MAP1146 ANALIZA MATEMATYCZNA 2.4 A Listy zadań
|
|
- Paulina Woźniak
- 8 lat temu
- Przeglądów:
Transkrypt
1 MAP46 ANALIZA MATEMATYCZNA.4 A List zadań Lista.. Przjmując w definicji całki oznaczonej podział równomiern obliczć podane całki oznaczone i podać ich interpretację geometrczną: ); b) ; c) e. Wskazówka.Ad.b).Zastosowaćwzor++...+n= nn+), n = nn+)n+) ; 6 Ad.c).Zastosowaćwzórnasumęciągugeometrcznegoa+aq+...+aq n =a qn q orazwkorzstaćrówność e h lim =; h h.. Korzstając z twierdzenia Newtona-Leibniza obliczć całki: ) ; b) ; c) + +9 ; ; e) e e ln; f) sin cos. *.. Korzstając z definicji całki oznaczonej uzasadnić równości: [ π lim tg π )] n 4n 4n +tgπ 4n +...+tgnπ =ln ; 4n n b) lim n n 4 = 4 ; c) lim n [ ln+n) +n)... n+n) n n n ] =ln4..4. Obliczć całki oznaczone dokonując wskazanch podstawień: ln 4 e +e,t=e ; b) 4 ),=t ; e) sine cos,t=cos; c) 9,=sint; f).5. Metodą całkowania przez części obliczć całki oznaczone: e ; b) ln; e) π 4 sin; c) arcsin; f) e +cos); e ln. +,+=t ; 4,= t.
2 Lista.. Narsować funkcje podcałkowe i obliczć całki oznaczone: ; b) e ; c) sgn ) ;... Obliczć wartości średnie podanch funkcji na wskazanch przedziałach i podać ich interpretacje geometrczną: f)= +4, [,]; b)f)=sin, [,π]; c)f)=arctg, [, ] ; f)= +, [,]... Wkorzstując własności całek z funkcji parzstch, nieparzstch lub okresowch uzasadnić równości: c) e e =; b) + ln +sin =; sin π 5 sin +cos = )=5.4. Obliczć pola obszarów ograniczonch krzwmi: sin +cos ; ). =,+=; b)=,=, ); c)=,=,=; 4=,= 8 +4 ; e) =,=,=8; f) 4 =,=,=6..5. Obliczć długości krzwch: =, gdzie ; b)=ch, gdzie ; c)=, gdzie ; =lncos, gdzie π Obliczć objętości brł powstałch z obrotu podanch figur T wokół wskazanch osi: T:,,O; c)t: 5, +4,O; b)t: π 4, tg,o; T:,,O..7. Obliczć pola powierzchni powstałch z obrotu wkresów podanch funkcji wokół wskazanch osi: f)= 4+, 4,O; b)f)=cos, π,o; c)f)=ln,,o; f)= +,,O..8.Punktmaterialnrozpocząłruchprostoliniowzprędkościąpoczątkowąv =m/siprzspieszeniem a =m/s.poczasiet =spunktzacząłporuszaćsięzopóźnieniema = m/s.znaleźćjegopołożenie poczasiet =s. b)wiecząstkiaibpołożonewodległościd=6zacznajązbliżaćsiędosiebiezprędkościamiodpowiednio v A t)=t+t,v B t)=6t,gdziet.pojakimczasienastąpiichzderzenie? Lista.. Korzstając z definicji zbadać zbieżność całek niewłaściwch pierwszego rodzaju: +) ; b) )e ; e) +5 ; c) +4 ; f) π sin; 4+.
3 .. Korzstając z krterium porównawczego zbadać zbieżność całek niewłaściwch pierwszego rodzaju: 4 +) ; b) + ) ; e) π ; c) +sin) ; f) +) 4 ++ ; +cos )... Korzstając z krterium ilorazowego zbadać zbieżność całek niewłaściwch pierwszego rodzaju: +) ; b) +) 5 ; c) +) ; sin ; 5 e) sin ; f) e + ) e..4.obliczćpoleobszaruograniczonegokrzwą= +4 orazosiąo. b)obliczćobjętośćbrłpowstałejzobrotuwokółosioobszaru= {,) R :, e }. c)uzasadnić,żepolepowierzchnipowstałejzobrotuwkresufunkcji= dla wokółosioma skończoną wartość. Lista Znaleźć sum częściowe podanch szeregów i następnie zbadać ich zbieżność: n= ) n 5 ; b) 6 n= n ; c) n! n Uwaga.Wprzkładzieb)przjąć,żeS n= k= n )n+) ; a k,gdzien. 4.. Korzstając z krterium całkowego zbadać zbieżność szeregów: n +n ; b) n n +4 ; c) n= lnn n ; 4.. Korzstając z krterium ilorazowego zbadać zbieżność szeregów: n n+. n++ n. n +n+ n ; b) n+ n + ; c) n n ; sin π n sin π. n 4.4. Korzstając z krterium porównawczego zbadać zbieżność szeregów: n + ; b) n+ n + ; c) sin π n; n= n +sinn! n ; e) cosn n ; f) n + n n + n Korzstając z krterium d Alemberta zbadać zbieżność szeregów: n ; b) n sin π n! n; c) n! n n; n!) n)! ; e) n n n n! ; f) n + n 5 +.
