Badanie oddziaływania białko-ligand metodą ITC na przykładzie białka CRP.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Badanie oddziaływania białko-ligand metodą ITC na przykładzie białka CRP."

Transkrypt

1 Badaie oddziaływaia białko-ligad metodą ITC a przykładzie białka CRP. Wstęp. Pomiary kalorymetrycze są powszechie wykorzystywae do pozyskiwaia iformacji o termodyamiczych właściwościach makrocząsteczek. Techiki te opierają się a precyzyjym pomiarze ciepła towarzyszącego przemiaom, które są wywołae ajczęściej przez zmiay temperatury, bądź postęp reakcji. Jedą z główych techik jest izotermicze miareczkowaie kalorymetrycze (ag. Isothermal Titratio Calorimetry, ITC), będące doskoałym arzędziem służącym do badaia oddziaływań międzycząsteczkowych. Jako jedya techika, umożliwia uzyskaie pełego opisu termodyamiczego badaego procesu w pojedyczym eksperymecie. Poprawie zaprojektowae doświadczeie dostarcza iformacji o stechiometrii wiązaia (), stałej rówowagi (K) a więc i etalpii swobodej reakcji (G), a także daje możliwość wyzaczeie molowej etalpii (H) i etropii wiązaia (S). Dodatkowo wykoując pomiary w różych temperaturach uzyskać moża wartość zmiay pojemości cieplej towarzyszącej procesowi wiązaia ligada (Cp). ITC posiada kilka ważych zalet w porówaiu z iymi techikami. Przede wszystkim sygał cieply jest uiwersalą własością prawie wszystkich reakcji. Stąd możliwość zastosowaia tej techiki do badaia większości reakcji. Istota jest wspomiaa już możliwość pozaia wielu wielkości w jedym eksperymecie. Próbka ie ulega ziszczeiu w trakcie pomiaru, a substraty reakcji ie są w żade sposób modyfikowae. Zasadicze wady metody, które jeszcze kilka lat temu poważie ograiczały jej stosowaie w biochemii, czyli wysoka materiałochłoość i iska czułość, obecie ie odgrywają takiej roli. Najowsze aparaty pracują przy stężeiach białek rzędu ułamka mikromola, co umożliwia badaie układów o szerokim zakresie stałej wiązaia ( M -1 ). Dla siliejszych oddziaływań bezpośredio wyzaczyć moża jedyie stechiometrię wiązaia i stadardową etalpię reakcji, atomiast stała rówowagi wiązaia wyzaczaa jest w sposób pośredi. Jedak w tym przypadku koiecze jest, aby jeda z badaych cząsteczek dodatkowo tworzyła kompleks z iym substratem, dla którego możliwe jest wyzaczeie stałej rówowagi. Wykoując eksperymet miareczkowaia kalorymetryczego, gdzie jako titrat stosoway jest substrat o większym powiowactwie, a titratem jest kompleks o iższej stałej rówowagi dochodzi do wypieraia słabiej związaego substratu, przez siliej wiązay. Dzięki zajomości stałej rówowagi dla słabiej oddziałującego kompleksu oraz molowej etalpii wiązaia siliej oddziałującego ligada, eksperymet pozwala określić stałe wiązaia dochodzące do 10 1 M -1. Techika ITC często stosowaa jest przy pomiarach oddziaływań: białko ligad, białko białko, białko DNA, czy też białko lipid. Określeie wszystkich parametrów termodyamiczych charakteryzujących oddziaływaie pozwala a głęboki wgląd w baday proces, umożliwiając określeie rodzajów oddziaływań prowadzących do utworzeia kompleksu. Jeśli substraty oddziałują ze sobą w bardziej skomplikoway sposób, to zaczy, gdy stechiometria róża jest od jedości, określoy zostaje schemat oddziaływaia i wyzaczyć moża parametry termodyamicze opisując poszczególe klasy miejsc wiążących. Pozwala to a zobrazowaie iterakcji pomiędzy miejscami wiążącymi, zidetyfikowaie kooperatywości, oraz określeia jej charakteru. Zazaczyć ależy, że wyzaczoa wartość H obrazuje ie tylko ciepło tworzeia wiązań pomiędzy oddziałującymi cząsteczkami, ale także ie rówowagowe procesy takie jak zmiay koformacyje w obrębie cząsteczek, zmiay w ich oddziaływaiu z rozpuszczalikiem, czy też joizacje grup polarych składików reakcji, lub buforu. Zmiaa etalpii swobodej mierzoych procesów złożoa jest z dwóch człoów: etalpowego i etropowego. Techiką ITC bezpośredio obserwujemy pierwszy z ich. Tylko w przypadku reakcji o dużym udziale zmiay etropii i iewielkim etalpii, ie moża zaobserwować przebiegu procesu. Zajomość udziału obu człoów w zmiaach etalpii swobodej pozwala wioskować o molekularym mechaizmie wiązaia reagetów: ilości 1

2 tworzoych i rozrywaych wiązań, zmiaach stopi swobody łańcuchów polipeptydowych i grup boczych, zmiaach uwodieia i joizacji czy ekspozycji powierzchi makrocząsteczek dostępej dla wody Budowa i zasada działaia kalorymetru. ITC opiera się a pomiarze wymieioego w toku reakcji ciepła, dla różych wartości stężeń reagetów. W warukach izotermiczo-izobaryczych, w których to przeprowadzay jest eksperymet, ciepło reakcji (Q) utożsamiae jest z etalpią reakcji (H). Pomiar realizoway jest poprzez dodawaie rówych objętości jedego z reagetów (titrata) do komory pomiarowej, w której zajduje się drugi z reagetów (aalit). Ich stężeia dobrae są w te sposób, aby umożliwić uzyskaie wysokiego stopia wysyceia miejsc wiążących. Podczas pierwszych dodatków, gdy występuje zaczy admiar aalitu, praktyczie wszystkie Rys. 1 Zależość kształtu krzywej miareczkowaia od wartości parametru c. cząsteczki titrata utworzą kompleks z cząsteczkami aalitu. Jedakże występująca rówowaga termodyamicza powodować będzie, że podczas kolejych dodatków liczba owo powstających kompleksów będzie sukcesywie spadać. Wartości wymieiaego ciepła pozwalają a pomiar molowej etalpii reakcji. Zmiaa wielkości wymieiaego ciepła dla kolejych dodatków titrata pozwala a wyzaczeie stałej rówowagi reakcji, atomiast stosuki molowe reagetów, dla których widoczy jest proces wysycaia miejsc wiążących iformują as o stechiometrii reakcji. Precyzyje wyzaczeie stałej rówowagi wymaga dobrego zobrazowaia procesu stopiowego wysycaia miejsc wiążących. Uważa się, że sukcesywy spadek wartości mierzoego ciepła, obrazujący te proces, powiie obejmować, co ajmiej kilka kolejych dodatków titrata. Sytuacja taka ma miejsce, jeśli wartość iloczyu stężeia miejsc wiążących i stałej rówowagi, zwaa parametrem c mieści się w graicach od 1 do 1000, jedak estymowaa wartość stałej rówowago obarczoa jest ajmiejszym błędem, jeśli c będzie w przedziale od 10 do 100 (patrz rysuek 1). Zasadiczą częścią kalorymetru są dwie komory: pomiarowa i referecyja (o pojemości ok. 1,4 ml). Obie umieszczoe są w metalowych płaszczach zapewiających termostabilość z dokładością do kilku dziesięciotysięczych części kelwia. Pomiędzy komorami a płaszczem umieszczoe są termostosy, mierzące różicę temperatur, która jest astępie przeliczaa a moc, z jaką jest grzaa lub chłodzoa próbka. Roztwór ligada jest podaway przez strzykawkę, której tłokiem kieruje precyzyjy silik krokowy. Igła jest jedocześie mieszadłem. Komorę referecyją wypełia się cieczą o zbliżoej pojemości cieplej do badaej próbki. W przypadku eksperymetów w buforach wodych stosuje się wodę. Wszystkie roztwory ależy przed doświadczeiem staraie odgazować, aby uikąć błędów wywołaych pojawieiem się pęcherzyków gazu. Pomiar jest realizoway poprzez koleje, mikrolitrowe dodatki roztworu ligada (L) do próbki z makromolekułą (M) z kilkumiutowymi odstępami. Sygałem kalorymetru jest moc w fukcji czasu. (rys. ).

