Regresja linowa metoda najmniejszych kwadratów. Tadeusz M. Molenda Instytut Fizyki US
|
|
- Nadzieja Czech
- 6 lat temu
- Przeglądów:
Transkrypt
1 Regresja lowa metoda ajmejszch kwadratów Tadeusz M. Moleda Isttut Fzk US
2 Regresja lowa (też: metoda ajmejszch kwadratów, metoda wrówawcza, metoda Gaussa) Zagadea stota metod postulat Gaussa współczk prostej a kostrukcja prostej teoretczej przkład trasformacja fukcj elowch
3 Regresja lowa a czm polega? Jeśl merzoe dwe welkośc zwązae są ze soą rówaem lowm = a + to orazem grafczm jest la prosta. Wkoując pomarów welkośc uzskujem par lcz (, ) Pukt o współrzędch są rozrzucoe a pewm oszarze. Regresja lowa to: ustalae prawdłowośc rozrzutu puktów czl: dopasowae prostej do zoru puktów dośwadczalch szukae rówaa l prostej (tj parametrów a ), ajlepej "pasującej" do tch puktów.
4 a) ) Rs. dla ajlepszego dopasowaa l prostej do puktów pomarowch, w te sposó a suma kwadratów odległośc od l ła mmala a) przpadek porówwalch epewośc pomaru ; ) a) przpadek pomjale małch epewośc pomaru welkośc.
5 Postulat Gaussa Wkoując pomarów welkośc ędącch w zależośc lowej = a + uzskujem par lcz (, ) grafczm orazem są pukt rozrzucoe a pewm oszarze, ekoecze a l prostej! Rozeżość wku pomaru wartośc teoretczej z rówaa = a + wka z epewośc pomarowej moża zapsać w postac: = (a + ) dopasowae metodą regresj lowej ozacza, że wrażee ( a ) m
6 Metoda ajmejszch kwadratów?? a f m
7 Regresja lowa polega a zalezeu parametrów a prostej = a + takch a spełał postulat Gaussa a gdze a współczk regresj lowej. = mmum, tj. a suma kwadratów różc mędz wartoścam zmerzom olczom ła jak ajmejsza (prz założeu, że wszstke pukt pomarowe oarczoe są jedakowm epewoścam przpadkowm o rozkładze Gaussa) Współczk a wprowadzee f ( a, ) a Jeśl = m to zacz że: f ( a, ) f 0 a ( a, ) 0,
8 Po zróżczkowau otrzmujem układ rówań: 0 ) ( a a 0 ) ( Po rozwązau układu rówań otrzmuje sę wzor a współczk a, gdze =,,3,...,, ( jest loścą par puktów (, )). a a a a S ) ( a S S a a f ), ( 0 ), ( 0, ), ( a f a a f
9 Metoda ajmejszch kwadratów wzor dla parametrów regresj lowej a
10 gdze: a d S a d d S Metoda ajmejszch kwadratów wzor dla odchlea stadardowego parametrów regresj lowej
11 Współczk korelacj lowej Pearsoa r ezwmarow wskaźk z przedzału [, ] określając stopeń lowej zależośc mędz zmem losowm. r Dla olczeń komputerowch przdat jest wzór Warukem stosowaa regresj lowej jest a wartość ezwględa współczka r ła lska.
12 Przkładowe wkres dach (, ) odpowadające m wartośc współczka korelacj lowej Pearsoa Źródło: Wkpeda: Współczk korelacj Pearsoa, ch_terpretacja
13 Aalza dach pomarowch Regresja lowa. Wkorzstae arkusza kalkulacjego. Metoda Najmejszch Kwadratów
14 Regresja lowa klascza (metoda ajmejszch kwadratów) Jeżel pomędz dwema welkoścam fzczm wstępuje zależość lowa to regresja lowa jest prostą metodą wzaczea parametrów ajlepej dopasowaej prostej. Parametr prostej określoej rówaem = m + wzaczam prz użcu ogóle dostępch (dość złożoch) wzorów. Zając współczk m regresj lowej oraz współczk korelacj (Pearsoa) r moża, korzstając z poższch wzorów, olczć epewośc pomaru (odchlea stadardowe) tpu A (statstcze) / r u A ( m) m, u A ( ) u A ( m). / Wartośc współczków charakterzującch prostą dla regresj lowej szko otrzmam korzstając z fukcj wudowach w arkuszu kalkulacjm. Współczk korelacj lowej Pearsoa r ezwmarow wskaźk z przedzału [, ] określając stopeń lowej zależośc dwóch zestawów dach. Składa w Ecelu: =PEARSON(talca;talca).
15 Współczk regresj lowej, składa w Ecelu: m: =NACHYLENIE(zae_;zae_); : =ODCIĘTA(zae_;zae_) Uwaga: zwrócć uwagę, że a perwszm mejscu jest a a drugm. Wartośc: m, u A (m) u A () oraz r u(r) otrzmam korzstając z ardzej wszechstroej fukcj talcowej REGLINP, która zwraca talcę wartośc. Składa: =REGLINP(zae_;zae_;stała;statstka). Stała argumet opcjoal; domśla wartość PRAWDA ozacza ormale lczee wartośc wpółczka ; wartość FAŁSZ wmusza, to stała = 0 (wartość m jest dopasowaa do dach tak, a spełć rówae = m), tak jest w aszm przpadku. Statstka argumet opcjoal. Jeżel dla wśwetlea wartośc fukcj ozaczm oszar kolum a wersze (3 wersze) wartoścą jest: PRAWDA, to fukcja w kolejch werszach zwraca kolejo: m, u A (m) u A () prz zazaczeu oszaru z werszam (oraz r u(r) prz zazaczeu oszaru z 3 werszam). FAŁSZ lu argumet został pomęt, to fukcja zwraca jede wartośc współczków m. A użć fukcję REGLINP trzea: () zazaczć oszar w którm ma sę zaleźć wk; () wpsać azwę fukcj; () zatwerdzć jej wprowadzae komacją klawsz Ctrl+Shft+Eter. Na temat wszstkch statstk, geerowach przez fukcję REGLINP moża przecztać w Pomoc. Uwaga. W arkuszu kalkulacjm jest wkorzstaa tzw. ormala metoda ajmejszch kwadratów, pojawa sę ptae a le ta metoda, w porówau do prostej regresj ortogoalej z rs. odręczego, jest zgoda.