4 Lista Korzstając z krterium Cauch ego zbadać zbieżność szeregów: n+) n n +) n ; b) n + n n +4 n; c) n n n ; n+) n arccos n n. 5.. Wkazać zbieżność odpowiedniego szeregu i następnie na podstawie warunku koniecznego zbieżności szeregów uzasadnić podane równości: 7 n lim n n 5=; n n b) lim n n!) =; 5.. Zbadać zbieżność szeregów naprzemiennch: ) nn n +5 ; b) ) n n n+) n; c) ) n+ lnn nlnlnn ; ) [e n+ n= n! c) lim n n n=; + n ) n ] Zbadać zbieżność oraz zbieżność bezwzględną szeregów: ) n+ n + ; b) ) n n n + ; c) ) n n ; n+5 ) n ) n ; e) n= n= n= ) n n + ; f*) n= ) n n+. n)!4n)! d*) lim n 5n)!n)! =. Lista Wznaczć przedział zbieżności szeregów potęgowch: n= n n n; b) n ) n ; c) n n + n; e) n n + +)n ; f*) +) n n ; n! n n n. 6.. Znaleźć szeregi Maclaurina podanch funkcji i określić przedział ich zbieżności: ; b)cos ; c)e ; 9+ ; e)sh; f*)sin Korzstając z rozwinięć Maclaurina funkcji elementarnch obliczć pochodne: f 5) ), gdzief)=sin; b)f 6) ), gdzief)= e ; c)f ) ), gdzief)= + ; f) ), gdzief)=sin. Lista Scałkować podane równania różniczkowe o zmiennch rozdzielonch: +4t=; b)d=t dt; c)t ) dt+ t ) d=; t = ; e) =+t++t; f) +4= e t +4 ). 7.. Rozwiązać podane zagadnienia początkowe dla równań różniczkowch o rozdzielonch zmiennch: π sint=ln, =e; b)t ) dt+ t d=, )=; c)t+) =, e)=; costdt + ) d=, )=; e) = +t ), )= ; f)e )=, )=. 4
5 7.. Rozwiązać podane równania różniczkowe liniowe niejednorodne: +=sint; b) +t=e t ; c)t =t cost; t =4t 4 ; e)t+e t t =; f)t+) =4t Wznaczć rozwiązania podanch zagadnień początkowch dla równań liniowch niejednorodnch: =,)=; b) =+)sint,t )= ; π c)t +=t+,)=; sintcost=+sin t, =. 4) *7.5. Znaleźć równanie krzwej przechodzącej przez punkt,), dla której pole trójkąta OSTrsunek) utworzonego przezośot,stcznąiwektorwodzącpunktustcznościjeststałeirównasię. S O T =t) t Lista Sprawdzić, że podane funkcje tworzą na zadanch przedziałach układ fundamentalne wskazanch równań różniczkowch. Znaleźć rozwiązania tch równań z zadanmi warunkami początkowmi: t)=e t, t)=e t,,), =, )=, )= 5; b) t)=lnt, t)=t,,e), t lnt) +t =, )=, )=; c) t)=t, t)=e t,,), t ) t +=, )=, )=; t)=t, t)=t,,), t t +=, )=, )=. 8..Wznaczćrównaniaróżniczkoweliniowejednorodnepostaci +pt) +qt)=,którchukład fundamentalne składają się z podanch funkcji: t)=sht, =cht,gdziet R; b) t)=t, t)=t,gdziet,). 8.. Napisać równania charakterstczne równań różniczkowch: +=; b) =; c)4 + =; +4=; e) =; f) = Wznaczćrównaniaróżniczkoweliniowejednorodneostałchwspółcznnikachpostaci +p +q=, jeżeli pierwiastkami ich wielomianów charakterstcznch są: λ =,λ =; b)λ =,λ =; c)λ =λ = ; λ =i; e)λ =+ i; f)λ = i Rozwiązać równania różniczkowe liniowe o stałch współcznnikach: 6 5 +=; b) =; c)4 4+=; =; e) 4 +5=; f) +5=; g) +6 +8=; h)7 +4 =; i) 6 +9= Wznaczć rozwiązanie zagadnienia początkowego: π + 6=, )=, )=; b) +9=, ) c) +=, )=, )=; =, π ) =; 7 +=, )=, )=. 5
6 Lista Wznaczć rozwiązania ogólne podanch równań liniowch niejednorodnch, jeżeli znane są układ fundamentalne odpowiadając im równań jednorodnch: 7 +=e t, t)=e t, t)=e 5t ; b) t+t ) 6+t) +6=6, t)=t, t)=t+; c)t ) t +=t ) e t, t)=t, t)=e t ; t+) +t) =e t, t)=, t)=te t. 9.. Korzstając z metod uzmienniania stałch rozwiązać równania różniczkowe: +4 +4=e t ; b) +4= cost ; c) = 4t + t ; t tgt=; e) + += +e t; f) + +=cos e t). 9.. Korzstając z metod współcznników nieoznaczonchmetoda przewidwani rozwiązać równania różniczkowe liniowe niejednorodne: + += ; b) 4 +4=t ; c) +4 +4=8e t ; + =te t ; e) +5 +6= t)e t ; f) +4 4=8sint; g) +9=sint+cost; h) +α =cosαt,gdzieα Rozwiązać zagadnienia początkowe: += t), )=, )= ; b) 6 +9=9t t+, )=, )=; c) +6 +9=sint, )=, )=; + =e t, )=, )=. Lista.. Wznaczć i narsować dziedzin naturalne funkcji: f,)= 5 ; b)f,)=sin + ) + ; c)f,)= + 5 ; f,)=ln ; e)f,,z)= + + z ; f)f,,z)=arcsin + +z )... Wkresrs. c)) połączć z odpowiadającmi im poziomicamirs. A) C)) wkonanmi dla h =,,,,: z b) z c) z z= + z= 4 + ) z= + ) 6
