1, 4), (2,, 4, 1), (2, 4, 1, ), (2, 4,, 1), (, 1, 2, 4), (, 1, 4, 2), (, 2, 1, 4), (, 2, 4, 1), (, 4, 1, 2), (, 4, 2, 1), (4, 1, 2, ), (4, 1,, 2), (4, 2, 1, ), (4, 2,, 1), (4,, 1, 2), (4,, 2, 1). Zadanie 5. Obliczyć liczbę takich permutacji liter a, b, c, d, e i f, które spełniają dany warunek: a) trzy pierwsze wyrazy tworzą zbiór {b, c, d}; b) samogłoski a i e są sąsiednimi wyrazami permutacji. Odpowiedź: a ) 6; b) Kombinacje (bez powtórzeń) Definicja 5. Niech k, n N i niech k n. k-elementową kombinacją n-elementowego zbioru A nazywamy dowolny k-elementowy podzbiór zbioru A. Przykład 6. Wszystkimi 2-elementowymi kombinacjami zbioru A = {a, b, c, d} są podzbiory: {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}. Twierdzenie 7. Liczba k-elementowych kombinacji n-elementowego zbioru A jest równa ( n k). Liczbę wszystkich k-elementowych kombinacji zbioru n-elementowego oznacza się często przez C k n. Zgodnie z powyższym twierdzeniem zachodzi równość C k n = ( ) n. (2) k Zadanie 6. Obliczyć liczbę sposobów skreślenia kuponu w totolotku. Szkic rozwiązania. Skreślenie kuponu w totolotku jest równoznaczne z wyborem sześciu spośród 49-ciu liczb. Liczba sposobów skreślenia jest więc równa ( ) = = Zadanie 7. Obliczyć liczbę możliwych rozdań przy grze w brydża. Szkic rozwiązania. Talia do gry w brydża liczy 52 karty. Każdy z czterech graczy otrzymuje po 1 kart. Ponumerujmy graczy liczbami od 1 do 4. Karty można rozdać następująco: najpierw wybieramy 1 kart spośród 52 dla pierwszego gracza (można to uczynić na ( 52 1) sposobów) następnie z pozostałych 9-ciu kart wybieramy 1 kart dla drugiego gracza (na ( 9 1) sposobów), z kolei spośród 26-ciu pozostałych kart wybieramy 1 2
3 kart dla trzeciego gracza (na ( 26 1) sposobów), a pozostałe 1 kart dajemy czwartemu graczowi. Łączna liczba rozdań jest więc równa ( )( )( ) Zadanie 8. W klasie jest 15 dziewcząt i 1 chłopców. Obliczyć, na ile sposobów można skompletowć liczącą dwie dziewczynki i jednego chłopca delegację tej klasy. Szkic rozwiązania. Spośród piętnastu dziewcząt można wybrać dwie na ( 15) 2 czyli 105 sposobów, a jednego chłopca spośród trzynastu można wybrać na ( 1) 1 czyli 1 sposobów. Ponieważ każdy wybór dwóch dziewcząt można skojarzyć z każdym wyborem jednego chłopca, więc liczba sposobów wyboru delegacji jest równa iloczynowi liczby sposobów wyboru dwóch dziewcząt przez liczbę sposobów wyboru jednego chłopca. Jest więc równa ( 15)( 1 ) 2 1 tj Wobec tego szukana liczba sposobów wyboru delegacji jest równa 165. Zadanie 9. W klasie jest 16 dziewcząt i 12 chłopców. Obliczyć, na ile sposobów można skompletowć liczącą trzy dziewczynki i dwóch chłopców delegację tej klasy. Odpowiedź: Zadanie 10. Do dyspozycji n osób grających w tysiąca było k talii kart, przy czym k n. Obliczyć liczbę N sposobów wyboru k ponumerowanych zbiorów trójek osób, które będą mogły grać tymi kartami. Uwaga. W tysiąca jedną talią grają trzy osoby. Odpowiedź: N = ( n )( ) ( ) n n k +... = n(n 1)... (n k + 1) 6 k = n! 6 k (n k)!. 2.. Wariacje bez powtórzeń Definicja 8. Niech k, n N i niech k n. k-elementową wariacją bez powtórzeń n-elementowego zbioru A nazywamy dowolną funkcję różnowartościową f : {1,..., k} A. Innymi słowy: k-elementową wariacją bez powtórzeń n-elementowego zbioru A nazywamy dowolny k-wyrazowy ciąg różnych elementów zbioru A. Twierdzenie 9. Liczba k-elementowych wariacji bez powtrzeń n-elementowego zbioru A jest równa n! (n k)!. Liczbę wszystkich k-elementowych wariacji bez powtrzeń zbioru n-elementowego oznacza się często przez V k n. Zgodnie z powyższym twierdzeniem zachodzi równość V k n = n(n 1)... (n k + 1). () Zadanie 11. Obliczyć liczbę różnych flag utworzonych przez trzy poziome różnokolorowe pasy, których kolory można wybrać spośród 6-ciu kolorów. Szkic rozwiązania. Szukana liczba flag jest równa liczbie różnoelementowych ciągów (k 1, k 2, k ), gdzie k 1, k 2, k oznaczają kolory pasów górnego, środkowego i dolnego odpowiednio. Wobec tego liczba takich flag jest równa V czyli =