16 Przkład utworzea wkresu I = I (U) z zazaczeem odcków epewośc a podstawe dach z dośwadczea: Dośwadczale potwerdzee prawa Ohma Szczegół patrz: M. Djak, Istrukcja właścwego wkoaa wkresów a zajęca ddaktcze Taela: Dae pomarowe U, I z wartoścam epewośc graczch dla merków cfrowch Lp. U, mv 0,5 % {U} + 0, mv I, ma 0,8 % {I}+ 0,0 ma. 0,0 0,0 0,00 0,0. 7,4 0,47,07 0,0 3. 5,0,35 6,86 0, ,5,98 5,60 0, ,3 3, 6,30 0, ,7 3,49 8,60, ,3 4,5 4,0,3 8. 5,0 5,85 3,0, ,0 6,0 3,70, ,5 7,98 43,30,7 {W} wartość lczowa welkośc fzczej W
17 Rs. Wkres zależośc atężea prądu I od przłożoego apęca U dla przewodka. Przedstawoo zależośc dla klku długośc połączeń drutów oporowch. Zazaczoe są odck epewośc. Szczegół patrz: M. Djak, Istrukcja właścwego wkoaa wkresów a zajęca ddaktcze
18 Grafcza ocea parametrów l, rówoległook epewośc pomaru.
19 Prosta teoretcza Prostą o achleu a przecającą oś w pukce azwam prostą teoretczą. Ta prosta o wlczoch parametrach a jest rezultatem ajlepszego uśredea wków. Wkoując wkres ależ aeść prostą teoretczą a astępe pukt pomarowe. Wada metod: W wku olczeń otrzmuje sę wartośc a awet wted, gd merzoe wartośc e są lowo zależe. Przkład:. s = f (t), s = vt = s, = t, a = v, 0. V = f (t), V = V 0 + at = V, = t, a = a, = V 0 3. R = f (t), R = R 0 ( + t) = R, = t, a = R 0, = R 0 4. = f (t), = k T, dc = /d, = c, a = k T, 5. T = f (R, C), T = krc = T, = RC, a = k, 0
20 Przkład opracowaa dach metodą regresj lowej R = R 0 ( + T) zależość rezstacj od temperatur R = f (T) T, K R, Zaleźć rówae prostej ajlepej pasującej do tch dach lp T, K R,. wzór: R = R 0 ( + T) R = R 0 + R 0 T. zaleźć 3. sporządzć taelę =5 =839 = = 4930 = 453
21 4. podstawć wartośc: = 5, = 839, = 43567, = 4930, =453 do wzorów a a,, S a S : a = 0,5748; = 38,83; S a = 0,039; S =,5 5. zapsać wzor końcowe a a a = (0,57 0,04) K, = (38,8,) 6. zapsać rówae regresj lowej = 0, ,8 R = R 0 T + R 0 czl R = 0,57T + 38,8 7. sporządzć wkres R = f (T) = T, = R a = R 0 = R 0 8. aeść a wkres epewośc proste m ma m = (a S a ) + S, ma = (a + S a ) + + S
22 = a +, dla dowolego z pomarów oraz a olczoch metodą regresj wlczam. Mam dwa pukt (0,) (,) prowadzę prostą teoretczą R, = 0, ,83 R = 0,9863 R = f (T) pomar teora 30 T, K
23 Trasformacja fukcj elowch do fukcj lowch S at S = f(t ) S =, /a = a, t =. E T 4 E = f(t) le = l + 4lT Q Q e 0 t RC le =, l =, 4 = a, lt =. Q = f(t) lq = lq 0 t/rc lq =, lq 0 =, -/RC = a, t =
Regresja liniowa. (metoda najmniejszych kwadratów, metoda wyrównawcza, metoda Gaussa)
Regresj low (metod jmejszch kwdrtów, metod wrówwcz, metod Guss) stot metod postult Guss współczk prostej kostrukcj prostej teoretczej trsformcj fukcj elowch przkłd Regresj low czm poleg? Jeśl merzoe dwe
Wnioskowanie statystyczne dla korelacji i regresji.
STATYSTYKA MATEMATYCZNA WYKŁAD 6 Woskowae statstcze dla korelacj regresj. Aalza korelacj Założee: zmea losowa dwuwmarowa X, Y) ma rozkład ormal o współczku korelacj ρ. X, Y cech adae rówocześe. X X X...
FUNKCJE DWÓCH ZMIENNYCH
FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam
Linie regresji II-go rodzaju
Lam regresj II-go rodzaju zmeej () względem () azwam zadae krzwe g(;,, ) oraz h(;,, ) gd spełają oe odpowedo waruk: E E Le regresj II-go rodzaju ( ( )) ( ) ( ) ( ) ( ) g ;,,... g ;,,... f, dd m,,... (
opisać wielowymiarową funkcją rozkładu gęstości prawdopodobieństwa f(x 1 , x xn
ROZKŁAD PRAWDOPODBIEŃSTWA WIELU ZMIENNYCH LOSOWYCH W przpadku gd mam do czea z zmem losowm możem prawdopodobeństwo, ż przjmą oe wartośc,,, opsać welowmarową fukcją rozkładu gęstośc prawdopodobeństwa f(,,,.