7 A) B) C).. Naszkicować wkres funkcji: f,)= + ; b)f,)= + ; c)f,)= + ++; f,)=sin; e)f,)= ; f)f,)=..4. Uzasadnić, że nie istnieją granice funkcji: lim,),) 4 +4; b) lim,),).5. Obliczć granice funkcji: sin 4 +; c) lim,) π,) ; lim,),) cos + ) lim,),) + ) ; b) lim,),) + ; tg ) lim,),) Lista 4 +4 ; e) lim +,),) c) lim,),) ; ; f) lim + ) sin,),)... Korzstając z definicji obliczć pochodne cząstkowe rzędu pierwszego funkcji we wskazanch punktach: f,)= +,,); b)f,)= +,,); + dla,),) c)f,)= +,,); dla,)=,) f,,z)=,,,); e)f,,z)= z z,,,)... Obliczć wszstkie pochodne cząstkowe pierwszego rzędu funkcji: f,)= + f,,z)= + z +z ; ; b)f,)=arctg + ; c)f,)=esin ; e)f,,z)= + +z ;.. Sprawdzić cz podana funkcja spełnia wskazane równanie: f)f,,z)=sincossinz)). f,)=ln ++ ), f + f =; b)f,)= sin, f + f =f..4. Obliczć wszstkie pochodne cząstkowe drugiego rzędu podanch funkcji i sprawdzić, cz pochodne cząstkowe mieszane są równe: f,)=sin + ) ; b)f,)=e ; c)f,)=+ ; f,)=ln; e)f,,z)= + +z ; f)f,,z)=ln + 4 +z 6 + )..5. Obliczć wskazane pochodne cząstkowe funkcji: f, f,)=sin; b) 4 f, f,)=+ ; f c) z, f,,z)= ; z 5 f z, f,,z)=e+z. 7
8 .6. Sprawdzić, że funkcje: z=arctg ; b)z=+ ; c)z=+ln + ) ; z=+ spełniają warunek z z z + + =, gdzie,>..7. Napisać równania płaszczzn stcznch do wkresów podanch funkcji we wskazanch punktach wkresu: z= +,,,z )=,,z ); b)z=e +,,,z )=,,z ); c)z= arcsin arccos,,,z )= ),,z ; z=,,,z )=,4,z )..8.Nawkresiefunkcjiz=arctg wskazaćpunkt,wktórchpłaszczznastcznajestrównoległado płaszczzn+ z=5. b)wznaczćrównaniepłaszczznstcznejdowkresufunkcjiz=arcctg +,którajestprostopadłado prostej= t,=t,z=t,gdziet R. Lista.. Znaleźć ekstrema funkcji: f,)= ) +4+) ; b)f,)= + ; c)f,)= + 5 4; f,)=e + +) ; e)f,)= ), gdzie,>; f)f,)= 8 + +; gdzie,>... Znaleźć najmniejsze i największe wartości podanch funkcji na wskazanch zbiorach: f,)= +4 +, = {,) R : 4 } ; b)f,)= + 6+4, = {,) R :+ 4,+ 6,, } ; c)f,)= +, = {, R : + } ; f,)= +4 4, = {,) R :, } ; e)f,)= 4 + 4, = {,) R : + 9 } ; ) ) f*)f,)= + +),= R...WtrójkącieowierzchołkachA=,5),B=,4),C=, )znaleźćpunktm=, ),dla którego suma kwadratów jego odległości od wierzchołków jest najmniejsza. b) Jakie powinn bć długość a, szerokość b i wsokość h prostopadłościennej otwartej wann o pojemności V, ab ilość blach zużtej do jej zrobienia bła najmniejsza? c) Znaleźć odległość międz prostmi skośnmi: k: { + =, z+ =, l: { + =, z =. ProstopadłościennmagaznmamiećobjętośćV=6m.obudowścianmagaznuużwanesąpłt wceniezł/m,dobudowpodłogiwcenie4zł/m,asufituwceniezł/m.znaleźćdługośća,szerokość b i wsokość c magaznu, którego koszt budow będzie najmniejsz. f)firmaprodukujei4calowetelewizorplazmowewcenachzbtuodpowiednio4ei6ezasztukę. Koszt wprodukowania sztuk telewizorów calowch i 4 calowch wnoszą K,)= ++ e. Ile sztuk telewizorów i 4 calowch powinna wprodukować firma ab osiągnąć jak największ zsk? 8
9 Lista.. Obliczć całki podwójne po wskazanch prostokątach: R R d ++),gdzier=[,] [,]; b) R c) e d,gdzier=[,] [,]. sind,gdzier=[,] [π,π];.. Całkę podwójną f, ) d zamienić na całki iterowane, jeżeli obszar ograniczon jest krzwmi o równaniach: +=, = ; b) + =4, =, =, ); c) =; =, + =<)... Obliczć całki iterowane: 4 d; b) 4 Narsować obszar całkowania. d; c) 4 + ) d; d.4. Narsować obszar całkowania, a następnie zmienić kolejność całkowania w całkach: f,)d; b) f,)d; c) 4 4 f,)d; +6. d f,); e) sin f,)d; f) e f,)d. π cos ln.5. Obliczć podane całki po obszarach normalnch ograniczonch wskazanmi krzwmi: d, :=,= ; b) d, :=,=,= ; c) +)d, :=,=,= ); +4 ) d, :=+,= ++; e) +)d, :=,=π,=,=sin; f) e d, :=,=,=; g) e d, :=,=,= ln; h) e d, :=,=,=. Opracowanie: dr Marian Gewert, doc. Zbigniew Skoczlas 9
ANALIZA MATEMATYCZNA 2 MAP: 2013, 2014, 2025, 2026 Lista zadań Semestr letni 2007/08
Całki oznaczone 5 ANALIZA MATEMATYCZNA MAP: 3, 4, 5, 6 Lista zadań Semestr letni 7/8 Korzstając z definicji oraz z faktu, że funkcje ciągłe są całkowalne obliczć podane całki oznaczone: ); b) 3 ; e. Wskazówka.Ad.b).Zastosowaćwzor++...+n=
MAP1144 ANALIZA MATEMATYCZNA 2.2 A Lista zadań
MAP44 ANALIZA MATEMATYCZNA. A Lista zadań Lista.. Przjmując w definicji całki oznaczonej podział równomiern obliczć podane całki oznaczone i podać ich interpretację geometrczną: ); b) ; e. Wskazówka.Ad.b).Zastosowaćwzor++...+n=
MAP1149 ANALIZA MATEMATYCZNA 2.3 A MAP1150 ANALIZA MATEMATYCZNA 2.3 B Listy zadań
MAP49 ANALIZA MATEMATYCZNA.3 A MAP5 ANALIZA MATEMATYCZNA.3 B Lis zadań Lisa.. Wznaczć i narsować dziedzin nauralne funkcji: f,)= 3 5 ; b)f,)=sin + ) + ; c)f,)= + 5 ; f,)=ln + 4 9 ; e)f,,z)= + + z ; f)f,,z)=arcsin
MAP 1148 ANALIZA MATEMATYCZNA 1.2
MAP 48 ANALIZA MATEMATYCZNA. Lista List zadań na semestr zimow 9/.. Korzstając z definicji granic właściwej ciągu uzasadnić podane równości: n+ n+ lim n n =; b) lim =; n n+ lim n n =; e*) lim +5 n 3 n
Lista zadań nr 2 z Matematyki II