3 Rys.. Przykładowy rezultat eksperymetu ITC, zależość mocy od czasu. Dla uzyskaia wysokiej precyzji w pomiarach ciepła, podczas wykoywaia eksperymetu komora referecyja jest ciągle podgrzewaa strumieiem ciepła rzędu mikrowatów. Powstająca w wyiku tej operacji różica temperatur geeruje liię bazową a wykresie. Wydzielae w wyiku reakcji ciepło wpływa a tę różicę, a jej zależość od czasu jest parametrem rejestrowaym podczas eksperymetu. Całkując krzywą względem czasu dla poszczególych dodatków otrzymuje się wykres zależości efektów cieplych (Q) od stosuku molowego stężeń reagetów ([T]/[A]). Rys. 3. Przykładowy rezultat eksperymetu ITC, zależość ciepła od stosuku molowego reagetów - etalpogram. Budowa aparatu (rys. 4) powoduje, że rejestrowae ciepło ie jest explicite ciepłem reakcji. Wyika to m.i. ze zmiay całkowitej objętości mieszaiy reakcyjej podczas miareczkowaia i powoduje, że koiecze jest wprowadzeie szeregu poprawek. Komora pomiarowa, skostruowaa jest w te sposób, że rejestrowae przez aparat wymieiae ciepło (ΔQ(i)), pochodzi wyłączie z określoej, stałej objętości (V), która przez cały czas trwaia eksperymetu wypełioa jest całkowicie cieczą. 3 Rys. 4 Budowa kalorymetru

4 Dlatego też zmiaa objętości mieszaiy reakcyjej wywołaa dodatkiem titrata (dv) spowoduje wydostaie się jej admiaru z części komory pomiarowej, dla której rejestrowae jest ciepło. Poieważ ciepło to rejestrowae jest także w czasie przeprowadzaia iiekcji, gdy dokouje się zmiaa stężeia reagetów, dodatkowo zarejestrowaa jest także część ciepła reakcji pochodząca od wypływającej cieczy. Zgodie z ogólie przyjętą metodą postępowaia założoe zostało, że kietyka reakcji oraz mieszaie reagetów są a tyle szybkie, że zarejestrowae jest dodatkowo 50 % efektu cieplego pochodzącego od wypływającej objętości mieszaiy reakcyjej. Dlatego też użyto stadardowej poprawki związaej z tym efektem: dvi Q( i) Q( i 1) Q( i) Q( i) ( 1) Q i V gdzie: ΔQ(i) to ciepło zarejestrowae podczas i-tego dodatku, V to objętość czyej części komory pomiarowej, dvi to dodaa objętość titrata, a Q(i-1) i Q(i) to skumulowae ciepła wymieioe podczas kolejych dodatków ligada począwszy od pierwszego odpowiedio do i-1-go i i-tego. Miareczkowaie w sposób oczywisty wpływa także a stężeie aalitu, powodując jego rozcieńczeie. Dodawaie ie zaiedbywalie małych objętości, powoduje, że stężeie to zmieia się także w trakcie iiekcji i jest oo rówe stężeiu aktualie wypływającemu z objętości czyej komory pomiarowej. W przypadku szybkiego mieszaia, średie stężeie aalitu, jest średią ze stężeń występujących a 0 C T początku ( ) i końcu iiekcji (CT). Dlatego też, korzystając z prawa zachowaia mas otrzymujemy poprawkę a końcowe stężeie aalitu (CT) po dodatku o objętości dv: dv V 0 C T CT dv V Idetyczy efekt zmusza do zastosowaia poprawki a stężeie titrata, która to wyprowadzoa została dzięki aalogiczemu rozumowaiu. 0 dv Ct Ct 1 V gdzie: Ct to stężeie titrata po dokoaiu iiekcji, V i dv to odpowiedio objętość czyej części komory pomiarowej i objętość dodatku. Ct 0 jest atomiast hipotetyczym stężeiem titrata, w przypadku gdyby doday titrat w całości pozostał w objętości V. Podczas miareczkowaia istoty wkład do rejestrowaego ciepła woszą także procesy rozcieńczaia składików reakcji (qdil), w szczególości ciepło rozcieńczaia titrata, a także efekty ciele ewetualych, dodatkowych procesów towarzyszących prowadzoemu eksperymetowi, p. ciepło protoacji/deprotoacji buforu. Wówczas zmierzoa etalpia Hobs będzie rówa:, gdzie ozacza wypadkową liczbę moli wymieioych protoów, Hbuf etalpię joizacji zastosowaego buforu, a H0 etalpię procesu mierzoą w obecości buforu o zerowej etalpii joizacji. Dlatego też aalizę wyików powio przeprowadzać się po uwzględieiu tych efektów. Rozważając ajprostszy przypadek, gdy aalit (A) tworzy z titratem (B) bimolekulary kompleks (AB) oddziaływaie opisać moża schematem: A B AB W staie rówowagi termodyamiczej, wartości stężeń poszczególych składików reakcji spełiają rówaie: [ A K [ A] [ (1 ) [ 4