Opracowanie wyników pomiarów
Opracowae wków pomarów Praca w laboratorum fzczm polega a wkoau pomarów, ch terpretacj wcagęcem wosków. Ab dojść do właścwch wosków aleŝ szczególą uwagę zwrócć a poprawość wkoaa pomarów mmalzacj błędów
Józef Beluch Akademia Górniczo-Hutnicza w Krakowie. Wpływ wag współrzędnych na wyniki transformacji Helmerta
Józef Beluch Akadema Górczo-Hutcza w Krakowe płw wag współrzędch a wk trasformacj Helmerta . zór a trasformację współrzędch sposobem Helmerta: = c + b = d + a + a b () 2 2. Dwa modele wzaczea parametrów
REGRESJA LINIOWA. gdzie
REGREJA LINIOWA Jeżel zmerzoo obarczoe tlko błędam przpadkowm wartośc (, ),,,..., dwóch różch welkośc fzczch X Y, o którch wadomo, że są zwązae ze sobą zależoścą lową f(), to ajlepszm przblżeem współczków
Statystyka. Katarzyna Chudy Laskowska
Statstka Katarza Chud Laskowska http://kc.sd.prz.edu.pl/ Aalza korelacj umożlwa stwerdzee wstępowaa zależośc oraz oceę jej atężea ZALEŻNOŚCI pomędz CECHAMI: CECHY: ILOŚCIOWA ILOŚCIOWA CECHY: JAKOŚCIOWA
Laboratorium fizyczne
Laboratorum fzcze L a portalu WIKMP CMF PŁ cmf.edu.p.lodz.pl Klkam odośk Laboratorum fzk Właścwą strukcję ależ pobrać ze stro Pracow zazajomć sę z jej treścą przed zajęcam!!! grupa I grupa II edzela
Teoria i praktyka. Wyższa Szkoła Turystyki i Ekologii. Fizyka. WSTiE Sucha Beskidzka Fizyka
Nepewośc pomarowe. Teora praktka. Prowadząc: Dr ż. Adrzej Skoczeń Wższa Szkoła Turstk Ekolog Wdzał Iformatk, rok I Fzka 014 03 30 WSTE Sucha Beskdzka Fzka 1 Iformacje teoretcze zameszczoe a slajdach tej
RACHUNEK NIEPEWNOŚCI POMIARU
Mędzarodowa Norma Oce Nepewośc Pomaru (Gude to Epresso of Ucertat Measuremets - Mędzarodowa Orgazacja Normalzacja ISO RACHUNEK NIEPEWNOŚCI http://phscs.st./gov/ucertat POMIARU Wrażae Nepewośc Pomaru. Przewodk.
Strona: 1 1. CEL ĆWICZENIA
Katedra Podstaw Sstemów Techczch - Podstaw metrolog - Ćwczee 4. Wzaczae charakterstk regulacjej slka prądu stałego Stroa:. CEL ĆWICZENIA Celem ćwczea jest pozae zasad dzałaa udow slka prądu stałego, zadae
KORELACJA KORELACJA I REGRESJA. X, Y - cechy badane równocześnie. Dane statystyczne zapisujemy w szeregu statystycznym dwóch cech
KORELACJA I REGRESJA. KORELACJA X, Y - cech badae rówocześe. Dae statstcze zapsujem w szeregu statstczm dwóch cech...... lub w tablc korelacjej. X Y... l.... l.... l................... k k k... kl k..j......l
Rachunek Prawdopodobieństwa i statystyka W 10: Analizy zależności pomiędzy zmiennymi losowymi (danymi empirycznymi)
Rachuek Prawdopodoeństwa statstka W 0: Aalz zależośc pomędz zmem losowm dam emprczm) Dr Aa ADRIAN Paw B5, pok 407 adra@tempus.metal.agh.edu.pl Odkrwae aalza zależośc pomędz zmem loścowmlczowm) Przedmotem
Niepewności pomiarów. DR Andrzej Bąk
Nepewośc pomarów DR Adrzej Bąk Defcje Błąd pomar - różca mędz wkem pomar a wartoścą merzoej welkośc fzczej. Bwa też azwa błędem bezwzględm pomar. Poeważ wartość welkośc merzoej wartość prawdzwa jest w
BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ
Matematka statstka matematcza dla rolków w SGGW Aa Rajfura, KDB WYKŁAD 2 BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ Matematka statstka matematcza dla rolków w SGGW Aa Rajfura, KDB Przkład.
Materiały do wykładu 7 ze Statystyki
Materał do wkładu 7 ze Statstk Aalza ZALEŻNOŚCI pomędz CECHAMI (Aalza KORELACJI REGRESJI) korelacj wkres rozrzutu (korelogram) rodzaje zależośc (brak, elowa, lowa) pomar sł zależośc lowej (współczk korelacj
ANALIZA ZALEŻNOŚCI DWÓCH ZMIENNYCH ILOŚCIOWYCH
ANALIZA ZALEŻNOŚCI DWÓCH ZMIENNYCH ILOŚCIOWYCH Na ogół oprócz obserwacj jedej zmeej zberam róweż formacje towarzszące, które mogą meć zaczee w aalze teresującej as welkośc. Iformacje te mogą bć p. wkorzstae
INSTRUKCJA LABORATORIUM Metrologia techniczna i systemy pomiarowe.