Lista zadań nr 2 z Matematyki II dla studentów wydziału Architektury, kierunku Gospodarka Przestrzenna. Wyznaczyć dziedzinę funkcji f(x, y) = ln(4 x 2 y 2 ), f(x, y) = x 2 + y 2, f(x, y) = ln(4 x 2 y 2
Analiza Matematyczna MAEW101
Analiza Matematyczna MAEW Wydział Elektroniki Listy zadań nr 8-4 (część II) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 5 M.Gewert, Z Skoczylas,
ANALIZA MATEMATYCZNA 2
ANALIZA MATEMATYCZNA Lista zadań 3/4 Opracowanie: dr Marian Gewert, dr Zbigniew Skoczylas Lista pierwsza Zadanie. Korzystając z definicji zbadać zbieżność podanych całek niewłaściwych pierwszego rodzaju:
Analiza Matematyczna Ćwiczenia
Analiza Matematyczna Ćwiczenia Spis treści Ciągi i ich własności Granica ciągu Granica funkcji 4 4 Ciągłość funkcji 6 Szeregi 8 6 Pochodna funkcji 7 Zastosowania pochodnej funkcji 8 Badanie przebiegu zmienności
ANALIZA MATEMATYCZNA 2.2B (2017/18)
ANALIZA MATEMATYCZNA.B (7/8) ANALIZA MATEMATYCZNA.A,.A LISTA. (na ćwiczenia) Całki niewłaściwe Część A. Zadania do samodzielnego rozwiązania, czyli to, co należy umieć z poprzedniego semestru... Podać
25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx
5. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU 5.1. Pojęcia wstępne. Klasfikacja równań i rozwiązań Rozróżniam dwa zasadnicze tp równań różniczkowch: równania różniczkowe zwczajne i równania różniczkowe cząstkowe.
Analiza matematyczna 2 zadania z odpowiedziami
Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści I Całki niewłaściwe pierwszego rodzaju II Całki niewłaściwe drugiego rodzaju 5 III Szeregi liczbowe 6 IV Szeregi potęgowe
ZADANIA Z MATEMATYKI DLA WYDZIAŁU IMIR
ZADANIA Z MATEMATYKI DLA WYDZIAŁU IMIR ZADANIA w semestrze zimowm Teoria zbiorów funkcje. Podać interpretację geometrczną zbiorów: A B jeżeli A = i B = A B X = X X X gdzie X = gdzie A= { : } B = d) { }
ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami
ANALIZA MATEMATYCZNA zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Całki niewłaściwe pierwszego rodzaju Całki niewłaściwe drugiego rodzaju Szeregi liczbowe 4 4 Szeregi potęgowe 5 5
Ćwiczenia r.
Ćwiczenia 9..8 r.. Wyznaczyć wskazane wartości, gdy spełnione są podane równania: a)sin=?,tg=; b)ctg=?,sin= π ) 7 ; π c)sin5=?,sin + =tg ; d)cos=?,+tg9 tg + π ).. Rozwiązać nierówności: a)+4 +
Rachunek różniczkowy i całkowy 2016/17
Rachunek różniczkowy i całkowy 26/7 Zadania domowe w pakietach tygodniowych Tydzień 3-7..26 Zadanie O. Czy dla wszelkich zbiorów A, B i C zachodzą następujące równości: (A B)\C = (A\C) (B\C), A\(B\C) =
ANALIZA MATEMATYCZNA 2
ANALIZA MATEMATYCZNA Marian Gewert Zbigniew Skoczylas ANALIZA MATEMATYCZNA Przykłady i zadania Wydanie dziewiętnaste powiększone GiS Oficyna Wydawnicza GiS Wrocław 6 Marian Gewert Wydział Matematyki Politechnika
Matematyka 2 (Wydziaª Architektury) Lista 1: Funkcje dwóch zmiennych
Matematka 2 (Wdziaª Architektur) Lista : Funkcje dwóch zmiennch I Wznacz i narsowa dziedzin funkcji:. z = 3 2 5 2. z = sin(2 + 2 ) 2 + 2 3. z = arcsin(2 + 2 ) 2 + 2 4. z = 5. z = ln 2 2 + 2 4 2 ( ) 2 +
ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j),
ELEKTROTECHNIKA Semestr Rok akad. / 5 ZADANIA Z MATEMATYKI Zestaw. Przedstaw w postaci algebraicznej liczby zespolone: (3 + j)(5 j) 3 j +j (5 + j) (3 + j) 3. Narysuj zbiory punktów na płaszczyźnie: +j
Analiza matematyczna 2 Lista zadań
Analiza maemayczna Lisa zadań Opracowanie: dr Marian Gewer, doc. Zbigniew Skoczylas Lisa. Korzysając z definicji zbadać zbieżność całek niewłaściwych pierwszego rodzaju: d) + ; b) arccg; e) +) ; c) 4+3
MAP1156 ANALIZA MATEMATYCZNA 2.1 A Listy zadań
MAP56 ANALIZA MATEMATYCZNA. A List zadań Lista.. Przjmując w defiicji całki ozaczoej podział rówomier obliczć podae całki ozaczoe i podać ich iterpretację geometrczą: ( ); b) ; e. Wskazówka.Ad.b).Zastosowaćwzor++...+=
WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA1, lista zadań 1
WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA, lista zadań. Dla podanych ciągów napisać wzory określające wskazane wyrazy tych ciągów: a) a n = n 3n +, a n+, b) b n = 3
Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji
Zadania z analizy matematycznej - sem. I Pochodne funkcji przebieg zmienności funkcji Definicja 1. Niech f : (a b) R gdzie a < b oraz 0 (a b). Dla dowolnego (a b) wyrażenie f() f( 0 ) = f( 0 + ) f( 0 )