5 Gdzie: K to stała rówowagi reakcji, [A], [ i [A to odpowiedio stężeia titrata, aalitu i powstałego kompleksu, atomiast jest frakcją miejsc wiążących aalitu obsadzoych przez titrat. W tym przypadku ciepło wydzieloe podczas tworzeia kompleksu, gdy układ dochodzi do stau rówowagi, zależeć będzie od molowej etalpii wiązaia (H) i od ilości moli utworzoego kompleksu, a to z kolei zależeć będzie od stężeia substratu zajdującego się w komorze pomiarowej ([A]), stopia wysyceia jego miejsc wiążących (), oraz objętości komory pomiarowej (V) zgodie z zależością: Q [ Atot ]V H W przypadku białek często mamy do czyieia z większą ilością miejsc wiążących ligad dla jedej makromolekuły. Do aalizy tych sytuacji służą dwa koleje modele. Pierwszy z ich wyróżia dwie klasy miejsc wiążących, iezależych od siebie. Używając symboliki aalogiczej dla poprzediego modelu, możemy go przedstawić w formie dwóch rówań: 1 K1 i K. ( 1 1) [ ( 1 ) [ Wówczas ilość wydzieloego ciepła w każdym dodatku będzie opisaa rówością: Q [ Atot ] V ( 11H 1 H ). Model sekwecyjego wiązaia ligadów zakłada astępcze reakcje wiązaia ligadów: K1 K K3 K A B AB AB AB W tym modelu brak rozróżieia, które miejsca są wysycae, iformacja dotyczy tylko całkowitej liczby miejsc wysycoych. W efekcie rozróżia się makroskopowe (K) i mikroskopowe stałe wiązaia (k). Obserwowae stałe wiązaia zdefiiowae podaymi powyżej wzorami to makroskopowe stałe. Stałe mikroskopowe opisują rówowagę, która byłby mierzoa dla pojedyczego miejsca wiązaia. Relację pomiędzy imi określa rówość: i 1 K i k i, i gdzie całkowita liczba miejsc wiążących, i koleje obsadzoe miejsce. Opisae rozróżieie stałych rówowagi jest rezultatem czyików statystyczych. Wiązae jako pierwsze cząsteczki ligada mogą obsadzać większą liczbę miejsc wiążących iż koleje. W przypadku białek często związaie pierwszej cząsteczki ligada wpływa a powiowactwo wiązaia kolejej, co określamy kooperatywością. Kooperatywość dodatia występuje, gdy kolejy ligad wiąże się z wyższą stałą wiązaia, atomiast w przeciwym wypadku mówimy o kooperatywości ujemej. Ilościowo kooperatywość określamy parametrem α, będącym stosukiem dwóch kolejych stałych mikroskopowych. Ilość ciepła wydzieloego podczas pojedyczego dodatku w tym modelu określa rówaie: Q A ] V( F H F [ H H ] F [ H H ]), gdzie F [ tot K K K K [ K1[ K1K [ K1K K [ Podczas miareczkowaia istoty wkład do rejestrowaego ciepła woszą także procesy rozcieńczaia składików reakcji, w szczególości ciepło rozcieńczaia titrata. Dlatego też aalizę wyików przeprowadza się po uwzględieiu tego efektu. Wykorzystaie rówań () i (3) do opisu eksperymetalej zależości wymieioego ciepła od stężeń reagetów, pozwala a obliczeie stałej rówowagi reakcji i molowej etalpii reakcji. Natomiast molowa etropia reakcji wyliczoa zostaje z podstawowej zależości termodyamiczej opisującą etalpię swobodą reakcji: G H T S RT l K Aby atomiast uzyskać wartość zmiay pojemości cieplej wykoujemy kilka doświadczeń w różych temperaturach korzystając z zależości: 5

6 C p ( H ). T Cel ćwiczeia. Celem ćwiczeia jest aaliza oddziaływaia camp z białkiem bakteryjym CRP. Wykoaie. 1. Zaplaować parametry eksperymetu (stężeia białka i ligada).. Sporządzić próbki o stężeiach określoych podczas plaowaia eksperymetu w ilości: ml dla białka i 0,5 ml dla ligadu. 3. Wykoać eksperymet miareczkowaia CRP przez camp z zużyciem mikrokalorymetru VP-ITC. 4. Dokoać aalizy otrzymaego rezultatu z wykorzystaiem oprogramowaia firmy Microcal. Sprawozdaie. 1. Opisać szczegółowo wykoaie ćwiczeia.. Na podstawie uzyskaych parametrów aalizy poszczególych modeli wybrać właściwy, uzasadiając wybór. 3. W oparciu o uzyskae wyiki przedyskutować parametry termodyamicze badaego układu. Zagadieia do przygotowaia: Podstawy termodyamiki. Fukcje termodyamicze. Rówowaga reakcji. Etalpia swoboda i jej związek z rówowagą reakcji. Etalpia va`t Hoffa. Rodzaje wiązań iekowalecyjych. Eergetyka wiązań kowalecyjych i iekowalecyjych. Termodyamika oddziaływaia białko-ligad (udział etalpii, etropii). 6

Badanie oddziaływania białko-ligand metodą ITC.

Badanie oddziaływania białko-ligand metodą ITC. Badaie oddziaływaia białko-ligad metodą ITC. Wstęp. Pomiary kalorymetrycze są powszechie wykorzystywae do pozyskiwaia iformacji o termodyamiczych właściwościach makrocząsteczek. Techiki te opierają się

Bardziej szczegółowo

Rozpuszczalność gazów w cieczach. Prawo Henry ego

Rozpuszczalność gazów w cieczach. Prawo Henry ego Rozpuszczalość gazów w cieczach. rawo ery ego Empiryczie stwierdzoo, że, w k, czyli ilość gazu rozpuszczoego w cieczy jest w warukach izotermiczych proporcjoala do jego ciśieia. V Jeśli gaz jest gazem

Bardziej szczegółowo

Równowaga reakcji chemicznej

Równowaga reakcji chemicznej Rówowaga reakcji chemiczej Sta i stała rówowagi reakcji chemiczej (K) Reakcje dysocjacji Stopień dysocjacji Prawo rozcieńczeń Ostwalda utodysocjacja wody p roztworów p roztworów. p roztworów mocych elektrolitów

Bardziej szczegółowo

Ćwiczenie nr 14. Porównanie doświadczalnego rozkładu liczby zliczeń w zadanym przedziale czasu z rozkładem Poissona

Ćwiczenie nr 14. Porównanie doświadczalnego rozkładu liczby zliczeń w zadanym przedziale czasu z rozkładem Poissona Ćwiczeie r 4 Porówaie doświadczalego rozkładu liczby zliczeń w zadaym przedziale czasu z rozkładem Poissoa Studeta obowiązuje zajomość: Podstawowych zagadień z rachuku prawdopodobieństwa, Zajomość rozkładów

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia

Bardziej szczegółowo

Numeryczny opis zjawiska zaniku

Numeryczny opis zjawiska zaniku FOTON 8, iosa 05 7 Numeryczy opis zjawiska zaiku Jerzy Giter ydział Fizyki U Postawieie problemu wielu zagadieiach z różych działów fizyki spotykamy się z astępującym problemem: zmiay w czasie t pewej

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTUT EKSPLOATACJI MASZYN I TRANSPORTU ZAKŁAD STEROWANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆWICZENIE: E20 BADANIE UKŁADU

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW BADANIE ODKSZTAŁCEŃ SPRĘŻYNY ŚRUBOWEJ Opracował: Dr iż. Grzegorz

Bardziej szczegółowo

Miary położenia (tendencji centralnej) to tzw. miary przeciętne charakteryzujące średni lub typowy poziom wartości cechy.