INSTRUKCJA LABORATORIUM Metrologa techcza sstem pomarowe. MTSP pomar MTSP 00 Autor: dr ż. Potr Wcślok Stroa / 5 Cel Celem ćwczea jest wkorzstae w praktce pojęć: mezurad, estmata, błąd pomaru, wk pomaru,
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZA 1. Wkład wstęp. Teora prawdopodobeństwa elemet kombatork. Zmee losowe ch rozkład 3. Populacje prób dach, estmacja parametrów 4. Testowae hpotez statstczch 5. Test parametrcze (a
Wyznaczanie oporu naczyniowego kapilary w przepływie laminarnym.
Wyzaczae oporu aczyowego kaplary w przepływe lamarym. I. Przebeg ćwczea. 1. Zamkąć zawór odcający przewody elastycze a astępe otworzyć zawór otwerający dopływ wody do przewodu kaplarego. 2. Ustawć zawór
MATEMATYKA STOSOWANA W INŻYNIERII CHEMICZNEJ
MATEMATYKA STOSOWANA W INŻYNIERII CHEMICZNEJ Wkład 4 Matematcze opracowwae wków ekspermetalch Cz. I. Metoda ajmejszch kwadratów Cz. II. Metod statstcze UWAGI OGÓLNE Ekspermet wkowae w auce moża podzelć
RACHUNEK NIEPEWNOŚCI POMIARU
Męzaroowa Norma Oce Nepewośc Pomaru (Gue to Epresso of Ucertat Measuremets Męzaroowa Orgazacja Normalzacja ISO RACHUNEK NIEPEWNOŚCI http://phscs.st.gov/ucertat POMIARU Wrażae Nepewośc Pomaru. Przewok.
Podstawy opracowania wyników pomiarowych, analiza błędów
Podstawy opracowaa wyków pomarowych, aalza błędów I Pracowa Fzycza IF UJ Grzegorz Zuzel Lteratura I Pracowa fzycza Pod redakcją Adrzeja Magery Istytut Fzyk UJ Kraków 2006 Wstęp do aalzy błędu pomarowego
RACHUNEK NIEPEWNOŚCI POMIARU
Mędznarodowa Norma Ocen Nepewnośc Pomaru(Gude to Epresson of Uncertant n Measurements - Mędznarodowa Organzacja Normalzacjna ISO) RACHUNEK NIEPEWNOŚCI http://phscs.nst./gov/uncertant POMIARU Wrażane Nepewnośc
Projekt 2 2. Wielomiany interpolujące
Proekt Weloma terpoluące Rodzae welomaów terpoluącc uma edomaów Nec w przedzale a, b określoa będze fukca f: ec będze ustaloc m wartośc argumetu :,,, m, m L prz czm: < < L < < m m Pukt o tc odcztac azwa
METODY KOMPUTEROWE 1
MTODY KOMPUTROW WIADOMOŚCI WSTĘPN MTODA ULRA Mcał PŁOTKOWIAK Adam ŁODYGOWSKI Kosultacje aukowe dr z. Wtold Kąkol Pozań 00/00 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN Metod umercze MN pozwalają a ormułowae matematczc
Natalia Nehrebecka. Dariusz Szymański
atala ehreecka Darusz Szmańsk Wkład . MK przpadek welu zmech. Własośc hperpłaszczz regresj 3. Doroć ć dopasowaa rówaa regresj. Współczk determacj R Dekompozcjawaracj zmeejzależejzależej Współczk determacj
OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B
OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B W przypadku gdy e występuje statystyczy rozrzut wyków (wszystke pomary dają te sam wyk epewość pomaru wyzaczamy w y sposób. Główą przyczyą epewośc pomaru jest epewość
MODEL SHARP A - MIARY WRAŻLIWOŚCI
MODEL SHARP A - MIARY WRAŻLIWOŚCI Współzależość cech Rozważam jedostk zborowośc badae ze względu a dwe, lub węcej zmech W przpadku obserwacj opartch a dwóch zmech możem wkreślć dagram korelacj. Każda obserwacja
WYZNACZANIE PRZERWY ENERGETYCZNEJ GERMANU
Fzyka cała stałeo WYZNACZANIE PRZERWY ENERGETYCZNEJ GERMANU 1. Ops teoretyczy do ćwczea zameszczoy jest a stroe www.wtc.wat.edu.pl w dzale DYDAKTYKA FIZYKA ĆWICZENIA LABORATORYJNE.. Ops układu pomaroweo
Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki)
Podstawy aalzy epewośc pomarowych (I Pracowa Fzyk) Potr Cygak Zakład Fzyk Naostruktur Naotecholog Istytut Fzyk UJ Pok. 47 Tel. 0-663-5838 e-mal: potr.cygak@uj.edu.pl Potr Cygak 008 Co to jest błąd pomarowy?
f f x f, f, f / / / METODA RÓŻNIC SKOŃCZONYCH niech N = 2 (2 równania różniczkowe zwyczajne liniowe I-rz.) lub jedno II-rzędu
METODA RÓŻIC SKOŃCZOYCH (omówee a przykładze rówań lowych) ech ( rówaa różczkowe zwyczaje lowe I-rz.) lub jedo II-rzędu f / / p( x) f / + q( x) f + r( x) a x b, f ( a) α, f ( b) β dea: a satce argumetu
Rys. 1. Interpolacja funkcji (a) liniowa, (b) kwadratowa, (c) kubiczna.