Analiza matematyczna 2 Lista zadań
Analiza matematyczna Lista zadań Opracowanie: dr Marian Gewert, doc Zbigniew Skoczylas Lista Korzystając z definicji zbadać zbieżność całek niewłaściwych pierwszego rodzaju: + ; (b) + ; (c) sin; (d) arcctg;
Przykłady do zadania 1.1 : Obliczyć dane całki podwójne po wskazanych prostokątach. π 4. (a) sin(x + y) dxdy, R = π 4, π ] [ dy = sin(x + y)dy = dx =
achunek prawdopodobieństwa MAP6 Wdział Elektroniki, rok akad. 8/9, sem. letni Wkładowca: dr hab. A. Jurlewicz Przkład do list : Całki podwójne Przkład do zadania. : Obliczć dane całki podwójne po wskazanch
Zestaw 0. 1 sin 2 x ; k) (arctg x) 0 = 1 ; l) (arcctg x) x 2 m) (arcsin x) 0 = p 1
Podstawowe wzor rachunku ró zniczkowego Zestaw. Rachunek ró zniczkow i ca kow a) (f () g ()) = f () g () + f () g () b) f (g ()) = f (g ()) g () f() c) g() = f ()g() f()g () d) ( n ) = n n g () e) (log
RÓWNANIA RÓŻNICZKOWE WYKŁAD 5
RÓWNANIA RÓŻNICZKOWE WYKŁAD 5 Równania różniczkowe rzędu drugiego Równania rzędu drugiego sprowadzalne do równań rzędu pierwszego Równanie różniczkowe rzędu drugiego postaci F ( x, ', ") 0 ( nie wstępuje
ANALIZA MATEMATYCZNA
ANALIZA MATEMATYCZNA TABLICE Spis treści: 1.) Pochodne wzory 2 2.) Całki wzory 3 3.) Kryteria zbieżności szeregów 4 4.) Przybliżona wartość wyrażenia 5 5.) Równanie płaszczyzny stycznej i prostej normalnej
Rachunek różniczkowy funkcji wielu zmiennych
Wydział Matematyki Stosowanej Zestaw zadań nr 7 Akademia Górniczo-Hutnicza w Krakowie WFiIS, informatyka stosowana, I rok Elżbieta Adamus 13 grudnia 2018r. Rachunek różniczkowy funkcji wielu zmiennych
Analiza Matematyczna F1 dla Fizyków na WPPT Lista zadań 3, 2018/19z (zadania na ćwiczenia)
Analiza Matematyczna F dla Fizyków na WPPT Lista zadań 3 08/9z (zadania na ćwiczenia) (Na podstawie podręcznika M. Gewert Z. Skoczylas Analiza Matematyczna. Przykłady i zadania GiS 008) 3 Granica funkcji
Lista 1 - Funkcje elementarne
Lista - Funkcje elementarne Naszkicuj wykresy funkcji: a) y = sgn, y = sgn ; b) y = ; c) y = 2 Przedstaw w jednym układzie współrzędnych wykresy funkcji potęgowej y = α dla: a) α =, 2, 3, 4; b) α =,, 2;
Matematyka. rok akademicki 2008/2009, semestr zimowy. Konwersatorium 1. Własności funkcji
. Własności funkcji () Wyznaczyć dziedzinę funkcji danej wzorem: y = 2 2 + 5 y = +4 y = 2 + (2) Podać zbiór wartości funkcji: y = 2 3, [2, 5) y = 2 +, [, 4] y =, [3, 6] (3) Stwierdzić, czy dana funkcja
Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU
Agata Boratyńska Zadania z matematyki Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU. Korzystając z definicji granicy ciągu udowodnić: a) n + n+ = 0 b) n + n n+ = c) n + n a =, gdzie a
RÓWNANIA RÓŻNICZKOWE WYKŁAD 3
RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 Równania różniczkowe liniowe Metoda przewidwań Metoda przewidwań całkowania równania niejednorodnego ' p( x) opiera się na następującm twierdzeniu. Twierdzenie f ( x) Suma
Zestaw zadań z Analizy Matematycznej II 18/19. Konwencja: pierwsze litery alfabetu są parametrami, do tego zazwyczaj dodatnimi
Literatura pomocnicza Zestaw zadań z Analizy Matematycznej II 8/9 G.M. Fichtenholz - Rachunek różniczkowy i całkowy. B. Demidowicz - Zbiór zadań z analizy matematycznej. T 2,3 Krysicki, Włodarski - Analiza
1 Funkcja wykładnicza i logarytm
1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres
RZĘDU PIERWSZEGO. RÓWNANIE BERNOULLIEGO. RÓWNANIE JEDNORODNE. KRZYWE ORTOGONALNE. RÓWNANIE BERNOULLIEGO. Nieliniowe równanie różniczkowe Bernoulliego
NIELINIOWE RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE RZĘDU PIERWSZEGO. RÓWNANIE BERNOULLIEGO. RÓWNANIE JEDNORODNE. KRZYWE ORTOGONALNE. RÓWNANIE BERNOULLIEGO. Nieliniowe równanie różniczkowe Bernoulliego ma postać:
Równania różniczkowe
Równania różniczkowe I rzędu Andrzej Musielak Równania różniczkowe Równania różniczkowe I rzędu Równanie różniczkowe pierwszego rzędu to równanie w którm pojawia się zmienna x, funkcja tej zmiennej oraz
1 Funkcja wykładnicza i logarytm
1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres
LISTY ZADAŃ DO KURSU ANALIZA MATEMATYCZNA 1 (MAT 1637, 1644)
LISTY ZADAŃ DO KURSU ANALIZA MATEMATYCZNA MAT 67, 644) Zadania przeznaczone są do rozwiązywania na ćwiczeniach oraz samodzielnie. Dwie dodatkowe listy: POWTÓRKA i POWTÓRKA to przygotowanie do kolokwiów.