Miary położenia (tendencji centralnej) to tzw. miary przeciętne charakteryzujące średni lub typowy poziom wartości cechy. MIARY POŁOŻENIA I ROZPROSZENIA WYNIKÓW SERII POMIAROWYCH Miary położeia (tedecji cetralej) to tzw. miary przecięte charakteryzujące średi lub typowy poziom wartości cechy. Średia arytmetycza: X i 1 X i,

Bardziej szczegółowo

Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny

Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny TEMATYKA: Regresja liiowa dla prostej i płaszczyzy Ćwiczeia r 5 DEFINICJE: Regresja: metoda statystycza pozwalająca a badaie związku pomiędzy wielkościami daych i przewidywaie a tej podstawie iezaych wartości

Bardziej szczegółowo

Chłodnictwo i Kriogenika - Ćwiczenia Lista 2

Chłodnictwo i Kriogenika - Ćwiczenia Lista 2 Chłodictwo i Kriogeika - Ćwiczeia Lista 2 dr hab. iż. Bartosz Zajączkowski bartosz.zajaczkowski@pwr.edu.pl Politechika Wrocławska Wydział Mechaiczo-Eergetyczy Katedra Termodyamiki, Teorii Maszy i Urządzeń

Bardziej szczegółowo

ZADANIA Z CHEMII Rozkład energii w stanie równowagi termicznej. Entropia (S) Kwantowanie energii

ZADANIA Z CHEMII Rozkład energii w stanie równowagi termicznej. Entropia (S) Kwantowanie energii ZADANIA Z CHEMII Rozkład eergii w staie rówowagi termiczej. Etropia (S) Kwatowaie eergii Eergia elemetów materii zmieia się skokowo, a ie w sposób ciągły. Elemety materii oddają lub pobieraja eergię tylko

Bardziej szczegółowo

Ćwiczenie nr 3. Bilans cieplny urządzenia energetycznego. Wyznaczenie sprawności cieplnej urządzenia kotłowego zasilanego gazem ziemnym

Ćwiczenie nr 3. Bilans cieplny urządzenia energetycznego. Wyznaczenie sprawności cieplnej urządzenia kotłowego zasilanego gazem ziemnym Termodyamika ćwiczeia laboratoryje Ćwiczeie r 3 Temat: Bilas cieply urządzeia eergetyczego. Wyzaczeie sprawości cieplej urządzeia kotłowego zasilaego gazem ziemym Miejsce ćwiczeń: Laboratorium Techologii

Bardziej szczegółowo

TRANZYSTORY POLOWE JFET I MOSFET

TRANZYSTORY POLOWE JFET I MOSFET POLTECHNKA RZEZOWKA Kaedra Podsaw Elekroiki srukcja Nr5 F 00/003 sem. lei TRANZYTORY POLOWE JFET MOFET Cel ćwiczeia: Pomiar podsawowych charakerysyk i wyzaczeie paramerów określających właściwości razysora

Bardziej szczegółowo

LABORATORIUM Z KATALIZY HOMOGENICZNEJ I HETEROGENICZNEJ POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY. Miejsce ćwiczenia: Zakład Chemii Fizycznej, sala 209/c

LABORATORIUM Z KATALIZY HOMOGENICZNEJ I HETEROGENICZNEJ POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY. Miejsce ćwiczenia: Zakład Chemii Fizycznej, sala 209/c POLITECHNI ŚLĄS WYDZIŁ CHEMICZNY TEDR FIZYOCHEMII I TECHNOLOGII POLIMERÓW TLITYCZNY ROZŁD NDTLENU WODORU Miejsce ćwiczeia: Zakład Chemii Fizyczej, sala 209/c LBORTORIUM Z TLIZY HOMOGENICZNEJ I HETEROGENICZNEJ

Bardziej szczegółowo

Analiza wyników symulacji i rzeczywistego pomiaru zmian napięcia ładowanego kondensatora

Analiza wyników symulacji i rzeczywistego pomiaru zmian napięcia ładowanego kondensatora Aaliza wyików symulacji i rzeczywistego pomiaru zmia apięcia ładowaego kodesatora Adrzej Skowroński Symulacja umożliwia am przeprowadzeie wirtualego eksperymetu. Nie kostruując jeszcze fizyczego urządzeia

Bardziej szczegółowo

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2. Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,

Bardziej szczegółowo

Niepewności pomiarowe

Niepewności pomiarowe Niepewości pomiarowe Obserwacja, doświadczeie, pomiar Obserwacja zjawisk fizyczych polega a badaiu ych zjawisk w warukach auralych oraz a aalizie czyików i waruków, od kórych zjawiska e zależą. Waruki

Bardziej szczegółowo

ANALIZA DANYCH DYSKRETNYCH

ANALIZA DANYCH DYSKRETNYCH ZJAZD ESTYMACJA Jest to metoda wioskowaia statystyczego. Umożliwia oa oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej estymatorem,

Bardziej szczegółowo

STATYSTYCZNA OCENA WYNIKÓW POMIARÓW.

STATYSTYCZNA OCENA WYNIKÓW POMIARÓW. Statytycza ocea wyików pomiaru STATYSTYCZNA OCENA WYNIKÓW POMIARÓW CEL ĆWICZENIA Celem ćwiczeia jet: uświadomieie tudetom, że każdy wyik pomiaru obarczoy jet błędem o ie zawze zaej przyczyie i wartości,

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi. Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe

Bardziej szczegółowo

Laboratorium Sensorów i Pomiarów Wielkości Nieelektrycznych. Ćwiczenie nr 1

Laboratorium Sensorów i Pomiarów Wielkości Nieelektrycznych. Ćwiczenie nr 1 1. Cel ćwiczeia: Laboratorium Sesorów i Pomiarów Wielkości Nieelektryczych Ćwiczeie r 1 Pomiary ciśieia Celem ćwiczeia jest zapozaie się z kostrukcją i działaiem czujików ciśieia. W trakcie zajęć laboratoryjych

Bardziej szczegółowo

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych (w zakresie materiału przedstawionego na wykładzie organizacyjnym)

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych (w zakresie materiału przedstawionego na wykładzie organizacyjnym) Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych (w zakresie materiału przedstawioego a wykładzie orgaizacyjym) Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych w zakresie materiału przedstawioego a wykładzie orgaizacyjym Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli doświadczeie,

Bardziej szczegółowo

KATEDRA ENERGOELEKTRONIKI I ELEKTROENERGETYKI

KATEDRA ENERGOELEKTRONIKI I ELEKTROENERGETYKI KATEDRA ENERGOELEKTRONIKI I ELEKTROENERGETYKI Grupa: 1. 2. 3. 4. 5. LABORATORIUM ELEKTROENERGETYKI Data: Ocea: ĆWICZENIE 3 BADANIE WYŁĄCZNIKÓW RÓŻNICOWOPRĄDOWYCH 3.1. Cel ćwiczeia Celem ćwiczeia jest:

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych oraz schematy oceniania zadań otwartych. Matematyka. Poziom podstawowy

Klucz odpowiedzi do zadań zamkniętych oraz schematy oceniania zadań otwartych. Matematyka. Poziom podstawowy Klucz odpowiedzi do zadań zamkiętych oraz schematy oceiaia zadań otwartych Matematyka CZERWIEC 0 Schemat oceiaia Klucz puktowaia zadań zamkiętych Nr zad Odp 5 6 8 9 0 5 6 8 9 0 5 6 B C C B C C A A B B

Bardziej szczegółowo

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO Agieszka Jakubowska ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO. Wstęp Skąplikowaie współczesego życia gospodarczego powoduje, iż do sterowaia procesem zarządzaia

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 1 i 2

STATYSTYKA OPISOWA WYKŁAD 1 i 2 STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest

Bardziej szczegółowo

LABORATORIUM METROLOGII

LABORATORIUM METROLOGII AKADEMIA MORSKA W SZCZECINIE Cetrum Iżyierii Ruchu Morskiego LABORATORIUM METROLOGII Ćwiczeie 5 Aaliza statystycza wyików pomiarów pozycji GNSS Szczeci, 010 Zespół wykoawczy: Dr iż. Paweł Zalewski Mgr

Bardziej szczegółowo

BADANIE PRĄDNIC TACHOMETRYCZNYCH

BADANIE PRĄDNIC TACHOMETRYCZNYCH Politechika Warszawska Istytut Maszy Elektryczych Laboratorium Maszy Elektryczych Malej Mocy BADANIE PRĄDNIC TACHOMETRYCZNYCH Warszawa 2003 1. STANOWISKO POMIAROWE. Badaia przeprowadza się a specjalym

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

CIĄGI LICZBOWE. Poziom podstawowy

CIĄGI LICZBOWE. Poziom podstawowy CIĄGI LICZBOWE Poziom podstawowy Zadaie ( pkt) + 0 Day jest ciąg o wyrazie ogólym a =, N+ + jest rówy? Wyzacz a a + Czy istieje wyraz tego ciągu, który Zadaie (6 pkt) Marek chce przekopać swój przydomowy

Bardziej szczegółowo

Badanie efektu Halla w półprzewodniku typu n

Badanie efektu Halla w półprzewodniku typu n Badaie efektu alla w ółrzewodiku tyu 35.. Zasada ćwiczeia W ćwiczeiu baday jest oór elektryczy i aięcie alla w rostoadłościeej róbce kryształu germau w fukcji atężeia rądu, ola magetyczego i temeratury.

Bardziej szczegółowo

INWESTYCJE MATERIALNE

INWESTYCJE MATERIALNE OCENA EFEKTYWNOŚCI INWESTYCJI INWESTCJE: proces wydatkowaia środków a aktywa, z których moża oczekiwać dochodów pieiężych w późiejszym okresie. Każde przedsiębiorstwo posiada pewą liczbę możliwych projektów

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych oraz schematy oceniania zadań otwartych. Matematyka. Poziom podstawowy

Klucz odpowiedzi do zadań zamkniętych oraz schematy oceniania zadań otwartych. Matematyka. Poziom podstawowy Klucz odpowiedzi do zadań zamkiętych oraz schematy oceiaia zadań otwartych Matematyka CZERWIEC 0 Klucz puktowaia zadań zamkiętych Nr zad Odp 5 6 8 9 0 5 6 8 9 0 5 6 B C C B C C A A B B C A B A A A B D

Bardziej szczegółowo

Opracowanie danych pomiarowych. dla studentów realizujących program Pracowni Fizycznej

Opracowanie danych pomiarowych. dla studentów realizujących program Pracowni Fizycznej Opracowaie daych pomiarowych dla studetów realizujących program Pracowi Fizyczej Pomiar Działaie mające a celu wyzaczeie wielkości mierzoej.. Do pomiarów stosuje się przyrządy pomiarowe proste lub złożoe.

Bardziej szczegółowo

INSTRUKCJA NR 06-2 POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ

INSTRUKCJA NR 06-2 POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ LABORATORIUM OCHRONY ŚRODOWISKA - SYSTEM ZARZĄDZANIA JAKOŚCIĄ - INSTRUKCJA NR 06- POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ 1. Cel istrukcji Celem istrukcji jest określeie metodyki postępowaia w celu

Bardziej szczegółowo

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz

Bardziej szczegółowo

Statystyka opisowa. () Statystyka opisowa 24 maja / 8

Statystyka opisowa. () Statystyka opisowa 24 maja / 8 Część I Statystyka opisowa () Statystyka opisowa 24 maja 2010 1 / 8 Niech x 1, x 2,..., x będą wyikami pomiarów, p. temperatury, ciśieia, poziomu rzeki, wielkości ploów itp. Przykład 1: wyiki pomiarów

Bardziej szczegółowo

Metody badania zbieżności/rozbieżności ciągów liczbowych

Metody badania zbieżności/rozbieżności ciągów liczbowych Metody badaia zbieżości/rozbieżości ciągów liczbowych Ryszard Rębowski 14 grudia 2017 1 Wstęp Kluczowe pytaie odoszące się do zagadieia badaia zachowaia się ciągu liczbowego sprowadza się do sposobu opisu

Bardziej szczegółowo

Metoda łączona. Wykład 7 Dwie niezależne próby. Standardowy błąd dla różnicy dwóch średnich. Metoda zwykła (niełączona) n2 2

Metoda łączona. Wykład 7 Dwie niezależne próby. Standardowy błąd dla różnicy dwóch średnich. Metoda zwykła (niełączona) n2 2 Wykład 7 Dwie iezależe próby Często porówujemy wartości pewej zmieej w dwóch populacjach. Przykłady: Grupa zabiegowa i kotrola Lekarstwo a placebo Pacjeci biorący dwa podobe lekarstwa Mężczyźi a kobiety

Bardziej szczegółowo

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej 3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17 Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo

Bardziej szczegółowo

Materiał ćwiczeniowy z matematyki Marzec 2012

Materiał ćwiczeniowy z matematyki Marzec 2012 Materiał ćwiczeiowy z matematyki Marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Marzec 0 Klucz puktowaia do zadań zamkiętych Nr zad 3 5 6 7 8 9 0

Bardziej szczegółowo

O liczbach naturalnych, których suma równa się iloczynowi

O liczbach naturalnych, których suma równa się iloczynowi O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy 12. Dowieść, że istieje ieskończeie wiele par liczb aturalych k < spełiających rówaie ( ) ( ) k. k k +1 Stosując wzór a wartość współczyika dwumiaowego otrzymujemy ( ) ( )!! oraz k k! ( k)! k +1 (k +1)!