terpolcj.doc Iterpolcj fukcj. Sformułowe problemu: Rs.. Iterpolcj fukcj low, b kwdrtow, c kubcz. De są rgumet,,,. orz odpowdjące m wrtośc fukcj = f, = f,, = f. Postć fukcj = f jest e z lub z. Poszukw jest
Analiza ZALEśNOŚCI pomiędzy CECHAMI (Analiza KORELACJI i REGRESJI)
D. Mszczńska, M.Mszczńsk, Materał do wkładu 7 ze Statstk (wersja poprawoa), WSEH, Skerewce 009/0 [] Aalza ZALEśNOŚCI pomędz CECHAMI (Aalza KORELACJI REGRESJI) korelacj wkres rozrzutu (korelogram) rodzaje
RACHUNEK NIEPEWNOŚCI POMIARU
Męzaroowa Norma Oce Nepewośc Pomaru (Gue to Epresso of Ucertat Measuremets Męzaroowa Orgazacja Normalzacja ISO) RACHUNEK NIEPEWNOŚCI http://phscs.st.gov/ucertat POMIARU Wrażae Nepewośc Pomaru. Przewok.
Statystyka Opisowa 2014 część 3. Katarzyna Lubnauer
Statystyka Opsowa 014 część 3 Katarzya Lubauer Lteratura: 1. Statystyka w Zarządzau Admr D. Aczel. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucja Kowalsk. 4. Statystyka opsowa, Meczysław
Metody obliczeniowe - Budownictwo semestr 2 - wykład nr 3 Nr: 1 Metody obliczeniowe wykład nr 3 aproksymacja i interpolacja pojęcie modelu regresji
Nr: Metod oblczeowe - Budowctwo semestr - wkład r 3 Metod oblczeowe wkład r 3 aproksmacja terpolacja pojęce modelu regresj Nr: Metod oblczeowe - Budowctwo semestr - wkład r 3 Aproksmacja daa jest ukcja
Planowanie eksperymentu pomiarowego I
POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak
OBLICZANIE GEOMETRYCZNYCH MOMENTÓW BEZWŁADNOŚCI FIGUR PŁASKICH, TWIERDZENIE STEINERA LABORATORIUM RACHUNKOWE
OBLICZNIE GEOMETRYCZNYCH MOMENTÓW BEZWŁDNOŚCI FIGUR PŁSKICH, TWIERDZENIE STEINER LBORTORIUM RCHUNKOWE Prz oblczeach wtrzmałoścowch dotczącch ektórch przpadków obcążea (p. zgae) potrzeba jest zajomość pewch
II. ĆWICZENIA LABORATORYJNE
II. ĆWICZENIA LABORATORYJNE ZADANIE Nr STATYSTYCZNA OCENA WYNIKÓW DOŚWIADCZALNYCH. Wartość średa, odchlee stadardowe, mar dspersj. ZADANIE Nr STATYSTYCZNA OCENA WYNIKÓW DOŚWIADCZALNYCH. Zależość wartośc
Regresja REGRESJA
Regresja 39. REGRESJA.. Regresja perwszego rodzaju Nech (, będze dwuwyarową zeą losową, dla które steje kowaracja. Nech E( y ozacza warukową wartość oczekwaą zdefowaą dla przypadku zeych losowych typu
Wyrażanie niepewności pomiaru
Wyrażae epewośc pomaru Adrzej Kubaczyk Wydzał Fzyk, Poltechka Warszawska Warszawa, 05 Iformacje wstępe Każdy pomar welkośc fzyczej dokoyway jest ze skończoą dokładoścą, co ozacza, że wyk tego pomaru dokoyway
Statystyka. Teoria błędów. Wykład IV ( )
Stattka Teora błędów Wkład IV (.0.06) Wtęp Teora błędów Nedokoałość przrządów pomarowch oraz edokoałość orgaów zmłów powodują, że wztke pomar ą dokowae z określom topem dokładośc. Ne otrzmujem dokładej
Statystyka. Analiza zależności. Rodzaje zależności między zmiennymi występujące w praktyce: Funkcyjna
Aalza zależośc Rodzaje zależośc mędzy zmeym występujące w praktyce: Fukcyja wraz ze zmaą wartośc jedej zmeej astępuje ścśle określoa zmaa wartośc drugej zmeej (p. w fzyce: spadek swobody gt s ) tochastycza
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH. dr Michał Silarski
PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH dr Mchał larsk I Pracowa Fzycza IF UJ, 9.0.06 Pomar Pomar zacowae wartośc prawdzwej Bezpośred (welkość fzycza merzoa jest
Analiza błędów pomiarowych Pomiar pomiarów bezpośrednich pośrednich
Aalza łędów pomarowch W aukach przrodczch kluczową rolę w werfkacj wszelkch hpotez teor aukowch odgrwa ekspermet jego wk. Częstokroć pojedcz wk ekspermetal leż u podstaw owch teor odrzucea dotchczasowch
TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA
Ćwczee 8 TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA 8.. Cel ćwczea Celem ćwczea jest wyzaczee statyczego współczyka tarca pomędzy walcową powerzchą cała a opasującą je lą. Poadto a drodze eksperymetalej
POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1
POPULACJA I PRÓBA POPULACJĄ w statystyce matematyczej azywamy zbór wszystkch elemetów (zdarzeń elemetarych charakteryzujących sę badaą cechą opsywaą zmeą losową. Zbadae całej populacj (przeprowadzee tzw.
WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ
9 Cel ćwczea Ćwczee 9 WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANE PODCZAS ZDERZENIA CIAŁ Celem ćwczea jest wyzaczee wartośc eerg rozpraszaej podczas zderzea cał oraz współczyka restytucj charakteryzującego
STATYSTYKA OPISOWA. Państwowa Wyższa Szkoła Zawodowa w Koninie. Materiały pomocnicze do ćwiczeń. Materiały dydaktyczne 17 ARTUR ZIMNY
Państwowa Wższa Szkoła Zawodowa w Koe Materał ddaktcze 17 ARTUR ZIMNY STATYSTYKA OPISOWA Materał pomoccze do ćwczeń wdae druge zmeoe Ko 010 Ttuł Statstka opsowa Materał pomoccze do ćwczeń wdae druge zmeoe
ma rozkład normalny z wartością oczekiwaną EX = EY = 1, EZ = 0 i macierzą kowariancji
Zadae. Zmea losowa (, Y, Z) ma rozkład ormaly z wartoścą oczekwaą E = EY =, EZ = 0 macerzą kowaracj. Oblczyć Var(( Y ) Z). (A) 5 (B) 7 (C) 6 Zadae. Zmee losowe,, K,,K P ( = ) = P( = ) =. Nech S =. Oblcz
Projekt 3 3. APROKSYMACJA FUNKCJI
Projekt 3 3. APROKSYMACJA FUNKCJI 3. Krter proksmcj. Złóżm że () jest ukcją cągłą w przedzle [ b ]. Zlezee przblże (proksmcj) poleg wzczeu współczków pewego welomu P() któr będze dobrze przblżł w tm przedzle
BADANIE DRGAŃ RELAKSACYJNYCH
BADANIE DRGAŃ RELAKSACYJNYCH Ops ukłdu pomrowego Ukłd pomrow skłd sę z podstwowch częśc: dego geertor drgń relkscjch, zslcz geertor, geertor odese (drgń hrmoczch), oscloskopu. Pokz rsuku schemt deow geertor
Statystyka powtórzenie (II semestr) Rafał M. Frąk
Statstka powtórzee (II semestr) Rafał M. Frąk TEORIA, OZNACZENIA, WZORY Rodzaje mar statstczch mar położea - wzaczają przecęta wartość cech statstczej mar zróżcowaa (lub zmeośc, rozproszea, dspersj) -
N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.
3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy
PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE
Marek Cecura, Jausz Zacharsk PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE CZĘŚĆ VI WYBRANE TWIERDZENIA WRAZ Z DOWODAMI Na prawach rękopsu Warszawa, paźdzerk 0 Data ostatej aktualzacj:
Zastosowanie szeregów potęgowych do rozwiązywania równań różniczkowych
Zastosowae szeregów potęgowch do rozwązwaa rówań różczkowch Ogól kształt rówaa lowego drugego rzędu jedorodego o współczkach zmech ma postać: '' + f ' + g = 0 (1) Tego tpu klasa rówań obejmuje wele zjawsk
Zaawansowane metody numeryczne
Zaawasowae metod umercze Programowae lowe (problem dual, program low w lczbach całkowtch) Dualość est kluczowm poęcem programowaa lowego. Pozwala a udowodee że otrzmwae rozwązaa są optmale. Zagadee duale
Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8
Stasław Cchock Natala Nehreecka Zajęca 7-8 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartość oczekwaa eocążoość estymatora Waracja
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH. I Pracownia IF UJ Marzec 2017
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I Pracowa IF UJ Marzec 07 PODRĘCZNIKI Wstęp do aalzy błędu pomarowego Joh R. Taylor Wydawctwo Naukowe PWN Warszawa 999
Matematyka II. Wykład 11. Całka podwójna. Zamiana na całkę iterowaną. Obliczanie pól obszarów i objętości brył.
Wkład. Całka podwója. Zamaa a całkę terowaą. Oblczae pól obszarów objętośc brł.. Całka podwója w prostokące. Jak pamętam, całka ozaczoa z cągłej fukcj jedej zmeej wprowadzoa bła w celu oblczaa pola powerzch
ma rozkład normalny z nieznaną wartością oczekiwaną m
Zadae Każda ze zmeych losowych,, 9 ma rozkład ormaly z ezaą wartoścą oczekwaą m waracją, a każda ze zmeych losowych Y, Y,, Y9 rozkład ormaly z ezaą wartoścą oczekwaą m waracją 4 Założoo, że wszystke zmee
Statystyka powtórzenie (II semestr) Rafał M. Frąk
Statstka pwtórzee (II semestr) Rafał M. Frąk TEORIA, OZNACZENIA, WZORY Rdzae mar statstczch mar płżea - wzaczaą przecęta wartść cech statstcze mar zróżcwaa (lub zmeśc, rzprszea, dspers) - wzaczaą słę zróżcwaa
L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5
L.Kowalsk zadaa ze statystyk opsowej-zestaw 5 Zadae 5. X cea (zł, Y popyt (tys. szt.. Mając dae ZADANIA Zestaw 5 x,5,5 3 3,5 4 4,5 5 y 44 43 43 37 36 34 35 35 Oblcz współczyk korelacj Pearsoa. Oblcz współczyk
będą niezależnymi zmiennymi losowymi o tym samym 2 x
Prawdopodobeństwo statystyka 8.0.007 r. Zadae. Nech,,, rozkładze z gęstoścą Oblczyć m E max będą ezależym zmeym losowym o tym samym { },,, { },,, gdy x > f ( x) = x. 0 gdy x 8 8 Prawdopodobeństwo statystyka