4 Zadanie 12. Obliczyć liczbę sposobów takiego posadzenia pięciu pań i trzech panów na ośmiu ponumerowanych miejscach przy okrągłym stole, by żadnych dwóch panów nie siedziało obok siebie. Szkic rozwiązania. Ponumerujmy oddzielnie panie i panów. Każdy ze sposobów posadzenia pięciu pań i trzech panów tak, aby były spełnione warunki zadania, można osiągnąć postępując wg następującej procedury: 1 o. Wybieramy miejsce dla pani nr 1 (8 sposobów); 2 o. Wybieramy kolejność, w jakiej na prawo od pani nr 1 będą siedziały pozostałe cztery panie, czyli tworzymy permutację liczb 2,, 4 i 5 (4! sposobów); o. Tworzymy ciąg (p 1, p 2, p ) numerów pań, które bezpośrednio na prawo od siebie bedą miały panów nr 1, nr 2 i nr odpowiednio (5 4 sposobów). Łącznie mamy 8 4! 5 4 czyli sposobów. Zadanie 1. Obliczyć, ile jest liczb pięciocyfrowych o cyfrach parami różnych. Odpowiedź: Zadanie 14. Niech liczby naturalne k, m spełniają warunek k m. Obliczyć liczbę sposobów takiego posadzenia k kobiet i m mężczyzn na k+m miejscach przy okrągłym stole, by żadnych dwóch panów nie siedziało obok siebie. Odpowiedź: Rozumując tak jak w rozwiązaniu zadania z zadania 12, wnioskujemy, że szukana liczba jest równa (k + m) (k 1)! k (k 1)... (k m + 1). Zadanie 15. Obliczyć liczbę sposobów rozdzielenia trzech medali (złotego, srebrnego i brązowego) pomiędzy sześciu zawodników. Odpowiedź: Wariacje z powtórzeniami Twierdzenie 10. Niech A będzie dowolnym zbiorem niepustym. Każdą funkcję f : {1, 2,..., k} A nazywamy k-wyrazową wariacją z powtórzeniami elementów zbioru A. Z powyższej definicji wynika, że k-wyrazowe wariacje z powtórzeniami elementów zbioru A to po prostu k-wyrazowe ciągi elementów zbioru A. Twierdzenie 11. Niech zbiory A i B mają odpowiednio m i n elementów. Liczba wszystkich funkcji f : A B jest równa n m. ******************************************************************* Zadanie 16. Na parterze dziesięciopiętrowego domu do windy wsiadło 8 osób. Obliczyć liczbę sposobów, na jakie osoby te mogą wysiąść z windy (pod uwagę bierzemy tu jedynie numery pięter, na których wysiadają poszczególne osoby). Szkic rozwiązania. Ponumerujmy te osoby liczbami od 1 do 8. Szukana liczba sposobów jest równa liczbie 8-elementowych ciągów (p 1,..., p 8 ), gdzie dla każdego k {1,..., 8} wyraz p k jest numerem piętra, na którym wysiada k-ta osoba. Ciągów takich jest
5 Zadanie 17. Obliczyć liczbę takich numerów tablic rejestracyjnych, które na początku mają dowolne trzy duże litery alfabetu łacińskiego (alfabet ten ma 26 liter) a następnie dowolne cztery cyfry. Odpowiedź: Zadanie 18. Obliczyć liczbę sposobób takiego rozmieszczenia dziewięciu kul ponumerowanych liczbami od 1 do 9 w trzech pudełkach ponumerowanych liczbami od 1 do, by spełniony był warunek: a) pudełko nr 1 jest puste; b) kula nr 1 jest w pudełku nr 1; c) w pudełku nr 1 jest dokładnie jedna kula; d) w pudełku nr 1 jest przynajmniej jedna kula; e) w pudełku nr 1 jest co najwyżej jedna kula. Uwagi metodologiczne. Każde z rozważanych rozmieszczeń można utożsamiać z 9-cio wyrazowym ciągiem numerów pudełek, w których znajdują się kolejne kule. Odpowiedź: a) 2 9 (= 512); b) 1 8 (= 6561); c) (= 204); d) (= ); e) (= 2816). Zadanie 19. Obliczyć liczbę sposobów takiego rozmieszczenia ośmiu ponumerowanych kul w pięciu ponumerowanych pudełkach, by liczba pustych pudełek była równa: a) 4; b) ; c) 2; Odpowiedź: a) ( 5 ( 1) (= 5); b) 5 ) 2 (2 8 2) (= 2540); c) ( 5 ) [ 8 (2 8 2) ] (= ). Zadanie 20. Obliczyć liczbę sposobów rozmieszczenia siedmiu ponumerowanych kul w czterech ponumerowanych pudełkach. Odpowiedź: 4 7 (= 16 84). Zadanie 21. Obliczyć, ile jest liczb siedmiocyfrowych oraz ile spośród nich dzieli się przez 10. Odpowiedź: (= ) oraz (= ). Zadanie 22. Na każde z dziesięciu pytań pewnego testu można dać jedną z czterech odpowiedzi a, b, c i d. Obliczyć liczbę sposobów takiego wypełnienia tego testu, by odpowiedzi na dowolne dwa kolejne pytania były różne. Odpowiedź: 4 9 (= 78 72) Zadania różne Zadanie 2. Obliczyć, na ile sposobów można z dziesięciu pań i dziesięciu panów utworzyć 10 nienumerowanych Odpowiedź: 10! (= ). Zadanie 24. Obliczyć, na ile sposobów można z dziesięciu pań i dziesięciu panów utworzyć 10 ponumerowanych Odpowiedź: (10!) 2 (= ). Zadanie 25. Obliczyć, na ile sposobów można z dziesięciu pań i trzynastu panów utworzyć 10 nienumerowanych Odpowiedź: ( 1 ) 10! (= = ). Zadanie 26. Obliczyć, na ile sposobów można z dziesięciu pań i trzynastu panów utworzyć 10 ponumerowanych Odpowiedź: ( 1 ) (10!) 2 (= ). 5