Bardziej szczegółowo

Pomiar napięć i prądów stałych

Pomiar napięć i prądów stałych Ćwiczeie r Pomiar apięć i prądów stałych Cel ćwiczeia: zapozaie z wyzaczaiem parametrów statystyczych sygału oraz określaiem iepewości wyiku pomiaru apięcia i prądu stałego. 1. Pomiary wielokrote Pomiary

Bardziej szczegółowo

Modele tendencji rozwojowej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017

Modele tendencji rozwojowej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017 STATYSTYKA OPISOWA Dr Alia Gleska Istytut Matematyki WE PP 18 listopada 2017 1 Metoda aalitycza Metoda aalitycza przyjmujemy założeie, że zmiay zjawiska w czasie moża przedstawić jako fukcję zmieej czasowej

Bardziej szczegółowo

BADANIA DOCHODU I RYZYKA INWESTYCJI

BADANIA DOCHODU I RYZYKA INWESTYCJI StatSoft Polska, tel. () 484300, (60) 445, ifo@statsoft.pl, www.statsoft.pl BADANIA DOCHODU I RYZYKA INWESTYCJI ZA POMOCĄ ANALIZY ROZKŁADÓW Agieszka Pasztyła Akademia Ekoomicza w Krakowie, Katedra Statystyki;

Bardziej szczegółowo

Ć wiczenie 17 BADANIE SILNIKA TRÓJFAZOWEGO KLATKOWEGO ZASILANEGO Z PRZEMIENNIKA CZĘSTOTLIWOŚCI

Ć wiczenie 17 BADANIE SILNIKA TRÓJFAZOWEGO KLATKOWEGO ZASILANEGO Z PRZEMIENNIKA CZĘSTOTLIWOŚCI Ć wiczeie 7 BADANIE SILNIKA TRÓJFAZOWEGO KLATKOWEGO ZASILANEGO Z RZEIENNIKA CZĘSTOTLIWOŚCI Wiadomości ogóle Rozwój apędów elektryczych jest ściśle związay z rozwojem eergoelektroiki Współcześie a ogół

Bardziej szczegółowo

Ćwiczenie 2 ESTYMACJA STATYSTYCZNA

Ćwiczenie 2 ESTYMACJA STATYSTYCZNA Ćwiczeie ETYMACJA TATYTYCZNA Jest to metoda wioskowaia statystyczego. Umożliwia oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej

Bardziej szczegółowo

Przejście światła przez pryzmat i z

Przejście światła przez pryzmat i z I. Z pracowi fizyczej. Przejście światła przez pryzmat - cz. II 1. Przejście światła przez pryzmat. Kąt odchyleia. W paragrafie 8.10 trzeciego tomu e-podręczika opisao bieg światła moochromatyczego w pryzmacie.

Bardziej szczegółowo

Rentgenowska analiza fazowa jakościowa i ilościowa Wykład 9

Rentgenowska analiza fazowa jakościowa i ilościowa Wykład 9 Retgeowska aaliza fazowa jakościowa i ilościowa Wykład 9 1. Retgeowska aaliza fazowa jakościowa i ilościowa. 2. Metody aalizy fazowej ilościowej. 3. Dobór wzorca w aalizie ilościowej. 4. Przeprowadzeie

Bardziej szczegółowo

Struktura czasowa stóp procentowych (term structure of interest rates)

Struktura czasowa stóp procentowych (term structure of interest rates) Struktura czasowa stóp procetowych (term structure of iterest rates) Wysokość rykowych stóp procetowych Na ryku istieje wiele różorodych stóp procetowych. Poziom rykowej stopy procetowej (lub omialej stopy,

Bardziej szczegółowo

Politechnika Poznańska

Politechnika Poznańska Politechika Pozańska Temat: Laboratorium z termodyamiki Aaliza składu spali powstałych przy spalaiu paliw gazowych oraz pomiar ich prędkości przepływu za pomocą Dopplerowskiego Aemometru Laserowego (LDA)

Bardziej szczegółowo

ROZDZIAŁ 3. RÓWNOWAGA EKSTRAKCYJNA

ROZDZIAŁ 3. RÓWNOWAGA EKSTRAKCYJNA Stroa 1 z 35 ROZDZIAŁ 3. RÓWNOWAGA EKSTRAKCYJNA 3.1. Wstęp Ekstrakcja ciecz ciecz zwykle wykorzystywaa jest do rozdzieleia i selektywego wydzieleia substacji zarówo aiczych jak i ieaiczych. Substacje aicze

Bardziej szczegółowo

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D. Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)

Bardziej szczegółowo

LABORATORIUM INŻYNIERII CHEMICZNEJ, PROCESOWEJ I BIOPROCESOWEJ. Ćwiczenie nr 16

LABORATORIUM INŻYNIERII CHEMICZNEJ, PROCESOWEJ I BIOPROCESOWEJ. Ćwiczenie nr 16 KATEDRA INŻYNIERII CHEMICZNEJ I ROCESOWEJ INSTRUKCJE DO ĆWICZEŃ LABORATORYJNYCH LABORATORIUM INŻYNIERII CHEMICZNEJ, ROCESOWEJ I BIOROCESOWEJ Ćwiczeie r 16 Mieszaie Osoba odpowiedziala: Iwoa Hołowacz Gdańsk,

Bardziej szczegółowo

ROZPORZĄDZENIE MINISTRA NAUKI I SZKOLNICTWA WYŻSZEGO 1) z dnia 21 października 2011 r.

ROZPORZĄDZENIE MINISTRA NAUKI I SZKOLNICTWA WYŻSZEGO 1) z dnia 21 października 2011 r. Dzieik Ustaw Nr 251 14617 Poz. 1508 1508 ROZPORZĄDZENIE MINISTRA NAUKI I SZKOLNICTWA WYŻSZEGO 1) z dia 21 paździerika 2011 r. w sprawie sposobu podziału i trybu przekazywaia podmiotowej dotacji a dofiasowaie

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu. Rachuek prawdopodobieństwa i statystyka W12: Statystycza aaliza daych jakościowych Dr Aa ADRIAN Paw B5, pok 407 ada@agh.edu.pl Wprowadzeie Rozróżia się dwa typy daych jakościowych: Nomiale jeśli opisują

Bardziej szczegółowo

KADD Metoda najmniejszych kwadratów

KADD Metoda najmniejszych kwadratów Metoda ajmiejszych kwadratów Pomiary bezpośredie o rówej dokładości o różej dokładości średia ważoa Pomiary pośredie Zapis macierzowy Dopasowaie prostej Dopasowaie wielomiau dowolego stopia Dopasowaie

Bardziej szczegółowo

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim.