lim = 0, gdzie d n oznacza najdłuższą przekątną prostokątów
9. CAŁKA POWÓJNA 9.. Całka podwójna w prostokącie Niech P będzie prostokątem opisanm na płaszczźnie OXY nierównościami: a < < b, c < < d, a f(,) funkcją określoną i ograniczoną w tm prostokącie. Prostokąt
Zadania z analizy matematycznej - sem. II Funkcje, ich granice i ciągłość
Zadania z analizy matematycznej - sem II Funkcje ich granice i ciągłość Zadanie 1 Wyznaczyć i naszkicować dziedziny naturalne podanych funkcji: a f y = 2 y 3 25 2 +y 2 16 b g y = ln1 2 y 2 c h y = ln 2
Analiza Matematyczna 1 MAP 1091
Analiza Matematczna MAP 9 Lista zdań obejmuje cał materiał kursu i jest podzielona na 5 jednostek odpowiadającch zakresem kolejnm wkładom. Na ćwiczeniach należ rozwiązać prznajmniej jeden podpunkt z każdego
1. Równania i nierówności liniowe
Równania i nierówności liniowe Wykonać działanie: Rozwiązać równanie: ( +x + ) x a) 5x 5x+ 5 = 50 x 0 b) 6(x + x + ) = (x + ) (x ) c) x 0x (0 x) 56 = 6x 5 5 ( x) Rozwiązać równanie: a) x + x = 4 b) x x
KARTA PRZEDMIOTU CELE PRZEDMIOTU
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr do ZW KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA.1 A Nazwa w języku angielskim Mathematical Analysis.1 A Kierunek studiów (jeśli dotyczy):
FUNKCJE ZESPOLONE Lista zadań 2005/2006
FUNKJE ZESPOLONE Lista zadań 25/26 Opracowanie: dr Jolanta Długosz Liczby zespolone. Obliczyć wartości podanych wyrażeń: (2 + ) ( ) 2 4 i (5 + i); b) (3 i)( 4 + 2i); c) 4 + i ; d) ( + i) 4 ; e) ( 2 + 3i)
Spis treści 1. Macierze, wyznaczniki, równania liniowe 2 2. Geometria analityczna 7 3. Granice, pochodne funkcji i ich zastosowania 10 4.
Spis treści Macierze wyznaczniki równania liniowe Geometria analityczna 7 Granice pochodne funkcji i ich zastosowania 0 4 Liczby zespolone 6 5 Całki nieoznaczone 8 6 Zastosowania geometryczne całek 0 7
(8) Oblicz wyznacznik dowolnie wybranej macierzy stopnia czwartego. (9) Rozwi aż podany układ równań stosuj ac wzory Cramera:
Zadania przygotowuj ace do kolokwium (budownictwo, studia niestacjonarne, drugi semestr, 209) [7III] () Podaj przykład dowolnej macierzy A drugiego stopnia Oblicz A A T + A T A (2) Podaj przykład dowolnej
Spis treści 1. Liczby zespolone 2 2. Macierze, wyznaczniki, równania liniowe 4 3. Geometria analityczna 9 4. Granice, pochodne funkcji i ich
Spis treści Liczby zespolone Macierze wyznaczniki równania liniowe 4 Geometria analityczna 9 4 Granice pochodne funkcji i ich zastosowania 5 Całki nieoznaczone 8 6 Zastosowania geometryczne całek 0 7 Pochodne
Zadania do samodzielnego rozwiązania zestaw 11
Zadania do samodzielnego rozwiązania zestaw 11 1 Podać definicję pochodnej funkcji w punkcie, a następnie korzystając z tej definicji obliczyć ( ) π (a) f, jeśli f(x) = cos x, (e) f (0), jeśli f(x) = 4
Równania różniczkowe liniowe wyższych rzędów o stałych współcz
Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym
Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1
Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1 Zadania rozwiązywane na wykładzie Zadania rozwiązywane na ćwiczeniach Przy rozwiązywaniu zadań najistotniejsze jest wykazanie się rozumieniem
MATEMATYKA II. znaleźć f(g(x)) i g(f(x)).
MATEMATYKA II PAWEŁ ZAPAŁOWSKI Równania i nierówności Zadanie Wyznaczyć dziedziny i wzory dla f f, f g, g f, g g, gdzie () f() =, g() =, () f() = 3 + 4, g() = Zadanie Dla f() = 3 5 i g() = 8 znaleźć f(g()),
ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:
ZADANIA Z MATEMATYKI Zestaw. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y +x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz
Wykład 3 Równania rózniczkowe cd
7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy
ANALIZA MATEMATYCZNA I
ANALIZA MATEMATYCZNA I Lista zadań dla kursów mających ćwiczenia co dwa tygodnie. Zadania po symbolu potrójne karo omawiane są na ćwiczeniach rzadko, ale warto też poświęcić im nieco uwagi. Lista nie zawiera
Analiza matematyczna dla informatyków 3 Zajęcia 14
Analiza matematyczna dla informatyków 3 Zajęcia 14 Metoda rozwiązywania (Jednorodne równanie różniczkowe liniowe rzędu n o stałych współczynnikach). gdzie a 0,..., a n 1 C. Wielomian charakterystyczny:
x 2 5x + 6 x 2 x 6 = 1 3, x 0sin 2x = 2, 9 + 2x 5 lim = 24 5, = e 4, (i) lim x 1 x 1 ( ), (f) lim (nie), (c) h(x) =
Zadanie.. Obliczyć granice 2 + 2 (a) lim (d) lim 0 2 + 2 + 25 5 = 5,. Granica i ciągłość funkcji odpowiedzi = 4, (b) lim 2 5 + 6 2 6 =, 4 (e) lim 0sin 2 = 2, cos (g) lim 0 2 =, (h) lim 2 8 Zadanie.2. Obliczyć
Równania różniczkowe zwyczajne zadania z odpowiedziami
Równania różniczkowe zwyczajne zadania z odpowiedziami Maciej Burnecki opracowanie Spis treści I Równania pierwszego rzędu 2 o rozdzielonych zmiennych 2 jednorodne 4 liniowe 4 Bernoulliego 5 Równania sprowadzalne
Równania różniczkowe cząstkowe
Równania różniczkowe cząstkowe Definicja: Równaniem różniczkowm cząstkowm nazwam takie równanie różniczkowe w którm wstępuje co najmniej jedna pochodna cząstkowa niewiadomej funkcji dwóch lub więcej zmiennch
KURS FUNKCJE WIELU ZMIENNYCH
KURS FUNKCJE WIELU ZMIENNYCH Lekcja 1 Pochodne cząstkowe ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tlko jedna jest prawdziwa). Ptanie 1 Funkcja dwóch zmiennch a)
Spis treści. Spis treści 2
Spis treści Spis treści Algebra. Liczby zespolone.................................................. Liczby zespolone - odpowiedzi.......................................... 5. Macierze......................................................