Kombinatoryka i rachunek prawdopodobieństwa
Kombinatoryka i rachunek prawdopodobieństwa Jerzy Rutkowski Kombinatoryka i rachunek prawdopodobieństwa 2. Elementy kombinatoryki 2.1. Permutacje Definicja 1. Niech n N. Permutacją n-elementowego zbioru
Kombinatoryka i rachunek prawdopodobieństwa
Kombinatoryka i rachunek prawdopodobieństwa Kombinatoryka i rachunek prawdopodobieństwa Jerzy Rutkowski 2. Elementy kombinatoryki 2.. Permutacje Teoria Definicja. Niech n N. Permutacją n-elementowego zbioru
1. Mamy do wyboru 2 mieszkania i 3 auta. Na ile sposobów można dokonać wyboru, jeśli
Repetytorium z matematyki, kierunek informatyka, I rok, studia niestacjonarne I stopnia Semestr zimowy 01/016 KOMBINATORYKA. Zasada mnożenia, dodawania. 1. Mamy do wyboru mieszkania i auta. Na ile sposobów
Zadanie 1. Na diagramie Venna dla 3 zbiorów zaznacz:
Zadanie 1 Na diagramie Venna dla 3 zbiorów zaznacz: A B C Zadanie 1 Na diagramie Venna dla 3 zbiorów zaznacz: A B C A B C Zadanie 1 Na diagramie Venna dla 3 zbiorów zaznacz: A B C A B C A B C Zadanie 1
1. Elementy kombinatoryki - zadania do wyboru
. Elementy kombinatoryki - zadania do wyboru Bernadeta Tomasz Zadania dodatkowe Zadanie.. Mamy do wyboru mieszkania i auta. Na ile sposobów można dokonać wyboru, jeśli. mamy wybrać mieszkanie i samochód,.
Z4. Ankieta złożona ma być z trzech pytań: A, B i C. Na ile sposobów można ją ułożyć zmieniając tylko kolejność pytań? ODP. Jest 6 możliwych sposobów.
PERMUTACJE Z1. Oblicz: Z2. Doprowadź do najprostszej postaci wyrażenia: Z3. Sprawdź czy prawdziwa jest równość: Dana równość jest prawdziwa. Z4. Ankieta złożona ma być z trzech pytań: A, B i C. Na ile
Ćw,1. Wypisz wszystkie k-wyrazowe wariacje bez powtórzeń zbioru A = {1, 2,3 }, gdy: a) k = l, b) k = 2, c) k = 3. Wariacje 1 z 6
Wariacje bez powtórzeń Jeśli w doświadczeniu losowym ze zbioru n-elementowego wybieramy k elementów w ten sposób, że: wybrane elementy nie mogą się powtarzać kolejność wybranych elementów jest istotna
Jak odróżnić wariację z powtórzeniami od wariacji bez powtórzeń, kombinacji?
Jak odróżnić wariację z powtórzeniami od wariacji bez powtórzeń, kombinacji? Porada niniejsza traktuje o tzw. elementach kombinatoryki. Często zdarza się, że rozwiązujący zadania z tej dziedziny mają problemy
Typy zadań kombinatorycznych:
Typy zadań kombinatorycznych: I. Ustawianie wszystkich elementów zbioru w pewnej kolejności Przestawieniem nazywamy ustawienie elementów danego zbioru w pewnej kolejności. Liczba przestawień określa na
Lista zadania nr 2 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie
Lista zadania nr 2 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w
Rachunek prawdopodobieństwa - ćwiczenia pierwsze Kombinatoryka. kierunek: informatyka i ekonometria I
Rachunek prawdopodobieństwa - ćwiczenia pierwsze Kombinatoryka. kierunek: informatyka i ekonometria I dr Jarosław Kotowicz 07.10.2011 Spis treści 1 Kombinatoryka 1 1 Kombinatoryka permutacja bez powtórzeń
Moneta 1 Moneta 2 Kostka O, R O,R 1,2,3,4,5, Moneta 1 Moneta 2 Kostka O O ( )
Nowa matura kombinatoryka i rachunek prawdopodobieństwa Zadania zamknięte (0 1 pkt) 1. Doświadczenie losowe polega na rzucie dwiema symetrycznymi monetami i sześcienną kostką do gry. Prawdopodobieństwo
01DRAP - klasyczna definicja prawdopodobieństwa
01DRAP - klasyczna definicja prawdopodobieństwa Ω zbiór zdarzeń elementarnych. Gdy Ω < oraz P({ω} = 1 Ω, dla każdego ω Ω (tzn. każde zdarzenie elementarne jest równo prawdopodobne, to P (A = A Ω Przydatne
KOMBINATORYKA. Problem przydziału prac
KOMBINATORYKA Dział matematyki zajmujący się badaniem różnych możliwych zestawień i ugrupowań, jakie można tworzyć z dowolnego zbioru skończonego. Zbiory skończone, najczęściej wraz z pewną relacją obiekty
01DRAP - klasyczna definicja prawdopodobieństwa
01DRAP - klasyczna definicja prawdopodobieństwa Ω zbiór zdarzeń elementarnych. Gdy Ω < oraz P({ω} = 1 Ω, dla każdego ω Ω (tzn. każde zdarzenie elementarne jest równo prawdopodobne, to P (A = A Ω Przydatne