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA Woskowe sttstcze - egesj koelcj teść Wpowdzee Regesj koelcj low dwóch zmech Regesj koelcj elow - tsfomcj zmech Regesj koelcj welokot Wpowdzee Jedostk zoowośc sttstczej mogą ć chktezowe
ZASTOSOWANIE PODEJ CIA WEKTOROWEGO DO ZADA PROGNOZOWANIA
ZASTOSOWANIE PODEJCIA WEKTOROWEGO DO ZADA PROGNOZOWANIA KESRA NERMEND Uwerstet Szczecsk MARIUSZ BORAWSKI Zachodopomorsk Uwerstet Techologcz w Szczece Streszczee Rachuek wektorow jest wkorzstwa w welu dzedzach
11. Aproksymacja metodą najmniejszych kwadratów
. Aproksmcj metodą jmejszch kwdrtów W ukch przrodczch wkoujem często ekspermet polegjące pomrch pr welkośc, które, jk przpuszczm, są ze sobą powąze jkąś zleżoścą fukcją =f(, p. wdłużee spręż w zleżośc
MATEMATYKA. Sporządził: Andrzej Wölk
MATEMATYKA Sporządzł: Adrzej ölk . adae Rozwązać rówae różczkowe: b) e X X e rozwązuję całkę żeb wzaczć e X e X z tego wka, że e X X e X e adae a) s d t dt d ( t ) dt dt pochoda d dt s d s s s s d = C
Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej
Rachunek prawdopodobeństwa statstka W 11: Analz zależnoścpomędz zmennm losowm Model regresj welokrotnej Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Model regresj lnowej Model regresj lnowej prostej
ZAGADNIENIE TRANSPORTOWE
ZAGADNIENIE TRANSPORTOWE ZT.. Zagadee trasportowe w postac tablcy Z m puktów (odpowedo A,...,A m ) wysyłamy edorody produkt w loścach a,...,a m do puktów odboru (odpowedo B,...,B ), gdze est odberay w
STATYKA. Cel statyki. Prof. Edmund Wittbrodt
STATYKA Cel statyk Celem statyk jest zastąpee dowolego układu sł ym, rówoważym układem sł, w tym układem złożoym z jedej tylko sły jedej pary sł (redukcja do sły mometu główego) lub zbadae waruków, jake
Wymiarowanie przekrojów stalowych
Wmarowae przekrojów stalowch Program służ o prostch, poręczch oblczeń ośośc przekrojów stalowch. Pozwala o a oblczea przekrojów obcążoch: mometem zgającm [km], mometem zgającm [km], słą połużą [k]. Przekroje
Zadanie 1. ), gdzie 1. Zmienna losowa X ma rozkład logarytmiczno-normalny LN (, . EX (A) 0,91 (B) 0,86 (C) 1,82 (D) 1,95 (E) 0,84
Zadae. Zmea losowa X ma rozkład logarytmczo-ormaly LN (, ), gdze E ( X e X e) 4. Wyzacz. EX (A) 0,9 (B) 0,86 (C),8 (D),95 (E) 0,84 Zadae. Nech X, X,, X0, Y, Y,, Y0 będą ezależym zmeym losowym. Zmee X,
Prawdopodobieństwo i statystyka r.
Prawdopodobeństwo statystyka 0.06.0 r. Zadae. Ura zawera kul o umerach: 0,,,,. Z ury cągemy kulę, zapsujemy umer kulę wrzucamy z powrotem do ury. Czyość tę powtarzamy, aż kula z każdym umerem zostae wycągęta
Statystyka Inżynierska
Statystyka Iżyerska dr hab. ż. Jacek Tarasuk AGH, WFIS 013 Wykład 3 DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE, PODSTAWY ESTYMACJI Dwuwymarowa, dyskreta fukcja rozkładu rawdoodobeństwa, Rozkłady brzegowe
KALIBRACJA NIE ZAWSZE PROSTA
KALIBRACJA NIE ZAWSZE PROSTA Potr Koeczka Katedra Chem Aaltyczej Wydzał Chemczy Poltechka Gdańska S w S C -? C w Sygał - astępstwo kosekwecja przeprowadzoego pomaru główy obekt zateresowań aaltyka. Cel
Sprawozdanie powinno zawierać:
Sprawozdane pownno zawerać: 1. wypełnoną stronę tytułową (gotowa do ćw. nr 0 na strone drugej, do pozostałych ćwczeń zameszczona na strone 3), 2. krótk ops celu dośwadczena, 3. krótk ops metody pomaru,
Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 5
Stasław Cchock Natala Nehreecka Zajęca 5 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartośd oczekwaa eocążoośd estymatora Waracja
Tablica Galtona. Mechaniczny model rozkładu normalnego (M10)
Tablca Galtoa. Mechaczy model rozkładu ormalego (M) I. Zestaw przyrządów: Tablca Galtoa, komplet kulek sztuk. II. Wykoae pomarów.. Wykoać 8 pomarów, wrzucając kulk pojedyczo.. Uporządkować wyk pomarów,
ZMIENNA LOSOWA JEDNOWYMIAROWA POJĘCIE ZMIENNEJ LOSOWEJ
ZMIENNA LOSOWA JEDNOWYMIAROWA POJĘCIE ZMIENNEJ LOSOWEJ Podstawowe pojęca rachuu prawdopodobeństwa: zdarzee losowe, zdarzee elemetare, prawdopodobeństwo, zbór zdarzeń elemetarych. Def. Nech E będze zborem
Przykładowe zadania dla poziomu rozszerzonego
Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,
OKREŚLANIE NIEPEWNOŚCI POMIARÓW (poradnik do Laboratorium Fizyki)