Pochodna funkcji jednej zmiennej
Pochodna funkcji jednej zmiennej Def:(pochodnej funkcji w punkcie) Jeśli funkcja f : D R, D R określona jest w pewnym otoczeniu punktu 0 D i istnieje skończona granica ilorazu różniczkowego: f f( ( 0 )
LISTA 0 (materiał do samodzielnego powtórzenia). Działania w zbiorze liczb rzeczywistych
LISTA 0 materiał do samodzielnego powtórzenia). Działania w zbiorze liczb rzeczywistych W zadaniach 0. 0.5 n N, natomiast a, b,, y są liczbami rzeczywistymi, dla których występujące w zadaniach wyrażenia
Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria
Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć
Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 2. CAŁKA PODWÓJNA Całka podwójna po prostokącie
Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem..1. Całka podwójna po prostokącie.. CAŁKA POWÓJNA.. Całka podwójna po obszarach normalnych..3. Całka podwójna po obszarach regularnych..4.
PRÓBNA MATURA. ZADANIE 1 (1 PKT) Wskaż liczbę, której 4% jest równe 8. A) 200 B) 100 C) 3,2 D) 32
PRÓBNA MATURA ZADANIE ( PKT) Wskaż liczbę, której % jest równe 8. A) B) C), D) ZADANIE ( PKT) Odległość liczb od liczb -8 na osi liczbowej jest równa A) 8 B) + 8 C) + 8 D) 8 ZADANIE ( PKT) Wskaż rsunek,
Analiza matematyczna 2 Listazadań
Analiza maemayczna Lisazadań Opracowanie: dr Marian Gewer, doc. Zbigniew Skoczylas Lisa. Korzysając z definicji zbadać zbieżność całek niewłaściwych pierwszego rodzaju: 3 +) ; b) 4 ; e) 3 3+5 ; c) π )
Równania różniczkowe zwyczajne A
Lisa pierwsza Równania różniczkowe zwczajne A Lis zadań..zpewnejsubsancjiradioakwnejpoupłwie4lazosało20gram,apoupłwiedalszch4lalko 4 gram. Wznaczć masę subsancji w chwili począkowej. b) Polon-20 ma okres
ANALIZA MATEMATYCZNA 2
ANALIZA MATEMATYCZNA Opracowanie Marian Gewert Zbigniew Skoczylas ANALIZA MATEMATYCZNA Kolokwia i egzaminy Wydanie dziewiąte powiększone GiS Oficyna Wydawnicza GiS Wrocław Projekt okładki: IMPRESJA Studio
Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć
Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA. Nazwa w języku angielskim Mathematical Analysis. Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy):
Równania różniczkowe zwyczajne MAP 3014, 3062
Równania różniczkowe zwczajne MAP 34, 36 Opracowanie: dr Marian Gewer, dr Zbigniew Skoczlas Lisazadań.Zpewnejsubsancjiradioakwnejpoupłwie4lazosałogram,apoupłwiedalszch4lalko 4 gram. Wznaczć masę subsancji
Analiza Matematyczna I
Analiza Matematyczna I Informatyka, WPPT, Politechnika Wrocławska Wprowadzenie (2 godziny ćwiczeń) Pokaż, że dla dowolnych liczb rzeczywistych a i b zachodzą nierówności:. a b = a b, 2. a + b a + b, 3.
Rachunek różniczkowy funkcji jednej zmiennej. 1 Obliczanie pochodnej i jej interpretacja geometryczna
Wydział Matematyki Stosowanej Zestaw zadań nr 4 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 4 grudnia 08r. Rachunek różniczkowy funkcji jednej zmiennej Obliczanie pochodnej
Lista 3 CAŁKI KRZYWOLINIOWE I POWIERZCHNIOWE. K cykloida c x y ds K x y x r t t t y r t t t t ) ( 2 ) + ( 2 ) = {(, ) : 1 1 = }
Lista CAŁI RZYWOLINIOWE I POWIERZCHNIOWE Zad 1. Obliczć całki krzwoliniowe nieskierowane po wskazanch krzwch: ds a) = {(, ) : 0 1 = } + + ds = {(, ) : = r( t sin t), = r(1 cos t), 0 t } r > 0 ustalone
L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 4 ZADANIA - ZESTAW 4
ZADANIA - ZESTAW 4 Zadanie 4. 0-0,4 c 0 0, 0, Wznacz c. Wznacz rozkład brzegowe. Cz, są niezależne? (odp. c = 0,3 Zadanie 4.- 0-0,4 0,3 0 0, 0, Wznaczć macierz kowariancji i korelacji. Cz, są skorelowane?
3. Operacje na zbiorach (1) Sprowadź poniższe zdania dotyczące zbiorów do postaci zdań logicznych i sprawdź ich prawdziwość.
1. Zapis matematyczny i elementy logiki matematycznej (1) Zapisz, używając symboliki matematycznej zdania: (a) Liczby x i y mają wspólny dzielnik większy od 2. (b) Jeśli x i y różnią się o 1, to nie mają
3.2. Podstawowe własności funkcji. Funkcje cyklometryczne, hiperboliczne. Definicję funkcji f o dziedzinie X i przeciwdziedzinie Y mamy w 3A5.