ELEMENTY KOMBINATORYKI
ELEMENTY KOMBINATORYKI Kombinatoryka to dział matematyki, który zajmuje się zliczaniem, na ile sposobów może zajść jakieś zjawisko. Powstała dzięki grom hazardowym a dopiero później rozwinęła się w gałąź
RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA
RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA Doświadczenia losowe Rachunek prawdopodobieństwa zajmuje się zdarzeniami jakie zachodzą, gdy przeprowadzamy doświadczenia losowe. Mówimy, że doświadczenie jest
01DRAP - klasyczna definicja prawdopodobieństwa
01DRAP - klasyczna definicja prawdopodobieństwa Ω zbiór zdarzeń elementarnych. Gdy Ω < oraz P({ω} = 1 Ω, dla każdego ω Ω (tzn. każde zdarzenie elementarne jest równo prawdopodobne, to P (A = A Ω Przydatne
Lista zadania nr 1 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie
Lista zadania nr 1 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2 Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w Białymstoku
Matematyka dyskretna. Andrzej Łachwa, UJ, A/14
Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 9A/14 Permutacje Permutacja zbioru skończonego X to bijekcja z X w X. Zbiór permutacji zbioru oznaczamy przez, a permutacje małymi
Wprowadzenie do kombinatoryki
Wprowadzenie do kombinatoryki http://www.matemaks.pl/kombinatoryka.html Kombinatoryka jest działem matematyki, który pomaga odpowiedzieć na pytania typu: "ile jest możliwych wyników w rzucie monetą?",
Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 14 Zadania statystyka, prawdopodobieństwo i kombinatoryka
1 TEST WSTĘPNY 1. (1p) Zestaw danych 3, 5, x, 7, 10, 12 jest uporządkowany niemalejąco. Mediana tego zestawu jest równa 6, więc liczba x jest równa A. 7 B. 6 C. 5 D. 4 2. (2p) Średnia arytmetyczna liczb:
Rozwiązania zadań dla Czytelników TRUDNE WYRAZY
Marian Maciocha Rozwiązania zadań dla Czytelników TRUDNE WYRAZY Zadanie OSIEM LITER : Ile można utworzyć wyrazów ośmioznakowych takich, że kolejne: a) trzy pierwsze znaki są małymi literami alfabetu łacińskiego,
Prawdopodobieństwo zadania na sprawdzian
Prawdopodobieństwo zadania na sprawdzian Zad. 1. Zdarzenia A, B, C oznaczają, że wzięto co najmniej po jednej książce odpowiednio z pierwszych, drugich i trzecich dzieł zebranych. Każde z dzieł zebranych
Matematyka dyskretna. Andrzej Łachwa, UJ, A/15
Matematyka dyskretna Andrzej Łachwa, UJ, 2015 andrzej.lachwa@uj.edu.pl 10A/15 Permutacje Permutacja zbioru skończonego X to bijekcja z X w X. Zbiór permutacji zbioru oznaczamy przez, a permutacje małymi
Ciągi Podzbiory Symbol Newtona Zasada szufladkowa Dirichleta Zasada włączania i wyłączania. Ilość najkrótszych dróg. Kombinatoryka. Magdalena Lemańska
Kombinatoryka Magdalena Lemańska Literatura Matematyka Dyskretna Andrzej Szepietowski http://wazniak.mimuw.edu.pl/ Discrete Mathematics Seymour Lipschutz, Marc Lipson Aspekty kombinatoryki Victor Bryant
Rachunek prawdopodobieństwa
Rachunek prawdopodobieństwa Sebastian Rymarczyk srymarczyk@afm.edu.pl Tematyka zajęć 1. Elementy kombinatoryki. 2. Definicje prawdopodobieństwa. 3. Własności prawdopodobieństwa. 4. Zmienne losowe, parametry
Matematyka dyskretna zestaw II ( )
Matematyka dyskretna zestaw II (17-18.10.2016) Uwaga: Część z zadań z tego zestawu opiera się na zasadzie szufladkowej Dirichleta. Zadanie 1. Na ile sposobów można umieścić w 7 szufladach 3 koszule tak,
( ) ( ) Przykład: Z trzech danych elementów: a, b, c, można utworzyć trzy następujące 2-elementowe kombinacje: ( ) ( ) ( ).
KOMBINATORYKA Kombinatoryka zajmuje się wyznaczaniem liczby elementów zbiorów skończonych utworzonych zgodnie z określonymi zasadami. Do podstawowych pojęć kombinatorycznych należą: PERMUTACJE Silnia.
STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Wybrane litery alfabetu greckiego α alfa β beta Γ γ gamma δ delta ɛ, ε epsilon η eta Θ θ theta
Spotkanie olimpijskie nr lutego 2013 Kombinatoryka i rachunek prawdopodobieństwa
Spotkanie olimpijskie nr 5 16 lutego 2013 Kombinatoryka i rachunek prawdopodobieństwa Kombinatoryka Jadwiga Słowik Reguła mnożenia Jeśli wybór polega na podjęciu k decyzji, przy czym pierwszą decyzję możemy
R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo.