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim. Damia Doroba Ciągi. Graice, z których korzystamy. k. q.. 5. dla k > 0 dla k 0 0 dla k < 0 dla q > 0 dla q, ) dla q Nie istieje dla q ) e a, a > 0. Opis. Pierwsza z graic powia wydawać się oczywista. Jako

Bardziej szczegółowo

Kolorowanie Dywanu Sierpińskiego. Andrzej Szablewski, Radosław Peszkowski

Kolorowanie Dywanu Sierpińskiego. Andrzej Szablewski, Radosław Peszkowski olorowaie Dywau ierpińskiego Adrzej zablewski, Radosław Peszkowski pis treści stęp... Problem kolorowaia... Róże rodzaje kwadratów... osekwecja atury fraktalej...6 zory rekurecyje... Przekształcaie rekurecji...

Bardziej szczegółowo

Wpływ warunków eksploatacji pojazdu na charakterystyki zewnętrzne silnika

Wpływ warunków eksploatacji pojazdu na charakterystyki zewnętrzne silnika POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ MECHANICZNY Katedra Budowy i Eksploatacji Maszy Istrukcja do zajęć laboratoryjych z przedmiotu: EKSPLOATACJA MASZYN Wpływ waruków eksploatacji pojazdu a charakterystyki

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16 Egzami,.9.6, godz. :-5: Zadaie. ( puktów) Wyzaczyć wszystkie rozwiązaia rówaia z 4 = 4 w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej (bez używaia fukcji trygoometryczych)

Bardziej szczegółowo

Kontakt,informacja i konsultacje. I Zasada Termodynamiki. Energia wewnętrzna

Kontakt,informacja i konsultacje. I Zasada Termodynamiki. Energia wewnętrzna Kotat,iformacja i osultacje Chemia A ; poój 37 elefo: 347-2769 E-mail: wojte@chem.pg.gda.pl tablica ogłoszeń Katedry Chemii Fizyczej http://www.pg.gda.pl/chem/dydatya/ lub http://www.pg.gda.pl/chem/katedry/fizycza

Bardziej szczegółowo

BADANIA PEŁNOPRZEMYSŁOWE NAD OGRANICZANIEM EMISJI NOX, SO 2 I Hg Z KOTŁA OP-650. Mieczysław Adam GOSTOMCZYK Państwowa Wyższa Szkoła Zawodowa w Kaliszu

BADANIA PEŁNOPRZEMYSŁOWE NAD OGRANICZANIEM EMISJI NOX, SO 2 I Hg Z KOTŁA OP-650. Mieczysław Adam GOSTOMCZYK Państwowa Wyższa Szkoła Zawodowa w Kaliszu BADANIA PEŁNOPRZEMYSŁOWE NAD OGRANICZANIEM EMISJI NOX, SO 2 I Hg Z KOTŁA OP-650 Mieczysław Adam GOSTOMCZYK Państwowa Wyższa Szkoła Zawodowa w Kaliszu 1. Wstęp Ograiczeie emisji zaieczyszczeń powietrza,

Bardziej szczegółowo

Analiza dokładności pomiaru, względnego rozkładu egzytancji widmowej źródeł światła, dokonanego przy użyciu spektroradiometru kompaktowego

Analiza dokładności pomiaru, względnego rozkładu egzytancji widmowej źródeł światła, dokonanego przy użyciu spektroradiometru kompaktowego doi:1.15199/48.215.4.38 Eugeiusz CZECH 1, Zbigiew JAROZEWCZ 2,3, Przemysław TABAKA 4, rea FRYC 5 Politechika Białostocka, Wydział Elektryczy, Katedra Elektrotechiki Teoretyczej i Metrologii (1), stytut

Bardziej szczegółowo

2. Schemat ideowy układu pomiarowego

2. Schemat ideowy układu pomiarowego 1. Wiadomości ogóle o prostowikach sterowaych Układy prostowikowe sterowae są przekształtikami sterowaymi fazowo. UmoŜliwiają płya regulację średiej wartości apięcia wyprostowaego, a tym samym średiej

Bardziej szczegółowo

będą niezależnymi zmiennymi losowymi z rozkładu jednostajnego na przedziale ( 0,

będą niezależnymi zmiennymi losowymi z rozkładu jednostajnego na przedziale ( 0, Zadaie iech X, X,, X 6 będą iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), a Y, Y,, Y6 iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), gdzie, są iezaymi

Bardziej szczegółowo

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce! Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,

Bardziej szczegółowo

SYSTEM OCENY STANU NAWIERZCHNI SOSN ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI BITUMICZNYCH W SYSTEMIE OCENY STANU NAWIERZCHNI SOSN

SYSTEM OCENY STANU NAWIERZCHNI SOSN ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI BITUMICZNYCH W SYSTEMIE OCENY STANU NAWIERZCHNI SOSN ZAŁĄCZNIK B GENERALNA DYREKCJA DRÓG PUBLICZNYCH Biuro Studiów Sieci Drogowej SYSTEM OCENY STANU NAWIERZCHNI SOSN WYTYCZNE STOSOWANIA - ZAŁĄCZNIK B ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI

Bardziej szczegółowo

2.1. Studium przypadku 1

2.1. Studium przypadku 1 Uogóliaie wyików Filip Chybalski.. Studium przypadku Opis problemu Przedsiębiorstwo ŚRUBEX zajmuje się produkcją wyrobów metalowych i w jego szerokim asortymecie domiują różego rodzaju śrubki i wkręty.

Bardziej szczegółowo

Rentgenowska analiza fazowa jakościowa i ilościowa Wykład 8

Rentgenowska analiza fazowa jakościowa i ilościowa Wykład 8 Retgeowska aaliza fazowa jakościowa i ilościowa Wykład 8. Retgeowska aaliza fazowa jakościowa i ilościowa. 2. Metody aalizy fazowej ilościowej. 3. Dobór wzorca w aalizie ilościowej. 4. Przeprowadzeie aalizy

Bardziej szczegółowo

Termodynamiczne modelowanie procesów spalania i detonacji idealnych układów heterogenicznych. Cz. 2. Aplikacja numeryczna

Termodynamiczne modelowanie procesów spalania i detonacji idealnych układów heterogenicznych. Cz. 2. Aplikacja numeryczna BIULETY WAT VOL. LVIII, R 2, 2009 Termodyamicze modelowaie procesów spalaia i detoacji idealych układów heterogeiczych. Cz. 2. Aplikacja umerycza SEBASTIA GRYS, WALDEMAR A. TRZCIŃSKI Wojskowa Akademia

Bardziej szczegółowo

STATYSTYKA I ANALIZA DANYCH

STATYSTYKA I ANALIZA DANYCH TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica

Bardziej szczegółowo

z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X

z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X Matematyka ubezpieczeń majątkowych.0.0 r. Zadaie. Mamy day ciąg liczb q, q,..., q z przedziału 0,. Rozważmy trzy zmiee losowe: o X X X... X, gdzie X i ma rozkład dwumiaowy o parametrach,q i, i wszystkie

Bardziej szczegółowo

Zmiany w zarządzaniu jakością w polskich szpitalach

Zmiany w zarządzaniu jakością w polskich szpitalach Łopacińska Hygeia Public I, Tokarski Health 2014, Z, Deys 49(2): A. 343-347 Zmiay w zarządzaiu jakością w polskich szpitalach 343 Zmiay w zarządzaiu jakością w polskich szpitalach Quality maagemet chages