Adrzej Kubaczyk Laboratorum Fzyk I Wydzał Fzyk Poltechka Warszawska OKREŚLANIE NIEPEWNOŚCI POMIARÓW (poradk do Laboratorum Fzyk) ROZDZIAŁ Wstęp W roku 995 z cjatywy Mędzyarodowego Komtetu Mar (CIPM) zostały
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania MODELOWANIE I PODSTAWY IDENTYFIKACJI
Poltechka Gdańska Wydzał Elektrotechk Automatyk Katedra Iżyer Systemów Sterowaa MODELOWANIE I PODSAWY IDENYFIKACI Wybrae zagadea z optymalzacj. Materały pomoccze do zajęć ćwczeowych 5 Opracowae: Kazmerz
= n = = i i. Sprawdzenie istotności współczynnika korelacji ρ dla populacji na podstawie współczynnika r
STATYSTKA I ANALIZA DANYCH LAB V I VI. Pla laboatoum V VI Koelacja współczk koelacj Peasoa testowae stotośc współczka koelacj Regesja lowa egesja posta, ocea dopasowaa, testowae stotośc współczków egesj
MODELE OBIEKTÓW W 3-D3 część
WYKŁAD 5 MODELE OBIEKTÓW W -D część la wykładu: Kocepcja krzywej sklejaej Jedorode krzywe B-sklejae ejedorode krzywe B-sklejae owerzche Bezera, B-sklejae URBS 1. Kocepcja krzywej sklejaej Istotą z praktyczego
3. Wykład III: Warunki optymalności dla zadań bez ograniczeń
3 Wkład III: Waruki optmalości dla zadań bez ograiczeń Podae poiże waruki optmalości dla są uogólieiem powszechie zach waruków dla fukci ede zmiee (zerowaie się pierwsze pochode i lokala wpukłość) 3 Twierdzeie
5. OPTYMALIZACJA NIELINIOWA
5. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często, że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też, oprócz lowych zadań decyzyjych, formułujemy także elowe
termodynamika fenomenologiczna p, VT V, teoria kinetyczno-molekularna <v 2 > termodynamika statystyczna n(v) to jest długi czas, zachodzi
fzka statstczna stan makroskopow układ - skończon obszar przestrzenn (w szczególnośc zolowan) termodnamka fenomenologczna p, VT V, teora knetczno-molekularna termodnamka statstczna n(v) stan makroskopow
. Wtedy E V U jest równa
Prawdopodobeństwo statystyka 7.0.0r. Zadae Dwuwymarowa zmea losowa Y ma rozkład cągły o gęstośc gdy ( ) 0 y f ( y) 0 w przecwym przypadku. Nech U Y V Y. Wtedy E V U jest rówa 8 7 5 7 8 8 5 Prawdopodobeństwo
PRZEGLĄD NAJPROSTSZYCH METOD OPRACOWANIA WYNIKÓW POMIARÓW. dr Michał Januszczyk Zakład Fizyki Medycznej, Wydział Fizyki UAM
PRZEGLĄD NAJPROTZYCH METOD OPRACOWANIA WYNIKÓW POMIARÓW. dr Mchał Jauszczyk Zakład Fzyk Medyczej, Wydzał Fzyk UAM. Każdy zbór cał lub zjawsk fzyczych ma wele cech merzalych mogących staowć zasadę klasyfkacj..
MATEMATYKA STOSOWANA W INŻYNIERII CHEMICZNEJ
MATEMATYKA STOSOWANA W INŻYNIERII CHEMICZNEJ Wykład Układy rówań metody aaltycze Metody umerycze rozwązywaa rówań lczbowych Prof. Ato Kozoł, Wydzał Chemczy Poltechk Wrocławskej ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I PRACOWNIA FIZYCZNA INSTYTUT FIZYKI UJ BIOLOGIA 2016
PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I PRACOWNIA FIZYCZNA INTYTUT FIZYKI UJ BIOLOGIA 06 CEL ĆWICZEŃ. Obserwacja zjawsk efektów fzyczych. Doskoalee umejętośc
W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =
4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ ). W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,
(x 1 y 1 ) (x n y n ) 2. 1<j<m x i y i. x2 y 2 gdy x 1 = y 1 x 2 y 2 + x 1 + y 1 gdy x 1 = y 1. gdy x, y, 0 nie są współliniowe
. Metrka Zadaie.. Pokazać, że metrka jest fukcją ieujemą. Zadaie.2. Odowodić, że poiższe wzor defiiuja metrki. a) (metrka euklidesowa) X = R. d e (, ) := ( ) 2 +... + ( ) 2 b) (metrka taksówkowa) X = R
System finansowy gospodarki
System fasowy gospodark Zajęca r 7 Krzywa retowośc, zadaa (mat. f.), marża w hadlu, NPV IRR, Ustawa o kredyce kosumeckm, fukcje fasowe Excela Krzywa retowośc (dochodowośc) Yeld Curve Krzywa ta jest grafczym
Pomiary bezpośrednie i pośrednie obarczone błędem przypadkowym
Pomary bezpośrede pośrede obarczoe błędem przypadkowym I. Szacowae wartośc przyblŝoej graczego błędu przypadkowego a przykładze bezpośredego pomaru apęca elem ćwczea jest oszacowae wartośc przyblŝoej graczego
dev = y y Miary położenia rozkładu Wykład 9 Przykład: Przyrost wagi owiec Odchylenia Mediana próbkowa: Przykłady Statystyki opisowe Σ dev i =?
Mary położea rozkładu Wykład 9 Statystyk opsowe Średa z próby, mea(y) : symbol y ozacza lczbę; arytmetyczą średą z obserwacj Symbol Y ozacza pojęce średej z próby Średa jest środkem cężkośc zboru daych