R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo. Zadanie 1. Wyznacz średnią arytmetyczną, dominantę i medianę zestawu danych: 1, 5, 3, 2, 2, 4, 4, 6, 7, 1, 1, 4, 5, 5, 3. Zadanie 2. W zestawie danych
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) PRAWDOPODOBIEŃSTWO ZAJŚCIA ZDARZENIA A POD WARUNKIEM, ŻE ZASZŁO ZDARZENIE B
KLASYCZ NA DEFINICJA PRAW DOPOD OBIEŃSTWA ( ) PRAWDOPOD OBIEŃSTW O W A RUNKOWE PRAWDOPODOBIEŃSTWO ZAJŚCIA ZDARZENIA A POD WARUNKIEM, ŻE ZASZŁO ZDARZENIE B ( ) WIĘC CO OZNACZA, ŻE ZDARZENIE B NIE MA WPŁYWU
KOMBINATORYKA OBIEKTY KOMBINATORYCZNE MATEMATYKA DYSKRETNA (2014/2015)
MATEMATYKA DYSKRETNA (2014/2015) dr hab. inż. Małgorzata Sterna malgorzata.sterna@cs.put.poznan.pl www.cs.put.poznan.pl/msterna/ KOMBINATORYKA OBIEKTY KOMBINATORYCZNE TEORIA ZLICZANIA Teoria zliczania
RACHUNEK PRAWDOPODOBIEŃSTWA
Umiejętności opracowanie: Maria Lampert LISTA MOICH OSIĄGNIĘĆ RACHUNEK PRAWDOPODOBIEŃSTWA Co powinienem umieć Umiejętności znam pojęcie zdarzenia elementarnego znam pojęcie doświadczenia losowego i potrafię
Rachunek prawdopodobieństwa Rozdział 1. Wstęp
Rachunek prawdopodobieństwa Rozdział 1. Wstęp 1.1. Prawdopodobieństwo klasyczne Katarzyna Rybarczyk-Krzywdzińska Definicja Zadaliśmy pytanie. Bolek, Lolek i Tola wstąpili do kasyna. Dla każdego z nich
Metody probabilistyczne
Metody probabilistyczne 1. Prawdopodobieństwo klasyczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 03.10.2017 1 / 19 Rys historyczny Francja, XVII w.: gry hazardowe
Matematyka dyskretna
Matematyka dyskretna Zbiór zadań kolekcjonowanych w ciągu semestralnego kursu Matematyka dyskretna prof. dr hab. M. Morayne dla studentów informatyki magisterskiej WPPT PWr wiosna-lato 2005 UWAGA: Zadania
Kombinatoryka i rachunek prawdopodobieństwa (rozszerzenie)
Kombinatoryka i rachunek prawdopodobieństwa (rozszerzenie) (1) Ile liczb czterocyfrowych można utworzyć używając jedynie cyfr 1,2,3,4,5,6,7,8? (2) Ile liczb czterocyfrowych o różnych cyfrach można utworzyć
02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w
02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w A Zadania na ćwiczenia Zadanie A.1. Niech Ω = R oraz F będzie σ-ciałem generowanym przez rodzinę wszystkich przedziałów otwartych typu (,
Ćwiczenia z metodyki nauczania rachunku prawdopodobieństwa
Ćwiczenia z metodyki nauczania rachunku prawdopodobieństwa 25 marca 209 Zadanie. W urnie jest b kul białych i c kul czarnych. Losujemy n kul bez zwracania. Jakie jest prawdopodobieństwo, że pierwsza kula
Zadania należy samodzielnie rozwiązać, a następnie sprawdzić poprawność wyniku!
Zadania testowe kombinatoryka (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/) Zadania należy samodzielnie rozwiązać, a następnie sprawdzić poprawność wyniku! 1. Ze zbioru cyfr * + losujemy
ĆWICZENIA nr 1 - KOMBINATORYKA - czyli sztuka liczenia autor: mgr inż. Agnieszka Herczak
ĆWCZENA nr 1 - KOMBNATORYKA - czyli sztuka liczenia autor: mgr inż. Agnieszka Herczak. Reguła mnożenia Jeżeli pewien wybór zależy od skończenie wielu decyzji, przy czym podejmując pierwszą mamy k 1 możliwości
KURS PRAWDOPODOBIEŃSTWO
KURS PRAWDOPODOBIEŃSTWO Lekcja 2 Klasyczna definicja prawdopodobieństwa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Według klasycznej
c) Zaszły oba zdarzenia A i B; d) Zaszło zdarzenie A i nie zaszło zdarzenie B;
Rachunek prawdopodobieństwa rozwiązywanie zadań 1. Rzucamy dwa razy symetryczną sześcienną kostką do gry. Zapisujemy liczbę oczek, jakie wypadły w obu rzutach. Wypisz zdarzenia elementarne tego doświadczenia.
= 10 9 = Ile jest wszystkich dwucyfrowych liczb naturalnych podzielnych przez 3? A. 12 B. 24 C. 29 D. 30. Sposób I = 30.
Kombinatoryka i rachunek prawdopodobieństwa Zadania zamknięte (0 1 pkt) 1. Flagę, taką jak pokazano na rysunku, należy zszyć z trzech jednakowej szerokości pasów kolorowej tkaniny. Oba pasy zewnętrzne
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 10/15 WARIACJE Liczba wariacji, czyli różnych ciągów k-elementowych o wyrazach ze zbioru n-elementowego, wynosi n k. Ciąg k-elementowy,
KURS PRAWDOPODOBIEŃSTWO
KURS PRAWDOPODOBIEŃSTWO Lekcja 1 Elementy kombinatoryki ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Kombinatorykę można określić
Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.
Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element
Doświadczenie i zdarzenie losowe
Doświadczenie i zdarzenie losowe Doświadczenie losowe jest to takie doświadczenie, które jest powtarzalne w takich samych warunkach lub zbliżonych, a którego wyniku nie można przewidzieć jednoznacznie.
Kombinatoryka. Reguła dodawania. Reguła dodawania
Kombinatoryka Dział matematyki, który zajmuje się obliczaniem liczebności zbiorów bądź długości ciągów, które łączą w określony sposób elementy należące do skończonego zbioru (teoria zliczania). W jakich
PRAWDOPODOBIEŃSTWO I KOMBINATORYKA
PRAWDOPODOBIEŃSTWO I KOMBINATORYKA ZADANIE ( PKT) Z urny zawierajacej kule w dwóch kolorach wybieramy losowo dwie. Prawdopodobieństwo wylosowania co najmniej jednej kuli białej jest równe 8, a prawdopodobieństwo
RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub
RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub 1. W grupie jest 15 kobiet i 18 mężczyzn. Losujemy jedną osobę
Do rozwiązania większości zadań często wystarcza reguła mnożenia i wzór na kombinację.
Kombinatoryka Spis treści Kombinatoryka a prawdopodobieństwo Reguła mnożenia Prezentacja wyników za pomocą drzewa Elementy kombinatoryki Kombinatoryka Silnia Permutacja Wariacja bez powtórzeń Wariacja
liczb naturalnych czterocyfrowych. Mamy do dyspozycji następujące cyfry: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. g) Ile jest liczb czterocyfrowych parzystych?
KOMBINATORYKA ZADANIA Z ROZWIĄZANIAMI 1. Udziel odpowiedzi na poniższe pytania: a) Ile jest możliwych wyników w rzucie jedną kostką? W rzucie jedną kostką możemy otrzymać jeden spośród następujących wyników:
Podstawy metod probabilistycznych. dr Adam Kiersztyn
Podstawy metod probabilistycznych dr Adam Kiersztyn Przestrzeń zdarzeń elementarnych i zdarzenia losowe. Zjawiskiem lub doświadczeniem losowym nazywamy taki proces, którego przebiegu i ostatecznego wyniku
Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 1
Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 1 Przygotowując wykład korzystam głównie z książki Jakubowski, Sztencel Wstęp do teorii prawdopodobieństwa. Jakubowski, Sztencel:
L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. (odp. a) B A C, b) A, c) A B, d) Ω)
ZADANIA - ZESTAW 1 Zadanie 1.1 Rzucamy trzy razy monetą. A i - zdarzenie polegające na tym, że otrzymamy orła w i - tym rzucie. Określić zbiór zdarzeń elementarnych. Wypisać zdarzenia elementarne sprzyjające
Matematyczne Podstawy Kognitywistyki
Matematyczne Podstawy Kognitywistyki Dorota Leszczyńska-Jasion Kombinatoryka, ci agi liczbowe, skończone przestrzenie probabilistyczne Przykłady zagadnień kombinatorycznych Rozważmy układ n miast o bardzo
WYKŁAD 1. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Instytut Matematyki Uniwersytet Warszawski
WYKŁAD 1 Witold Bednorz, Paweł Wolff Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Wprowadzenie Gry hazardowe Wprowadzenie Gry hazardowe Klasyczna definicja prawdopodobieństwa.
Wybrane zagadnienia z kombinatoryki i rachunku prawdopodobieństwa oraz realizacja ośmiu głównych kompetencji kluczowych
Wybrane zagadnienia z kombinatoryki i rachunku prawdopodobieństwa oraz realizacja ośmiu głównych kompetencji kluczowych Kategoria: Materiały z warsztatów przedmiotowych Słowa kluczowe: kombinatoryka, rachunek
Matematyka Dyskretna Rozgrzewka I test semestr letni 2012/2013
Matematyka Dyskretna Rozgrzewka I test semestr letni 2012/2013 Zadanie 1. Dla n naturalnego mamy zdanie: Jeżeli n jest liczbą pierwszą, to n jest równa 2 lub jest liczbą nieparzystą. Możemy je zapisać
Internetowe Ko³o M a t e m a t yc z n e
Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 1 szkice rozwiązań zadań 1 W wierszu zapisano kolejno 2010 liczb Pierwsza zapisana liczba jest równa 7 oraz
ELEMENTY KOMBINATORYKI
Reguła mnożenia Jeżeli wybór zależy od n decyzji, przy czym na decyzję pierwszą mamy a 1 możliwości, decyzję drugą - a 2 możliwości,..., decyzję n-tą mamy a n możliwości, to wybór może być dokonany na
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Zadanie PP RP 1. Z pojemnika, w którym znajdują się cztery losy z numerami 112, 121, 211, 212 losujemy trzy razy po jednym losie, po każdym losowaniu zwracając wylosowany los do pojemnika. Oblicz prawdopodobieństwo,
W. Guzicki Próbna matura, grudzień 2014 r. poziom rozszerzony 1
W. Guzicki Próbna matura, grudzień 20 r. poziom rozszerzony Próbna matura rozszerzona (jesień 20 r.) Zadanie kilka innych rozwiązań Wojciech Guzicki Zadanie. Oblicz prawdopodobieństwo warunkowe, że w trzykrotnym
Matematyka dyskretna. Andrzej Łachwa, UJ, A/10
Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 8A/10 Zbiory przeliczalne Przyjmujemy, że Zn = {0, 1, 2, 3, n-1} dla n>0 oraz Zn = przy n=0. Zbiór skończony to zbiór bijektywny z
Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 9 Zadania ciągi
1 TEST WSTĘPNY 1. (1p) Dany jest ciąg (a n) określony wzorem a n = (-1) n dla n 1. Wówczas wyraz a3 tego ciągu jest równy: A. B. C. - D. - 2. (2p) Ile wyrazów ujemnych ma ciąg określony wzorem a n = n
Zestaw 1-1 Organizacja plików: Oddajemy tylko źródła programów (pliki o rozszerzeniach.cpp)!!!