Bardziej szczegółowo

Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik

Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik Pierwiastki z liczby zespoloej Autorzy: Agieszka Kowalik 09 Pierwiastki z liczby zespoloej Autor: Agieszka Kowalik DEFINICJA Defiicja : Pierwiastek z liczby zespoloej Niech będzie liczbą aturalą. Pierwiastkiem

Bardziej szczegółowo

Ć wiczenie 9 SILNIK TRÓJFAZOWY ZWARTY

Ć wiczenie 9 SILNIK TRÓJFAZOWY ZWARTY 145 Ć wiczeie 9 SILNIK TRÓJFAZOWY ZWARTY 1. Wiadomości ogóle 1.1. Ogóla budowa Siliki asychroicze trójfazowe, dzięki swoim zaletom ruchowym, prostocie kostrukcji, łatwej obsłudze są powszechie stosowae

Bardziej szczegółowo

Chemia Teoretyczna I (6).

Chemia Teoretyczna I (6). Chemia Teoretycza I (6). NajwaŜiejsze rówaia róŝiczkowe drugiego rzędu o stałych współczyikach w chemii i fizyce cząstka w jedowymiarowej studi potecjału Cząstka w jedowymiarowej studi potecjału Przez

Bardziej szczegółowo

Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień.

Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień. Metoda aalizy hierarchii Saaty ego Ważym problemem podejmowaia decyzji optymalizowaej jest często występująca hierarchiczość zagadień. Istieje wiele heurystyczych podejść do rozwiązaia tego problemu, jedak

Bardziej szczegółowo

Elementy statystyki opisowej Izolda Gorgol wyciąg z prezentacji (wykład I)

Elementy statystyki opisowej Izolda Gorgol wyciąg z prezentacji (wykład I) Elemety statystyki opisowej Izolda Gorgol wyciąg z prezetacji (wykład I) Populacja statystycza, badaie statystycze Statystyka matematycza zajmuje się opisywaiem i aalizą zjawisk masowych za pomocą metod

Bardziej szczegółowo

SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY

SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY Weryfikacja hipotez statystyczych WNIOSKOWANIE STATYSTYCZNE Wioskowaie statystycze, to proces uogóliaia wyików uzyskaych a podstawie próby a całą

Bardziej szczegółowo

I. Podzielność liczb całkowitych

I. Podzielność liczb całkowitych I Podzielość liczb całkowitych Liczba a = 57 przy dzieleiu przez pewą liczbę dodatią całkowitą b daje iloraz k = 3 i resztę r Zaleźć dzieik b oraz resztę r a = 57 = 3 b + r, 0 r b Stąd 5 r b 8, 3 więc

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU. Wprowadzenie. = =

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU. Wprowadzenie. = = WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Wprowadzeie. Przy przejśiu światła z jedego ośrodka do drugiego występuje zjawisko załamaia zgodie z prawem Selliusa siα

Bardziej szczegółowo

LABORATORIUM MODELOWANIA I SYMULACJI. Ćwiczenie 3 MODELOWANIE SYSTEMÓW DYNAMICZNYCH METODY OPISU MODELI UKŁADÓW

LABORATORIUM MODELOWANIA I SYMULACJI. Ćwiczenie 3 MODELOWANIE SYSTEMÓW DYNAMICZNYCH METODY OPISU MODELI UKŁADÓW Wydział Elektryczy Zespół Automatyki (ZTMAiPC) ZERiA LABORATORIUM MODELOWANIA I SYMULACJI Ćwiczeie 3 MODELOWANIE SYSTEMÓW DYNAMICZNYCH METODY OPISU MODELI UKŁADÓW I. Cel ćwiczeia Celem ćwiczeia jest zapozaie

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematycza dla leśików Wydział Leśy Kieruek leśictwo Studia Stacjoare I Stopia Rok akademicki 0/0 Wykład 5 Testy statystycze Ogóle zasady testowaia hipotez statystyczych, rodzaje hipotez, rodzaje

Bardziej szczegółowo

Akustyczno-fonetyczne cechy mowy polskiej

Akustyczno-fonetyczne cechy mowy polskiej II PRACOWNIA FIZYCZNA Akustyczo-foetycze cechy mowy polskiej Opis ćwiczeia w ramach II Pracowi Fizyczej Adrzej Wicher Aleksader Sęk Jacek Koieczy Istytut Akustyki UAM Pozań, 5 . WSTĘP... 3. SYGNAŁY ORAZ

Bardziej szczegółowo

MACIERZE STOCHASTYCZNE

MACIERZE STOCHASTYCZNE MACIERZE STOCHASTYCZNE p ij - prawdopodobieństwo przejścia od stau i do stau j w jedym (dowolym) kroku, [p ij ]- macierz prawdopodobieństw przejść (w jedym kroku), Własości macierzy prawdopodobieństw przejść:

Bardziej szczegółowo

1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o

1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o 1. Wioskowaie statystycze. W statystyce idetyfikujemy: Cecha-Zmiea losowa Rozkład cechy-rozkład populacji Poadto miaem statystyki określa się także fukcje zmieych losowych o tym samym rozkładzie. Rozkłady

Bardziej szczegółowo

Egzaminy. na wyższe uczelnie 2003. zadania

Egzaminy. na wyższe uczelnie 2003. zadania zadaia Egzamiy wstępe a wyższe uczelie 003 I. Akademia Ekoomicza we Wrocławiu. Rozwiąż układ rówań Æ_ -9 y - 5 _ y = 5 _ -9 _. Dla jakiej wartości parametru a suma kwadratów rozwiązań rzeczywistych rówaia

Bardziej szczegółowo

ZESZYTY NAUKOWE NR 11(83) AKADEMII MORSKIEJ W SZCZECINIE. Analiza dokładności wskazań obiektów nawodnych. Accuracy Analysis of Sea Objects

ZESZYTY NAUKOWE NR 11(83) AKADEMII MORSKIEJ W SZCZECINIE. Analiza dokładności wskazań obiektów nawodnych. Accuracy Analysis of Sea Objects ISSN 1733-8670 ZESZYTY NAUKOWE NR 11(83) AKADEMII MORSKIEJ W SZCZECINIE IV MIĘDZYNARODOWA KONFERENCJA NAUKOWO-TECHNICZNA E X P L O - S H I P 2 0 0 6 Adrzej Burzyński Aaliza dokładości wskazań obiektów

Bardziej szczegółowo

VII MIĘDZYNARODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretyczne T3.

VII MIĘDZYNARODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretyczne T3. KOOF Szczeci: www.of.szc.pl VII MIĘDZYNAODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretycze T3. Źródło: Komitet Główy Olimpiady Fizyczej; Olimpiada Fizycza XXIII XXIV, WSiP Warszawa 1977 Autor: Waldemar Gorzkowski

Bardziej szczegółowo