WYKŁAD 7 3 Podstawowe własności unkcji Funkcje cklometrczne, hiperboliczne Deinicję unkcji o dziedzinie X i przeciwdziedzinie Y mam w 3A5 3A37 (Uwaga: dziedzina naturalna) Często się zdarza, że unkcja
Opis przedmiotu. Karta przedmiotu - Matematyka II Katalog ECTS Politechniki Warszawskiej
Kod przedmiotu TR.NIK203 Nazwa przedmiotu Matematyka II Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Niestacjonarne
postaci kanonicznej i iloczynowej trójmiany: y = 0,5x 2. Podaj określenie ciągu arytmetycznego. Dany jest ciąg a n
Propozycje pytań na maturę ustną ( profil podstawowy ) Elżbieta Kujawińska ZESTAW Podaj wzory na postać kanoniczną i iloczynową funkcji kwadratowej Sprowadź do postaci kanonicznej i iloczynowej trójmiany:
Indukcja matematyczna
Indukcja matematyczna Zadanie. Zapisać, używając symboli i, następujące wyrażenia (a) n!; (b) sin() + sin() sin() +... + sin() sin()... sin(n); (c) ( + )( + /)( + / + /)... ( + / + / +... + /R). Zadanie.
Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.
Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3
ANALIZA MATEMATYCZNA 1 zadania z odpowiedziami
ANALIZA MATEMATYCZNA zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Elementy logiki, zbiory, funkcje Funkcje trygonometryczne 3 3 Ciągi 3 4 Granice funkcji, ciągłość 4 5 Rachunek różniczkowy
ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA. oprac. I. Gorgol
ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA oprac. I. Gorgol Spis treści. Elementy logiki. Elementy rachunku zbiorów 4. Funkcje zdaniowe i kwantyfikatory. 4 4. Funkcja złożona i odwrotna 6 5. Granica ciągu liczbowego
Równania różniczkowe cząstkowe
Równania różniczkowe cząstkowe Definicja Równaniem różniczkowm cząstkowm nazwam takie równanie różniczkowe w którm wstępuje co najmniej jedna pochodna cząstkowa niewiadomej funkcji dwóch lub więcej zmiennch
Opis przedmiotu: Matematyka II
24.09.2013 Karta - Matematyka II Opis : Matematyka II Kod Nazwa Wersja TR.NIK203 Matematyka II 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów
Badanie funkcji. Zad. 1: 2 3 Funkcja f jest określona wzorem f( x) = +
Badanie funkcji Zad : Funkcja f jest określona wzorem f( ) = + a) RozwiąŜ równanie f() = 5 b) Znajdź przedziały monotoniczności funkcji f c) Oblicz największą i najmniejszą wartość funkcji f w przedziale
WYDZIAŁ ***** KARTA PRZEDMIOTU
9815Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA.1 A Nazwa w języku angielskim Mathematical Analysis.1 A Kierunek studiów (jeśli dotyczy): Specjalność (jeśli
Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)
Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),
RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE zadania z odpowiedziami
RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE zadania z odpowiedziami Maciej Burnecki opracowanie strona główna Spis treści I Równania pierwszego rzędu 2 o rozdzielonych zmiennych 2 jednorodne 3 liniowe 3 Bernoulliego
ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji:
ZADANIA Z MATEMATYKI Zestaw 1 1. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y 1+x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz
Spis treści 1. Macierze, wyznaczniki, równania liniowe 2 2. Geometria analityczna 7 3. Przestrzenie liniowe Granice, pochodne funkcji i ich
Spis treści Macierze wyznaczniki równania liniowe Geometria analityczna 7 Przestrzenie liniowe 0 4 Granice pochodne funkcji i ich zastosowania 5 Liczby zespolone 8 6 Wielomiany 7 Całki nieoznaczone 8 Zastosowania
Treści programowe. Matematyka 1. Efekty kształcenia. Literatura. Warunki zaliczenia. Ogólne własności funkcji. Definicja 1. Funkcje elementarne.
Treści programowe Matematyka 1 Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne
Wykład Ćwiczenia Laboratorium Projekt Seminarium 45 30
Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA. A Nazwa w języku angielskim Mathematical Analysis. A Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy):
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1 Sprawdź, czy arkusz egzaminacyjny zawiera 15
WSTĘP DO ANALIZY I ALGEBRY, MAT1460
WSTĘP DO ANALIZY I ALGEBRY, MAT460 Listy zadań Literatura polecana. M.Gewert, Z.Skoczylas Wstęp do analizy i algebry. Teoria,przykłady,zadania.,Oficyna Wydawnicza GiS, Wrocław 04.. D.Zakrzewska, M.Zakrzewski,
Matematyki i Nauk Informacyjnych, Zakład Procesów Stochastycznych i Matematyki Finansowej B. Ogólna charakterystyka przedmiotu
Kod przedmiotu TR.SIK205 Nazwa przedmiotu Matematyka II Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Stacjonarne
WYDZIAŁ ***** KARTA PRZEDMIOTU
Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA Nazwa w języku angielskim Mathematical Analysis Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy):
1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.
10 1 Wykazać, że liczba 008 008 10 + + jest większa od Nie używając kalkulatora, porównać liczby a = log 5 log 0 + log oraz b = 6 5 Rozwiązać równanie x + 4y + x y + 1 = 4xy 4 W prostokątnym układzie współrzędnych
12. FUNKCJE WIELU ZMIENNYCH. z = x + y jest R 2, natomiast jej
1. FUNKCJE WIELU ZMIENNYCH 1.1. FUNKCJE DWÓCH ZMIENNYCH Funkcją dwóch zmiennch określoną w zbiorze D R nazwam przporządkowanie każdej parze liczb () D dokładnie jednej liczb rzeczwistej z. Piszem prz tm
Zadania z analizy matematycznej - sem. II Całki nieoznaczone
Zadania z analizy matematycznej - sem. II Całki nieoznaczone Definicja 1 (funkcja pierwotna i całka nieoznaczona). Niech f : I R. Mówimy, że F : I R jest funkcją pierwotną funkcji f, jeśli F jest różniczkowalna