Zestaw 1-1 1. Napisz program pobierający od użytkownika liczbę całkowitą R (R>1) i liczbę rzeczywistą dodatnią S, a następnie informujący ile kolejnych liczb z ciągu 1, R-1, R 2-2, R 3-3, R 4-4, należy
Matematyka podstawowa X. Rachunek prawdopodobieństwa
Matematyka podstawowa X Rachunek prawdopodobieństwa Zadania wprowadzające: 1. Rzucasz trzy razy monetą a) Napisz zbiór wszystkich wyników tego doświadczenia losowego. Ile ich jest? Wyrzuciłeś większą liczbę
Elementy kombinatoryki
Elementy kombinatoryki Wykłady z matematyki dyskretnej dla informatyków i teleinformatyków UTP Bydgoszcz 04 (Wykłady z matematyki dyskretnej) Elementy kombinatoryki 04 1 / 59 Permutacje Definicja. Permutacja
Matematyka dyskretna dla informatyków
Matematyka dyskretna dla informatyków Część I: Elementy kombinatoryki Jerzy Jaworski Zbigniew Palka Jerzy Szymański Uniwersytet im. Adama Mickiewicza Poznań 2007 4 Zależności rekurencyjne Wiele zależności
Podstawy nauk przyrodniczych Matematyka
Podstawy nauk przyrodniczych Matematyka Elementy rachunku prawdopodobieństwa dr inż. Małgorzata Szeląg Zakład Genetyki Molekularnej Człowieka tel. 61 829 59 04 malgorzata.szelag@amu.edu.pl Pokój 1.118
Laboratorium nr 1. Kombinatoryka
Laboratorium nr 1. Kombinatoryka 1. Spośród n różnych elementów wybieramy k elementów. Na ile sposobów możemy to uczynić? Wypisać wszystkie możliwe wybory w przypadku gdy n=3 i k=2. Wykonać obliczenia
Zadanie 1. Oblicz prawdopodobieństwo, że rzucając dwiema kostkami do gry otrzymamy:
Zadanie 1. Oblicz prawdopodobieństwo, że rzucając dwiema kostkami do gry otrzymamy: a) sumę oczek równą 6, b) iloczyn oczek równy 6, c) sumę oczek mniejszą niż 11, d) iloczyn oczek będący liczbą parzystą,
Pole wielokąta. Wejście. Wyjście. Przykład
Pole wielokąta Liczba punktów: 60 Limit czasu: 1-3s Limit pamięci: 26MB Oblicz pole wielokąta wypukłego. Wielokąt wypukły jest to wielokąt, który dla dowolnych jego dwóch punktów zawiera również odcinek
Matematyka dyskretna. Andrzej Łachwa, UJ, /10
Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 10/10 Podziały i liczby Stirlinga Liczba Stirlinga dla cykli (często nazywana liczbą Stirlinga pierwszego rodzaju) to liczba permutacji
Matematyka dyskretna. Andrzej Łachwa, UJ, /14
Matematyka dyskretna Andrzej Łachwa, UJ, 2017 andrzej.lachwa@uj.edu.pl 14/14 TWIERDZENIE HALLA Twierdzenie o kojarzeniu małżeństw rozważa dwie grupy - dziewcząt i chłopców, oraz podgrupy dziewczyn i podgrupy
Statystyka matematyczna
Statystyka matematyczna Wykład 2 Magdalena Alama-Bućko 5 marca 2018 Magdalena Alama-Bućko Statystyka matematyczna 5 marca 2018 1 / 14 Prawdopodobieństwo klasyczne Ω - zbiór wszystkich zdarzeń elementarnych
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera
Wykład 1: Przestrzeń probabilistyczna. Prawdopodobieństwo klasyczne. Prawdopodobieństwo geometryczne.
Rachunek prawdopodobieństwa MAP1151 Wydział Elektroniki, rok akad. 2011/12, sem. letni Wykładowca: dr hab. A. Jurlewicz Wykład 1: Przestrzeń probabilistyczna. Prawdopodobieństwo klasyczne. Prawdopodobieństwo
7. CIĄGI. WYKŁAD 5. Przykłady :
WYKŁAD 5 1 7. CIĄGI. CIĄGIEM NIESKOŃCZONYM nazywamy funkcję określoną na zbiorze liczb naturalnych, dodatnich, a wyrazami ciągu są wartości tej funkcji. CIĄGIEM SKOŃCZONYM nazywamy funkcję określoną na
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. I GEOMETRIA ANALITYCZNA 1. Równanie prostej w postaci ogólnej i kierunkowej powtórzenie 2. Wzajemne położenie dwóch prostych powtórzenie
Rachunek prawdopodobieństwa i kombinatoryka. Rachunek prawdopodobieństwa. Podstawowe pojęcia rachunku prawdopodobieństwa
Rachunek prawdopodobieństwa i kombinatoryka Spis treści Rachunek prawdopodobieństwa Podstawowe pojęcia rachunku prawdopodobieństwa Liczba wyników doświadczenia losowego. Reguła mnożenia i reguła dodawania
Wykład 2. Prawdopodobieństwo i elementy kombinatoryki
Wstęp do probabilistyki i statystyki Wykład 2. Prawdopodobieństwo i elementy kombinatoryki dr hab.inż. Katarzyna Zakrzewska, prof.agh Katedra Elektroniki, AGH e-mail: zak@agh.edu.pl http://home.agh.edu.pl/~zak
Prawdopodobieństwo
Prawdopodobieństwo http://www.matemaks.pl/ Wstęp do rachunku prawdopodobieństwa http://www.matemaks.pl/wstep-do-rachunku-prawdopodobienstwa.html Rachunek prawdopodobieństwa pomaga obliczyć szansę zaistnienia
Prawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018
Katedra Matematyki i Ekonomii Matematycznej SGH 16 października 2018 Definicja σ-algebry Definicja Niech Ω oznacza zbiór niepusty. Rodzinę M podzbiorów zbioru Ω nazywamy σ-algebrą (lub σ-ciałem) wtedy
P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt.
P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt. Lekcja 2 Temat: Podstawowe pojęcia związane z prawdopodobieństwem. Str. 10-21 1. Doświadczenie losowe jest to doświadczenie,
Matematyka dyskretna. Andrzej Łachwa, UJ, /10
Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 6/10 Zasada Dirichleta 1 ZASADA SZUFLADKOWA DIRICHLETA (1ZSD) Jeśli n obiektów jest rozmieszczonych w m szufladach i n > m > 0, to
Jarosław Wróblewski Matematyka Elementarna, zima 2014/15
Ćwiczenia 0.10.014 Powtórka przed sprawdzianem nr 1. Wzory skróconego mnożenia dwumian Newtona procenty. Postęp arytmetyczny i geometryczny. Ćwiczenia 138.10.014 Sprawdzian nr 1: 1.10.014 godz. 8:15-8:40
ZAGADANIENIA NA EGZAMIN USTNY Z MATEMATYKI
ZAGADANIENIA NA EGZAMIN USTNY Z MATEMATYKI SEMESTR I ZESTAW. Podaj liczbę przeciwną i odwrotną do liczby 2 2. Jak zmieniła się cena wyrobu po podwyżce o 20%, a następnie po obniżeniu otrzymanej ceny o
0.1 Kombinatoryka. n! = (n 1) n. Przyjmujemy umownie że 0! = 1 Wypiszmy silnie kolejnych liczb naturalnych
1 0.1 Kombinatoryka Kombinatoryka obejmuje takie pojȩcia jak silnia liczby naturalnej n, permutacje, wariacje bez powtȯrzeṅ i wariacje z powtȯrzeniami oraz kombinacje. Niżej podajemy opis tych pojȩċ z
Lista 1. Prawdopodobieństwo klasyczne i geometryczne
Metody statystyczne. Lista 1. 1 Lista 1. Prawdopodobieństwo klasyczne i geometryczne 1. Jakie jest prawdopodobieństwo, że (a) z talii zawierającej 52 karty wybierzemy losowo asa? (b) z talii zawierającej
Teoria. a, jeśli a < 0.
Teoria Definicja 1 Wartością bezwzględną liczby a R nazywamy liczbę a określoną wzorem a, jeśli a 0, a = a, jeśli a < 0 Zgodnie z powyższym określeniem liczba a jest równa odległości liczby a od liczby
Rachunek Prawdopodobieństwa i Statystyka Matematyczna
Rachunek rawdopodobieństwa i Statystyka Matematyczna rowadzący: prof. dr hab. inż. Ireneusz Jóźwiak Zestaw nr. Opracowanie: Grzegorz Drzymała 4996 Grzegorz Dziemidowicz 49965 drian Gawor 49985 Zadanie..
Matematyka dyskretna. Andrzej Łachwa, UJ, 2019 Zadania
Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl Zadania 101-170 101. Oblicz postać zwartą symbolu { n 4}. 102. Udowodnij, że n k =1 ( 1) k ( n k) =1 103. Ile może być 4-cyfrowych
Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.
Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy
Konkurs dla szkół ponadgimnazjalnych Etap szkolny 9 stycznia 2013 roku
Konkurs dla szkół ponadgimnazjalnych Etap szkolny 9 stycznia roku Instrukcja dla ucznia W zadaniach o numerach od do są podane cztery warianty odpowiedzi: A, B, C, D Dokładnie jeden z nich jest poprawny
1. Synteza automatów Moore a i Mealy realizujących zadane przekształcenie 2. Transformacja automatu Moore a w automat Mealy i odwrotnie
Opracował: dr hab. inż. Jan Magott KATEDRA INFORMATYKI TECHNICZNEJ Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych ćwiczenie 207 Temat: Automaty Moore'a i Mealy 1. Cel ćwiczenia Celem ćwiczenia jest
i=7 X i. Zachodzi EX i = P(X i = 1) = 1 2, i {1, 2,..., 11} oraz EX ix j = P(X i = 1, X j = 1) = 1 7 VarS 2 2 = 14 3 ( 5 2 =
Kombinatoryka W tej serii zadań można znaleźć pojawiające się na egzaminach zadania dotyczące problemu wyznaczania prostych parametrów rozkładu w przypadku zgadnień kombinatorycznych. Zadania te wymagają